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Abstract: The traditional leader-follower formation algorithm can realize the formation of multiply
robotic fishes, but fails to consider the energy consumption during the formation. In this paper,
the energy optimized leader-follower formation algorithm has been investigated to solve this problem.
Considering that the acceleration of robotic fish is tightly linked to the motion state and energy
consumption, we optimize the corresponding control parameters of the acceleration to reduce energy
consumption during the formation via particle swarm algorithm. The whole process has been
presented as follows: firstly we realize the formation on the base of the kinematic model with
leader-follower formation algorithm; then the energy consumption on the base of dynamical model
are derived; finally we seek the optimal control parameters based on the particle swarm optimization
(PSO) algorithm. The dynamics simulation of the energy optimization scheme is conducted to verify
the functionality of the proposed energy optimized leader-follower formation algorithm via MATLAB.
The optimized results demonstrate that the proposed approach, reducing energy consumption during
the formation, is superior to the traditional leader-follower formation algorithm and can reduce
energy consumption during the formation. The novelty of the work is that we can reduce the energy
consumption during the process of formation by considering the energy consumption, which is a gap
in the current research field.

Keywords: robotic fish; leader-follower formation flocking; energy consumption; parameter optimization

1. Introduction

Robotic fish, defined as a fish-like aquatic vehicle, has the highly controllable fins, the large
aspect ratio, the undulatory body motions and lunate tail [1]. Robotic fish can be applied in lots of
fields, such as underwater exploration, aquatic monitoring, patrol, and mobile sensing [2,3]. Most of
the robotic fishes consume energy that are supplied by batteries. But batteries have limited capacity.
When robotic fishes conduct different assignments, they need to take on different formation and
change the formation frequently. However, during the process of changing the formation, they will
consume lots of energy. Therefore, how to reduce the energy consumption in the process of formation
and improve the efficiency of formation , have the very high research value.

Migrating flocking, such as traditional leader-follower flocking, can be used to address
the formation problems of multiple robotic fishes systems. In terms of formation flocking problems of

Energies 2018, 11, 2023; doi:10.3390/en11082023 www.mdpi.com/journal/energies



Energies 2018, 11, 2023 2 of 16

multiple robotic fishes systems, some researches have come up with lots of methods. If some leaders
have global knowledge and they lead other robotic fishes swim in a desired trajectory, the system
can track a specific trajectory and realize the formation [4]. But the routine is fixed and not suitable
for the real life. Later, for multi-agent dynamical systems, the distributed leader-follower algorithm
has been set up [5]. Under the lead of this algorithm, robotic fishes have time-dependent velocities
and the routine is not fixed. However, the leader is virtual and few formation articles have contained
real leaders. Based on the consensus algorithm [4] and artificial potential field method [6], a model of
distributed adaptive formation of multi-agent system has been put forward [7]. The leader is a genuine
fish and has bounded unknown input. The leader can lead the followers realize the formation.
Considering essential features of formation behavior, such as collision avoidance, and velocity
matching [8], a distributed cohesive formation algorithm has been provided to realize the formation [9].
In this algorithm, robotic fishes are divided to two parts: one real leader and several followers.
However, those formation algorithms above just realize the formation and fail to consider the energy
consumption during the process of formation.

In order to predict, monitor and increase the energy of robotic fish, many researches have
been conducted. On the basis of the ionic polymer-metal composite (IPMC) physical properties,
in order to save energy, an energy consumption model has been set up to predict single robotic fish
energy consumption [10]. A real-time energy monitoring and management system has been designed
to monitor the energy consumption of the single robot fish [11]. A reversible energy conversion
mechanism has been proposed, which can convert wave energy to electricity for single robotic fish [12].
Besides, an energy-saving cluster head method with fuzzy logic can be utilized to extend the single
robotic fish lifetime [13]. Although those methods above can be utilized to predict, monitor and save the
energy consumption of robotic fish, they are just devised for single robotic fish, rather than total energy
of all the robotic fishes during the process of changing the formation. Although previous methods in
literatures have been proposed to realize the formation construction of the group and decline energy
consumption of single robotic fish, they involve few information about energy consumption about all
the robotic fishes during the process of formation. In the process of swimming, the velocity of each
robotic fish is different, and thus the energy consumption of each robotic fish differs from each other.
In an attempt to reduce the energy consumption of multi-agent systems, the condition of each robotic
fish should be researched in the global point of view.

The paper aims at providing a energy optimized leader-follower formation algorithm to minimize
the energy consumption of multi-agent systems during the process of changing formation. Holding
that the interconnection between a genuine leader and follower is unidirectional [14], and the leader
does not have external control input, thus the formation is stable. Control parameters are utilized to
express the acceleration equation of each robotic fish. With the different value of control parameters,
the acceleration equation of each robotic fish will be different. As a result, the energy consumption will
be different. Compared to the traditional distributed leader-follower formation algorithm, this paper
adds new control parameters to the acceleration equation and utilizes particle swarm optimization
algorithm to optimize the control parameters. Therefore, the energy consumption will be declined.
The main contributions of this paper are as below: to the best of authors’ knowledge, this is the first
paper to discuss how to reduce the energy consumption of multi-agent system during the process of
formation and propose an energy optimized leader-follower formation algorithm. Firstly, with an
accurate kinematic model, we can achieve the formation and the acceleration equation including control
parameters. Then, a dynamical model of the robotic fish is built to analyze the energy consumption of
total robotic fish. The total energy consumption of the multi-agent systems is regarded as a function to
guide the choice of control parameters. Then, under the lead of particle swarm algorithm, the control
parameters of the acceleration equation can be optimized to lower total energy consumption during
the process of formation. Finally, tests are performed to validate the proposed method in three kinds
of formation.
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The rest of this paper is organized as follows. Section 2 gives the kinematic model and dynamical
model of the robotic fish, and proposes the energy optimized leader-follower formation algorithm to
reduce the energy consumption of the multiple robotic fish system. And stability of the algorithm
is verified. Simulation results are provided in Section 3. Section 4 provides discussion about the
advantages of the algorithm and compares it with the traditional leader-follower algorithm. At the
end, Section 5 renders several concluding remarks.

2. Materials and Methods

2.1. Methods of Robotic Fish

2.1.1. The Kinematic Model

When robotic fish makes the formation, we need to record the state of fish. Figure 1 shows the
graphical representation of the kinematic model which helps record the process of the formation.
As the Figure 1 shows, Mk is regarded as the mass center while Dk is regarded as the geometrical center.
pk(t) = [xk(t), yk(t)]

T∈R2 is the position vector of robotic fish k at time t, θk(t)∈[0, 2π) is the heading
angle and is measured from the x-axis in the anticlockwise rotation , qk(t) = [vk(t), lkωk(t)]T =

[vk(t), uk(t)]T is the velocity vector, vk(t) ∈ R is the forward speed, ωk(t) ∈ R is the rotational
speed, uk(t) = lkωk(t) is the tangential speed, and lk is the distance between Dk and Mk. Assume
that the size of the robotic fish is the same. Every value of the lk is same and we can describe that
lk = ld(k = 1, . . . , N), where ld is a positive constant. Besides,

−→
tk (t) and −→nk (t) are two unit vectors

orthogonal to each other, and
−→
tk (t) =

[
cos θk(t) sin θk(t)

]T , while −→nk (t) =
[

sin θk(t) cos θk(t)
]T .

Yk

Y

X

Dk Mk(xk,yk)

Xk

lk
k

wk

tknk

0

Figure 1. Kinematic model for the robotic fish k.

Kinematic model is adopted to describe the state of the robotic fish when realizing the
formation [9]. Considering the fact that underwater communication is limited and technology for
localization is not perfect, it is restricted to realize the coordination algorithms on robotic fishes. Despite
that three-dimensional swimming capability about robotic fish has been researched [15], robotic fish
is still modeled as unicycles swimming in a two-dimensional Euclidean space [16,17]. Because the
robotic fish relies on the latter part of its body to provide force, kinematic model of fish is extended,
whose mass center and geometrical center are not the same. To sum up, the kinematic model of the
robotic fish k (k = 1, . . . , N) is as follows:
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ẋk(t) = vk(t) cos θk(t)−ωk(t)lk sin θk(t)

ẏk(t) = vk(t) sin θk(t) + ωk(t)lk cos θk(t)

θ̇k(t) = ωk(t)

v̇k(t) = ak(t)

ω̇k(t) = bk(t)/lk

(1)

where: ak(t) ∈ R and bk(t) ∈ R are the thrusting and rotational acceleration, respectively.
If Uk(t) = [ak(t) bk(t)] and

Hk(t) =
[

cos θk(t) sin θk(t)
− sin θk(t) cos θk(t)

]
the kinematic model can be simplified:

ṗk(t) = Hk(t)
Tqk(t)

q̇k(t) = Uk(t)
(2)

2.1.2. The Dynamical Model

When robotic fishes swim in the water, they will consume much energy because they need to
overcome some force. In order to analyze the resistance force, we need to create the dynamic model
of robotic fish. Figure 2 shows the graphical representation of the dynamic model. On the basis of
the dynamic model, the resistance force of the robotic fish can be analyzed. Then, the function
W about energy consumption can be calculated. Robotic fish is regarded as an integral rigid
body, at the same time, the body and tail of robotic fish can be seen as a rigid flat because of the
oscillation [18]. Making use of hydrodynamic pressure equation to analyze the hydrodynamic is a
good way. The hydrodynamic can be seen as the concentrated force. F0 and F1 are the hydrodynamic
forces on the head and body of the robotic fish, respectively [19,20].

Head

F0 10

F1

X

Y

Figure 2. Dynamic model for the robotic fish k.

By neglecting the force of friction, the resistance force to the head of the robotic fish is:

F0 =
1
2

ρD0V2
0 A0 (3)

where ρ is the density of the fluid, D0 is the resistance coefficient of the head, V0 is the velocity of the
robotic fish and A0 is the maximum sectional area of the head.
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By regarding the body as a flat, the hydrodynamic force to the body is:

F1 =
1
2

ρD1V2
c1 A1 (4)

where D1 is the resistance coefficient of the body. X0 is the x−coordinate of the head. A1 is
the sectional area of the body. Vc1 is the velocity perpendicular to the body. The vector of the velocity
is
−→
Vc1 = (Ẋ0− L1sinθ10θ̇10/2, L1cosθ10θ̇10/2). The normal vector of the body is:

−→
I1 = (sinθ10,−cosθ10).

And the velocity is: Vc1 =
−→
Vc1
−→
I1 .

Because the swing of the joints generate the hydrodynamic force to overcome the resistance of the
water, the total energy consumed in one period is:

Wtotal =
∫ T

0
(F0(t)V(t))dt +

∫ T

0
(F1(t)ω(t)ld)dt (5)

The total energy consumption of all robotic fishes can be expressed and calculated. Let the total
energy be a function and the particle swarm algorithms is utilized to optimize the value of the function.

2.1.3. The Energy Consumption of the Formation

Figure 3 gives the graphical representation of energy consumption during the process of changing
formation. In the initial stage of the experiment, robotic fishes are in a state of disorder. When the
leader-follower formation algorithm performs, each robotic fish swims to the appropriate place and
take on expected formation. During this process, all robotic fish will consume the energy. Each follower
possesses respective input control parameter in the acceleration equation based on the leader-follower
formation algorithm. The change of the control parameter will lead to the change of acceleration
equation. So is the profile of each robotic fish. Therefore, the formation process will alter and the
energy consumption will undulate. We can get the each proper control parameter and reduce the total
energy consumption of the formation process. The solid line represents energy consumption after
the optimization, while the dotted line represents energy consumption before optimization. Particle
Swarm Optimization algorithm can be used to get the optimal value of control parameter, and the
experimental results are verified in the simulation experiment.

P/w 

T /s

Before formation After formation

Before 

optimization

After 

optimization

Formation

0

Figure 3. The energy consumption in the process of formation.

In order to illustrate the main work, we can see the Figure 4. A group of chaotic robotic fishes are
divided into two parts: one leader and several followers. The leader takes the uniform motion and
the followers take the variable motion. In the acceleration equation of followers, we add the control
parameters and use the particle swarm optimization algorithm to optimize the control parameters.
Finally, we can reduce the energy consumption. The energy optimized leader-followers formation
algorithm will be explained in the next text.
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A group of chaotic 

robotic fish

One leader (robotic fish)

Uniform motion

Several followers (robotic fish)

Add control parameters to 

acceleration equation in the 

traditional leader-follower 

formation algorithm

Variable motion

Finish the formation 

with lower energy 

consumption

Optimize the control 

parameter with PSO algorithm

Figure 4. Flowchart for proposed algorithm.

2.2. Energy Optimized Leader-Follower Formation Algorithm

2.2.1. The Leader-Follower Formation and Acceleration Equation

The leader has external control input and is set L = {1}while the follower does not have and is set
F = {2, . . . , N}. Supposing that for a follower, interconnection with the follower is bidirectional, while
interconnection with the leader is unidirectional [14]. Nk(t) represents the neighbor set of follower
k ∈ F at time t, and is defined initially as Nk(0) =

{
n =

∣∣ ‖ pk(0)− qn(0) ‖< D, n = 1, . . . , N, n 6≡ k
}

.
D > 0 is a constant, and ‖ • ‖ is the Euclidean norm. Consider the leader k(k = 1) swims at a constant
speed, the thrusting acceleration a1(t) and rotational acceleration b1(t) are equal to zero.

The control input of the follower k(k = 2, . . . , N) can be designed by:

ak(t) =− ∑
n∈Nk(t)

ck(v̂k(t)− v̂n(t))

− ∑
n∈Nk(t)

ck ˙̂pkn(t)T−→tk (t)

− ∑
n∈Nk(t)

5 p̂kn(t)V(‖ p̂kn(t) ‖)T−→tk (t)

(6)
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bk(t) =− ∑
n∈Nk(t)

ckld(θ̂k(t)− θ̂n(t))

− ∑
n∈Nk(t)

ckld(ω̂k(t)− ω̂n(t))

− ∑
n∈Nk(t)

ck ˙̂pkn(t)T−→nk (t)

− ∑
n∈Nk(t)

5 p̂kn(t)V(‖ p̂kn(t) ‖)T−→nk (t)

(7)

where ck is the control parameter. ω̂k(t) = ωk(t) − ak1(t)ω1(t), v̂k(t) = vk(t) − ak1(t)v1(t),
θ̂k(t) = θk(t)− ak1(t)θ1(t), q̂n(t) = qn(t)− ak1q1(t), p̂kn(t) = p̂k(t)− p̂n(t), ck is a positive constant
varying from follower to follower. Consider p∗k (t) =

∫ t
0 ωk1(t)HT

k (t)q1dτ, ˙̂pk(t) = ṗk(t)− ṗ∗k (t) =

Hk(t)Tqk(t)− ak1Hk(t)Tq1(t) = Hk(t)T q̂k(t). The acceleration equation is consisted of two parts.
The specific potential function is [7]:

V = ∑
k∈F

∑
n∈Nk

V(‖ p̂kn ‖) + ∑
n∈Nk

V(‖ p̂1n ‖) (8)

Definition 1. Definition 1: V(‖ p̂kn ‖) is a potential function of the Euclidean norm ‖ p̂kn ‖ between agent k
and n. This potential function is radially unbounded, nonnegative, differentiable, such that:

1. When ‖ p̂kn ‖→ 0, V(‖ p̂kn ‖)→ ∞;
2. When ‖ p̂kn ‖→ 2D, V(‖ p̂kn ‖)→ ∞;
3. When ‖ p̂kn ‖ is equal to a certain value between 0 and 2D, V(‖ p̂kn ‖) is located in its unique minimum.

When potential V(‖ p̂kn ‖) reaches its unique minimum, the formation can be completed. In order
to verify the existence of potential V(‖ p̂kn ‖). A potential function can be made [9]. Specific potential
V(‖ p̂kn ‖) is:

V(‖ p̂kn ‖) =
b

‖ p̂kn ‖2 − a ln (4D2− ‖ p̂kn ‖2) + c (9)

The gradient of the potential function is:

5 p̂kn V(‖ p̂kn ‖) = −2p̂kn(
b

‖ p̂kn ‖4 −
a

4D2− ‖ p̂kn ‖2 ) (10)

where a, b and c are positive number. b
‖ p̂kn‖4 stands for the magnitude of the repulsion term,

and a
4D2−‖ p̂kn‖2 stands for the magnitude of the attraction term. When b

‖ p̂kn‖4 = a
4D2−‖ p̂kn‖2 , there

exits a balance between attraction and repulsion term [21]. So, the formation can be finished.

2.2.2. Optimization of Control Parameter

Each acceleration equation of follower has respective control parameter Ck, which can alter the
movement condition of corresponding robotic fish at time t. When Ck has different values, the value of
the acceleration will be different. As a result, the velocity and route of the robotic fish will be changed.
So, energy consumption of the formation will be changed. In order to reduce the energy consumption,
particle swarm optimization can be utilized to optimize the parameter Ck.

The Particle Swarm Optimization algorithm was proposed in 1995, which combined with the
process of the study of swarm intelligence and human [22]. In an E-dimensional optimization space,
the swarm is composed of N particles named N = (n1, . . . , nN). Each particle k is an E-dimensional
vector, whose position and velocity are respectively expressed with Xk = (Xk1, . . . , XkE)

T and
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Vk = (Vk1, . . . , VkE)
T . The individual optimal position is stored with pi = (Pk1, . . . , PkE)

T while the
global optimal position is stored with Pg = (Pg1, . . . , PgE)

T . The position and velocity of each particle k
are updated by:

Vkd(t + 1) =WVkd(t) + H1r1(Pkd(t)

− Xkd(t) + H2r2(Pgd(t)− Xgd(t)))
(11)

Xkd(t + 1) = Xkd + Vkd(t + 1) (12)

where 1 ≤ d ≤ E, 1 ≤ I ≤ N, Learning factors, H1 and H2 are accelerative coefficients, which impact
the convergence speed of the PSO algorithm. H1 and H2 are determined as rand (0, 2] and rand (0, 2]
respectively While r1 and r2 are determined as rand (0, 1) and rand (0, 1). W is the inertia weight
which determines how much the previous velocity influence the current speed. Thus W can balance
the ability of global search and local search. The ability of global search includes the previous and
current search, while the ability of local search includes the current search. A linear decrease strategy
has been put forward for a better optimization [23,24]:

W = Wmax −
h

hmax
(Wmax −Wmin)

where Wmax is the maximum value of W and Wmin is the minimum value. h and hmax indicate the
current and maximum iterations, respectively.

According to the principle of particle swarm optimization, and the instance of distributed
formation flocking algorithm, control parameter Ck is regarded as the variable while the total energy
consumption in the process of robotic fish formation is regarded as the function. The relation between
variable and function is built by formation algorithm and power consumption algorithm.

Figure 5 shows the process of the particle swarm algorithm.
Step one: Initialize the size of the population. Presuppose the size of the population N = 30.

Because there are ten robotic fishes for formation and parameter Ck varies from individual to individual,
parameter Ck is a ten-dimensional vector. considering that parameter Ck has scope limitation,
we initialize the position Xkd and velocity Vkd of each particle k in a certain range.

Step two: Calculate the function as follows, according to the relationship between the parameter
Ck and energy loss. Firstly, calculate the fitness value(f(Xkd(t)) of each particle in the population; Then,
calculate the individual optimal position pk of each particle in the current moment; Finally, calculate
the global optimal position pg of robotic fish system in the current moment.

Step three: Calculate and update the velocity and position of the particle. Because parameter Ck is
in a range, the velocity and position of the particle should also be in a range. The velocity shouldn’t be
greater than maximum velocity Vmax. Otherwise, the velocity will be replaced with maximum velocity
Vmax. In the same way, if the position updated of the particle is beyond the range of Ck, the position
should be replaced with boundary value of Ck.

Step four: Compare the current fitness value of each particle with the optimal value of individual
fitness. Pk should be replaced with the better one.

Step five: Compare the current fitness value of each particle with the optimal value of global
fitness. Pg should be replaced with the better one.

Step six: If the precision meets the requirement or the number of iteration reaches the maximum,
the algorithm will be stopped. Otherwise the circulation should return to the step two.
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START

Initialize the speed and position of 

the particle randomly in the whole 

search space

Calculate the fitness of each 

particle

END 

Judge whether to terminate

Update the velocity and 

position of particles 

Update the Pk and Pg

NO

YES

Figure 5. Flowchart for PSO algorithm.

2.2.3. The Proof of the Stability

It is defined that θ̂(t) = (θ̂2(t), . . . , ˆθN(t))T , q̂(t) = [q̂2(t)T , . . . , q̂N(t)T ]T , as while as
p̃(t) = [ p̃11(t)T , . . . , p̃1N(t)T , . . . , p̃N1(t)T , . . . , p̃NN(t)T ]T . Make Nl =

{
k
∣∣ak1 = 1, k ∈ F

}
denote the

set of followers who has one leader neighbor on time interval [tr, tr+1). Let the following energy
function as the common Lyapunov function [7]. If the value of derivative is less than zero, the energy
optimized leader-follower formation algorithm is stable.

E(θ̂(t), q̂(t), p̃(t)) = E1(t) + E2(t) + E3(t) + E4(t) (13)

Therein:

E1(t) =
1
2

V(t) = ∑
l∈F

∑
n∈Nk(t)

V(‖ p̂kn ‖) + ∑
n∈Nk(t)

V(‖ p̂1n ‖)

E2(t) =
1
2 ∑

i∈F
q̂k(t)T q̂k(t)

E3(t) =
1
2

θ(t) = l2
d ∑

k∈F
∑

n∈Nk(t)
Ck θ̂k(t)(θ̂k(t)− θ̂n(t))

E4(t) =
1
4 ∑

k∈F
(Ck −m)2

(14)

where: Ck is the control parameter and the constants that are in a range. The derivative of
E(θ̂(t), q̂(t), p̃(t)) during the time interval [tr, tr+1) is:
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dE
dt

=
dE1

dt
+

dE2

dt
+

dE3

dt
+

dE4

dt
(15)

Consider parameter Ck is a constant that is in a range, E4(t) is a constant, in which case, dE4
dt is

equal to zero. So:

dE
dt

=
dE1

dt
+

dE2

dt
+

dE3

dt
= − ∑

k∈F
∑

n∈Nk

Ck q̂k(t)T(q̂k(t)− q̂n(t))

− ∑
k∈F

∑
n∈Nk

Ck ˙̂pk(t)T( ˙̂pk(t)− ˙̂pn(t))

(16)

Because that dE
dt ≤ 0 and thus, the distributed formation flocking optimization algorithm

asymptotically is stable [9].
When the potential energy reaches a minimum value, the individual distance of the system reaches

a stable value. Therefore, if we can ensure the system’s potential energy reaches a minimum value
when the individual distance of the system reaches a expected value, we can realize any formation
we want. For one geometry formation, it is composed of N vertexes which are built by the regular
pd

k = [xd
k , yd

k ], k = 1, . . . , N. In order to realize the expected formation, the acceleration equation of the
followers should be changed as follow:

ak(t) =− ∑
n∈Nk(t)

ck(v̂k(t)− v̂n(t))

− ∑
n∈Nk(t)

ck ˙̂pkn(t)T−→tk (t)

− ∑
n∈Nk(t)

5 p̂kn(t)V(‖ p̃kn(t) ‖)T−→tk (t)

(17)

bk(t) =− ∑
n∈Nk(t)

ckld(θ̂k(t)− θ̂n(t))

− ∑
n∈Nk(t)

ckld(ω̂k(t)− ω̂n(t))

− ∑
n∈Nk(t)

ck ˙̂pkn(t)T−→nk (t)

− ∑
n∈Nk(t)

5 p̂kn(t)V(‖ p̃kn(t) ‖)T−→nk (t)

(18)

where ‖ p̃kn(t) ‖=
‖ p̂kn(t)‖

pd
kn

, when the robotic fish system realizes a stable formation, potential function

V(‖ p̃kn(t) ‖) = 1.

3. Results

In order to evaluate to the proposed optimization scheme reducing energy consumption during
the formation, dynamic simulations are conducted on MATLAB2018b. Initial conditions of each robotic
fish are built. The simulation time is 200 s while the sample step is 0.01 s. we can express the state of
the robotic fish at time t with Sk(t) = (xk(t), yk(t), θ(t), vk(t), ωk(t)). The units of components are m,
m, rad, m/s, rad/s respectively. Give the initial conditions:

S1(0) = (−12.2,−13.09,−0.34, 0.76,−0.29),
S2(0) = (−3.7,−11.78,−1.76, 0.54, 0.7),
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S3(0) = (13.8,−4, 0.6, 5.3, 0.08),
S4(0) = (4.82, 0.1,−1.1, 7.8,−0.38),
S5(0) = (−5.8, 4.6, 0.07, 9.34, 0.013),
S6(0) = (4.97, 19.2,−0.84, 1.3,−0.22),
S7(0) = (−2.6, 6.1, 0.34, 5.7,−0.275),
S8(0) = (15.1, 0.6,−0.92, 4.7,−0.34),
S9(0) = (−4.56, 8.45,−0.12, 0.12, 0.6),
S10(0) = (5.45,−1.42,−0.92, 3.37, 0.31).

Lambdoid-shaped, ring-shaped and rectangle-shaped formation are studied. The vertex positions
for lambdoid-shaped formation can be denoted as pd1

1 = [−3, 0], pd1
2 = [−2.2, 0.6], pd1

3 = [−1.4, 1.2],
pd1

4 = [−0.6, 1.8], pd1
5 = [0.2, 2.4], pd1

6 = [1, 3], pd1
7 = [1.8, 2.4], pd1

8 = [2.6, 1.8], pd1
9 = [3.4, 1.2],

pd1
10 = [4.2, 0.6]. The vertex positions for ring-shaped formation can be denoted as pd2

k = [2× cos(k×π/5),
2× sin(k× π/5)], k = 1, . . . , 10 while for rectangle-shaped formation the positions of the vertex are
denoted as pd3

1 = [0, 0], pd3
2 = [1, 0], pd3

3 = [2, 0], pd3
4 = [3, 0], pd3

5 = [3, 1], pd3
6 = [3, 2], pd3

7 = [2, 2],
pd3

8 = [1, 2], pd3
9 = [0, 2], pd3

10 = [0, 1]. The number of iterations hmax is 500.

The Change of Wmax

A linear decrease strategy about W can improve the ability of optimization [23]. When W is
given different values, different results for optimization will be produced. In the beginning of particle
swarm algorithm, the larger inertia weight is, the stronger ability of global search is. As time goes on,
the smaller inertia weight is, the stronger ability of local search is. Let Wmin is equal to 0.5, and add 0.1
every time. Make Wmax −Wmin = 1.

Table 1 shows that the value of Ci and total energy consumption vary from different Wmax in the
lambdoid-shaped formation. When Wmax is equal to 0.8, the total energy consumption in the formation
is the minimum. In the beginning, the value of Wmax is 0.8, the ability of global search is strong to
explore more value of control parameter. As time goes, the value of Wmax declines, and the ability of
local search become stronger. Thus, particle swarm algorithm can select the appropriate value. Under
the given initial conditions, when Ck = (1.3, 1.3, 0.6608, 1.3, 1.3, 0.7657, 0.6, 1.3, 1.8738), k = 2, . . . , 10, ten
robotic fishes consume the least energy.

Table 1. Value of Ck and energy consumption in the lambdoid-shaped formation due to different W.

Wmax 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

C2 1.5088 1.1378 1.2397 1.3 1.4793 0.861 1.3 1.3 1.5989 1.4157
C3 0.8598 1.3096 1.3521 1.3 1.8527 0.7395 1.3 1.3 1.0538 0.8627
C4 1.2889 1.4393 1.071 0.6608 0.8887 0.7652 0.6 0.6 1.0298 1.0283
C5 1.842 1.364 1.8197 1.3 1.6125 0.9338 1.3 1.3 1.1966 1.135
C6 1.734 1.7699 1.4217 1.3 1.7243 1.1482 1.3 0.8494 1.1617 1.5876
C7 1.2904 0.8963 1.2625 0.7657 1.5769 0.9909 1.3 0.6 1.6805 1.6112
C8 1.5752 0.7295 0.9108 0.6 1.3054 1.0422 0.8243 1.3 0.8337 1.827
C9 1.3586 0.9115 1.7968 1.3 1.8707 0.1306 1.3 0.6 1.6113 1.7266
C10 1.2396 0.9763 0.6826 0.8738 1.3624 1.0658 0.6 1.3 0.9258 0.9837

Energy/106 J 1.44 1.4 1.41 1.17 1.41 1.92 1.3 1.18 1.44 1.54

Table 2 demonstrates that the value of Ck and total energy consumption vary between
different Wmax in the ring-shaped formation. When Wmax is equal to 0.7, the total energy
consumption of ten robotic fishes in the formation is the minimum. When the value of Wmax

is 0.7, the ability of global search and local search can be balanced well. As a result, the
algorithm can find more suitable value of control parameter. Under the given initial conditions,
when Ck = (0.74, 0.6, 0.9041, 1.3, 1.3, 0.74, 0.74, 0.74, 0.74), k = 2, . . . , 10, ten robotic fishes consume the
least energy.
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Table 2. Value of Ck and energy consumption in the ring-shaped formation due to different W.

Wmax 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

C2 1.3 0.6964 0.74 1.3 0.8047 1.3 1.3 1.3 0.6 1.3
C3 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1.3 0.6
C4 1.3 1.3 0.9041 1.3 1.3 1.3 1.3 0.9855 1.1883 1.3
C5 1.1178 0.6 1.3 1.3 1.3 0.6 1.3 1.2423 0.6 0.6
C6 1.3 1.3 1.3 0.816 1.3 1.3 0.971 0.6 1.3 0.6
C7 0.7205 0.6608 0.74 1.3 0.9921 1.3 0.6 1.3 1.3 1.0629
C8 1.1277 0.6608 0.74 1.1326 1.246 1.3 1.3 1.3 1.3 1.3
C9 1.2549 0.6608 0.74 1.3 1.3 1.3 1.3 0.6978 1.3 0.9269
C10 1.3 1.3 0.74 1.0112 0.6 0.6 1.3 1.3 1.3 1.3

Energy/105 J 7.92 7.99 7.62 8.21 8.37 8.27 7.88 8.06 7.93 8.53

Table 3 shows that the value of Ck and total energy consumption vary from different Wmax in the
rectangle-shaped formation. When Wmax is equal to 0.6, the total energy consumption of ten robotic
fishes is the minimum. when Ck = (1.2075, 1.3, 0.8908, 0.7156, 1.055, 1.3, 0.6534, 1.3, 1.3), k = 2, . . . , 10,
ten robotic fishes consume the least energy.

Table 3. Value of Ck and energy consumption in the rectangle-shaped formation due to different W.

Wmax 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

C2 0.6 1.2057 1.3 1.3 1.3 1.3 1.3 1.3 0.7074 1.3
C3 0.6 1.3 0.6 0.6 1.2075 0.6 0.6 0.6 0.7074 1.3
C4 0.9978 0.8908 1.3 1.1176 1.1588 1.3 1.3 0.6 1.3 1.3
C5 1.3 0.7156 1.3 1.3 1.2166 1.3 1.3 1.3 0.6 0.6
C6 1.3 1.055 1.3 0.8204 0.9112 0.6 0.6 1.3 1.3 1.3
C7 1.3 1.3 1.3 1.3 1.3 1.3 1.2881 0.6 1.3 1.3
C8 1.3 0.6534 1.284 1.3 0.9766 1.3 1.3 1.3 0.6 1.3
C9 1.3 1.3 0.7129 0.6 0.9719 0.7216 0.6 0.9332 1.3 1.3
C10 1.3 1.3 1.3 1.2942 1.3 1.3 1.3 1.3 1.3 1.3

Energy/105 J 7.23 6.35 7.48 6.65 6.73 7.82 7.06 7.48 6.65 7.85

4. Discussion

Different formation has different set of Ck. To better illustrate the proposed optimization algorithm,
the optimized energy is compared with the energy without optimization(fixed value).The experiment
is finished in the computer whose motherboard is Z270 and CPU is i7-7700.

Table 4 shows the value of Ck of three kinds of formation before and after optimization. Table 4
indicates comparison of total energy consumption of three kinds of formation. Make ten fishes as a
whole. Each formation consumes a corresponding energy under three different kinds of parameters
Ck. Compare the three cases of energy, and Table 4 shows that the whole fishes in the three kinds of
formation consume the least energy in which case that parameter Ck is optimized. Lambdoid-shaped
formation gets best energy optimization. During the process of formation, because the control
parameters are optimized, the corresponding robotic fish will choose the better routine and consume
little energy to finish the formation. To sum up, when ten robotic fishes conduct only one formation
from the very beginning, the proposed algorithm can succeed to optimize the total energy consumption.
However, as we can see from the Table 4, optimal control parameters of different formations are
different. If we want to get each formations with least energy consumption, we need to choose
different set of control parameters. This is the disadvantage of our algorithm. We cannot get the same
value of control parameters to finish different formation.
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Table 4. The comparison of total energy consumption.

(a) The Value of Ck.

Ck
After Optimization Before Optimization

Cre
k Cla

k Cri
k Fixed

C2 1.2057 1.3 0.74 1
C3 1.3 1.3 0.6 1
C4 0.8908 0.6608 0.9041 1
C5 0.7156 1.3 1.3 1
C6 1.055 1.3 1.3 1
C7 1.3 0.7657 0.74 1
C8 0.6534 0.6 0.74 1
C9 1.3 1.3 0.74 1
C10 1.3 0.8738 0.74 1

(b) Total Energy of Each Formation /J.

Rectangle-Shaped Lambdoid-Shaped Ring-Shaped

After optimization 6.35 × 105 1.17 × 106 7.62 × 105

Before optimization 6.4 × 105 2.27 × 106 1.22 × 106

Besides, power of ten agents in the formation can be simulated. Figure 6 demonstrates the power
of ten agents in the ring-shaped formation. Figure 6b shows that when the control parameters are
optimized, the whole fishes will quickly end the energy fluctuation period, and will finish the formation
with the steady energy consumption. So, the formation will be completed quickly. Figure 7 indicates
the power of ten agents in the rectangle-shaped formation. The two curves are similar. The time
when formation transits to the smooth energy consumption is similar. However, before formation,
the energy is consumed a little more. Figure 8 shows the power of ten agents in the lambdoid-shaped
formation. Although the volatility is larger after optimizing control parameter, finishing time is shorter.
thus, the energy consumption is reduced. Figure 9 shows the finishing time in three kinds of situation.
This indicates that the proposed algorithm not only reduces the energy consumption in the process of
formation, but also shorten the formation time.
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Figure 6. Power of ten agents in the ring-shaped formation.
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Figure 7. Power of ten agents in the rectangle-shaped formation.
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Figure 8. Power of ten agents in the lambdoid-shaped formation.
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Figure 9. Total energy consumption in the different situations.

Nowadays, we are trying to build the experimental platform to do do the experiment in a real
world. We are using hardware such as STM32F407 and software such as Keil to build platform.
In the future, we will build up a more general swimming model of the robotic fish by considering
the complex stress. In addition, we will take the task to seek general control parameter to adapt to
different formation transformation.

5. Conclusions

Nowadays, few papers focus on the energy consumption of total multi-agent during the formation.
Our work can fill in this gap. This paper has presented an application of PSO to optimize the control
parameters Cks to efficiently reduce energy consumption during the formation. Although that not
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all formation algorithms have Cks, each algorithm has control parameters that control the movement
of agents. Although different formations have different control parameter, we can choose different
optimal parameters by using particle swarm optimization algorithm to finish the formation with lower
energy consumption. After optimizing the control parameter, individual robotic fish has their own
suitable parameters and they will choose perfect routine to finish their formation. Besides, finishing
time will be shorter.
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