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Abstract: This paper aims to present a smart, particle swarm optimization (PSO)-based, real time
configuration strategy for a photovoltaic (PV) module array in the event of shadow cast on a PV
module(s) and/or module failure as an effective approach to power generation efficiency elevation.
At the first step, the respective maximum output power levels provided by a normal operating
array at various levels of irradiation and module surface temperatures are measured and entered
as references into a database. Subsequently, the maximum output power (MPP) level, tracked by
a MPP tracker, is feedbacked for a comparison with an aforementioned reference as a way to tell
whether there is either a shadow or a malfunction event on a PV module(s). Once an abnormal
operation is detected, the presented smart configuration algorithm is performed to reconfigure the PV
module array such that the array is operated at the global MPP as intended. Furthermore, by use of a
PIC microcontroller that is a family of microcontrollers made by Microchip Technology for compact
implementation, this study is experimentally validated as an effective approach to locating the global
MPP at all events.

Keywords: particle swarm optimization; photovoltaic module array; maximum power point tracker;
shaded or malfunctioning; configuration strategy

1. Introduction

A partially shaded or malfunctioning PV module(s) in an array leads to multiple peaks on the
corresponding P-V characteristic curve, and gives rise to a considerable output power drop [1,2].
In light of this, global maximum power point tracking algorithms [3–5] are proposed to resolve such
multiple peak problems and as a way to reduce the shadow or malfunction impact on the overall
system performance. Since a PV module array is operated in a fixed configuration, the above-stated
algorithms lead to limited improvement in the electricity generation efficiency, particularly under
serious shaded or malfunctioning conditions.

Some differential power processing (DPP) converters and voltage equalizers that are one of the
most viable solutions to partial shading are mentioned in [6–8]. A distributed algorithm for controlling
differential power processing (DPP) converters in photovoltaic (PV) application was presented in [6].
It tackled the problem of maximizing the power extracted from a system of series-connected PV
modules outfitted with DPPs. However, this method must use the numbers of inductor and capacitor,
will increase the cost of the system and reduce the stability of the system. Reference [7] proposed a
photovoltaic module architecture with parallel-connected sub-module integrated dc-dc converters
that improve efficiency of energy capture in the presence of partial shading or other mismatch
conditions. But this architecture needs to connect a dc-dc converter in each series of PV module
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array that will increase the cost of the PV system. At the same time, the loss of converters will increase.
A two-switch voltage equalizer using an LLC resonant inverter with a voltage multiplier has been
proposed in [8]. With this proposed voltage equalizer, local maximum power points successfully
disappeared and extractable maximum power significantly increased compared with those without
equalization. However, this method needs to couple with the LLC resonant inverter and additional
voltage multiplier for PV modules connected in series. And this method cannot be applied in the
series-parallel PV modules architecture.

As suggested in [9], an adaptive PV module array mainly involves two parts, namely a fixed
part and an adaptive bank. In any shaded or malfunctioning event in the fixed part, the PV modules
in the adaptive bank are interconnected to the fixed part as an effective way to reduce the negative
impact of shadow on the overall power system performance. Yet, the price paid is that this approach
requires a large number of voltage/current sensors and switches for the interconnection between
the fixed part and the adaptive bank. Particularly, for a high capacity power generation system,
there must be a tremendous amount of backup PV modules deployed in the adaptive bank, that is,
a rise in cost to business concerns. As presented in [10], a single maximum power point tracker
(MPPT) in a PV module array is replaced with multiple MPPTs so as to reduce the impact of shaded or
malfunctioning modules. In this manner, the power generation efficiency of the overall system can
elevated as intended, while this MPP tracking strategy requires a greater number of DC-DC converters,
a high-cost investment in facilities, than a single MPP tracker. In contrast, a shaded PV module(s)
is excluded in the normal operation of a PV module array by manipulation of switches [11] for a
maintained level of output power, but it necessitates a complex module configuration.

In light of this, a novel and smart configuration strategy is presented for a PV module array in
this work. It merely requires a single MPP tracker, and a smaller number of switches than previous
studies. All the switches here are manipulated in such a way that the PV module array is operated at
the global MPP in any partially shaded and/or malfunctioning event.

In this paper, Section 2 described briefly the P-V and I-V characteristic curves for a PV module
array under normal and shaded module conditions. Then, all the proposed and the most commonly
seen PV module arrays in literature and practical applications are illustrated and compared in Section 3.
Section 4 described briefly the implementation procedure of the proposed PSO algorithm to track
the actual maximum power points when applied to multipeaked output characteristic curves of PV
module arrays. The joint operation between a PSO-based global MPP tracker and a PV module
array configuration strategy under shaded or malfunctioning conditions is presented in Section 5.
Final, in Section 6, some experimental results are made to demonstrate the effectiveness of the proposed
MPP tracker and a PV module array configuration strategy.

2. P-V and I-V Characteristic Curves for a PV Module Array under Normal and Shaded
Module Conditions

There is an obvious difference between the I-V as well as P-V characteristic curves of a PV module
array in normal and abnormal operations. Presented in Figure 1 is a family of I-V and P-V characteristic
curves of a 4-series 1-parallel array built with SANYO HIP-2717 PV modules [12] (Panasonic Co. Ltd.,
Kusatsu, Japan) at an irradiation between 200 and 1000 W/m2 and a surface temperature of 25 ◦C.
As exhibited in Figure 2, multiple peaks appear on the I-V and P-V characteristic curves in the event of
a single shaded PV module. In simple terms, a multiple peak problem is inevitably seen on both the
P-V and I-V characteristic curves in a cascade array configuration under partially shaded conditions.
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Figure 1. A family of (a) I-V; (b) P-V characteristic curves with the irradiation level as a free parameter 
for a 4-series 1-parallel array built with SANYO HIP-2717 PV modules at a module surface 
temperature of 25 °C. 
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3. PV Module Array Configurations

All the proposed and the most commonly seen PV module arrays in literature and practical
applications can be categorized into 6 types [13,14] as follows in terms of the way they are configured:
(1) the first is referred to as a series array, since all the PV modules are connected in series, but a major
disadvantage is a significant drop in the output current in the event of shaded or malfunctioning
module; (2) the second is referred to as a parallel array, since all the modules are connected in
parallel, but a major disadvantage is a considerable drop in the output voltage in case of shaded or
malfunctioning module; (3) the third is referred to as a serial-parallel array, the most widely used
configuration due to easy implementation, where PV modules are firstly connected in series and then
in parallel; (4) the fourth is referred to as a total cross-tied (TCT) array where a number of PV modules
are firstly connected in parallel as a subsystem, and multiple subsystems are then connected in series.
In this manner, the performance of a PV module array can be improved relative to a parallel or series
array; (5) the fifth is referred to as a bridge-linked (BL) array, where the PV modules are interconnected
in a bridge rectifier fashion, but a disadvantage is that a partially shaded module is found to affect all
the neighboring PV modules, which gives rise to a drop in both the output voltage and current, and an
MPP tracker, as presented in [13], cannot successfully perform a tracking task in a BL array; and (6) the
last is referred to as a honey-comb (HC) array, where all the PV modules are interconnected in a honey
comb topology. In this context, the output power can be elevated to a certain extent under particular,
but not all, partially shaded conditions.

All the six types of normal operating arrays deliver the same level of output power under identical
operating conditions, i.e., irradiation and module surface temperature. Nonetheless, different array
configurations account for different levels of output power in any shaded or module failure event.
Providing less amount of output current or voltage than expected in normal operation, a partially
shaded, or malfunctioning, PV module demonstrates adverse effect on all the adjacent modules,
such that the overall output power falls. For this sake, a smart algorithm is developed as a way to
optimize the array configuration for operation at the global MPP at all events.

As illustrated in Figure 3, there is a single switch between neighboring PV modules deployed along
adjacent branches. This presented smart algorithm is demonstrated through a skillful manipulation of
switch conduction. Accordingly, the module configuration is optimized in any case whenever there
is a shadow or/and malfunction event in a PV module(s), such that the PV module array operates
constantly at the global MPP as intended. This novel algorithm is development based on a PSO
algorithm, which will be detailed in the following section.
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4. Typical PSO Algorithm

Proposed by Kennedy and Eberhart in 1995 [15,16], the particle swarm optimization (PSO)
algorithm is of collective intelligence and pertains to a certain type of evolutionary algorithm.
The development of the original PSO algorithm is inspired by the way a flock of birds forage,
and is successfully applied to resolve a number of optimization problems such as described in [17].
Suppose that there is a bird, referred to as a particle in a PSO algorithm, flying in the sky. Each moving
particle in the space is associated with a fitness value and is aware of its current optimal fitness value
and position, referred to as the particle optimal value pbest. pbest is in essence the individual experience
of each particle, and the global optimum as well as the optimal position, referred to as the global
optimal value gbest, is shared by all the particles. For this sake, the position and the velocity of each
particle are updated through the experience of individual particle and the whole particle swarm.
To begin with, all the particles are randomly distributed over the field of interest. Provided that a
particle verges on an optimal object value, all the particles will search toward the same optimal object
value, which may be a local, but may not be the global, optimum. Thus, gbest must be updated in order
that all the particles can converge to the global optimum [18].

As stated previously, a PSO algorithm performs a comprehensive search task in a distributed
manner with memory over a search scope. In the original PSO algorithm, the velocity of each particle
is updated through the differences between the velocity and pbest/gbest, and the position is updated by
the updated velocity. Accordingly, the search difference radius and direction are updated. A typical
PSO algorithm is stated as follows [19]:

Stept 1 Build an optimal object function,
Stept 2 Initialize a particle swarm, and then generate the initial position and velocity of each particle

in a random manner,
Stept 3 The fitness value of each particle is evaluated through the object function and is then compared

with those of others so as to find the particle optimal value pbest, by which the search direction
of each particle is updated,

Stept 4 Either the particle optimal value pbest or the global optimal value gbest is saved as the updated
gbest, whichever is larger, by which the search direction of each particle is updated,

Stept 5 The velocity and position of a particle is updated by the kernel equation in the PSO algorithm,
expressed as:

vk+1
j = w × vk

j + C1 × rand(·)× (pbest
k
j − Xk

j )

+C2 × rand(·)× (gbest − Xk
j )

(1)

Xk+1
j = Xk

j + vk+1
j (2)

where vk+1
j and vk

j respectively represent the velocities of particle j at discrete time instants k

+ 1 and k, C1 and C2 the learning factors, w the inertia weighting, pbest
k
j the optimal value of

particle j at time instant k, gbest the global optimal value, Xk+1
j and Xk

j the positions of particle j
at time instants k + 1 and k, and rand (·) a random number between 0 and 1, and

Stept 6 The procedure for finding the fitness of a fitness function is repeated until the global
optimization solution is found or the specified number of iterations is reached.

5. Array Configuration Optimization Strategy

As presented in Figure 4, the proposed global MPP tracking system for a photovoltaic module
array mainly involves three subsystems, namely: (1) a boost converter; (2) an MPP tracker; and (3) an
array configuration controller. Skillful manipulation of the boost converter is made using the MPP
tracker, such that the operating point of the photovoltaic module array stays constantly at the MPP.
In normal operations, all the switch conduction statuses remain unchanged, and the array configuration
controller remains disabled until there is any shadow, or malfunctioning, event. In contrast, the moment
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there is any shadow event or module failure detected, the array configuration controller operates in
such a way that the output power is maximized through switch controlled reconfiguration.Energies 2018, 11, x FOR PEER REVIEW  6 of 16 
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5.1. MPPT Operation under Shaded and/or Malfunctioning PV Module Conditions

The output power of a photovoltaic power generating system is found to a function of its load.
In this context, the electricity converted from the solar energy cannot be fully delivered to the load.
Hence, placed between the photovoltaic module array and the load, an MPP tracker is designed to
make the photovoltaic module array operate at an MPP at all events. As suggested in [20], an MPP
tracker is trapped at a local, rather than the intended global MPP on a P-V characteristic curve with
multiple peaks, in case of any shaded or malfunctioning PV modules. In view of this, a PSO-based MPP
tracking algorithm is presented as an effective solution to the above-stated problem for an elevated
power generation efficiency of a photovoltaic module array. The PSO-based tracking algorithm is
stated as follows [21]:

Stept 1 Initialize all the PSO parameters, the duty cycle of the boost converter is treated as the position
of a particle, i.e., Xk

j , and an optimal object function represents the output power of the
photovoltaic module array, defined as P(V, I) = VPV × IPV ,

Step 2 The particle position, namely the duty cycle value, is applied to the boost converter.
Subsequently, given the output voltage and current, the output power can be evaluated
as the value of the object function,

Step 3 Either the output power evaluated in Step 2 or the particle optimal value pbest is saved as the
updated pbest, whichever is larger. Subsequently, either pbest or the global optimal value gbest is
saved as the updated gbest, whichever is larger,

Step 4 The velocities and the positions of all the particles are updated using the kernel equation in a
PSO algorithm,

Step 5 Repeat Steps 2–4 until the specified number of iterations is reached, and
Step 6 In the event of any change in the PV module conditions, either shaded or malfunctioning,

skip to Step 1 for another MPP tracking process. Otherwise, stay idle.

5.2. Joint Operation between an MPPT and the Proposed Configuration Optimization Strategy

In an effort to maximize the output power, a PSO-based MPP tracker works together with a smart
array configuration strategy. The moment either a shaded event(s) or a PV module failure(s) is detected
through a comparison between the maximized output power and a reference in a database under
identical operating conditions, the presented array configuration strategy, as illustrated in Figure 5,
is employed and stated as follows:
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Step 1 Initialize all the PSO parameters, and the position of particle j, Xk
j , is regarded as the switch

control signals. Then, define the optimal object function as P(Xk
j ) = VPV × IPV , the output

power of a PV module array,
Step 2 All the switches are manipulated by the above-stated switch control signals. Subsequently,

an MPP tracker is enabled to perform an MPP tracking task,
Step 3 The MPP current and voltage are measured so as to evaluate the output power as the object

function value,
Step 4 Either the evaluated output power or the particle optimal value pbest is saved as the updated

pbest, whichever is larger. Subsequently, either pbest or the global optimal value gbest is saved as
the updated gbest, whichever is larger,

Step 5 The position and velocity of each particle are updated by the kernel equations in the
PSO algorithm,

Step 6 Repeat Steps 2–5 until the specified number of iterations is reached, and
Step 7 In case of any change in the PV module conditions, skip back to Step 1 for another tracking

task. Otherwise, stay idle.

Energies 2018, 11, x FOR PEER REVIEW  7 of 16 

 

Step 2 All the switches are manipulated by the above-stated switch control signals. Subsequently, 
an MPP tracker is enabled to perform an MPP tracking task, 

Step 3 The MPP current and voltage are measured so as to evaluate the output power as the object 
function value, 

Step 4 Either the evaluated output power or the particle optimal value pbest is saved as the updated 
pbest, whichever is larger. Subsequently, either pbest or the global optimal value gbest is saved as 
the updated gbest, whichever is larger, 

Step 5 The position and velocity of each particle are updated by the kernel equations in the PSO 
algorithm, 

Step 6 Repeat Steps 2–5 until the specified number of iterations is reached, and 
Step 7 In case of any change in the PV module conditions, skip back to Step 1 for another tracking 

task. Otherwise, stay idle. 

Figure 5. A flow chart representing the global MPP tracking algorithm employed in Figure 4. 

6. Experimental Results 

Experiments are conducted on a 4-series 3-parallel array built with SANYO HIP2717 modules. 
Tabulated in Table 1 are the electric specifications of an HIP 2717 module under standard test 
condition (STC) [12] and in Table 2 are PSO-parameters employed in this work. In general, C1, C2, and 

Figure 5. A flow chart representing the global MPP tracking algorithm employed in Figure 4.



Energies 2018, 11, 2005 8 of 16

6. Experimental Results

Experiments are conducted on a 4-series 3-parallel array built with SANYO HIP2717 modules.
Tabulated in Table 1 are the electric specifications of an HIP 2717 module under standard test condition
(STC) [12] and in Table 2 are PSO-parameters employed in this work. In general, C1, C2, and w in the
traditional PSO algorithm are fixed values set to w = (10 − C1 − C2)/10. Therefore, the parameters
of this paper are chosen as shown in Table 2. The experimental results also show that the selected
parameters respond quickly and can track to the global maximum power point. Because the more
particles, the longer the time of per iteration, the particles are chosen four to shorten the time of each
iteration. The measured results show that the global maximum power point can be tracked in any test
case. Exhibited in Figure 6 is a photo of the tracking system under test for arbitrary partially shaded
and/or malfunctioning module cases.

Table 1. Specifications of a SANYO HIP 2717 photovoltaic module.

Name SANYO HIP 2717

Maximum power point (Pmax) 27.87 W
Current of the MPP (Impp) 1.63 A
Voltage of the MPP (Vmpp) 17.1 V

Short current (Isc) 1.82 A
Open voltage (Voc) 21.6 V

Table 2. Parameter setting for this proposed PSO (particle swarm optimization) algorithm.

Parameter PSO Algorithm

Paticle numbers 4
Learning factor (C1) 1
Learning factor (C2) 2

Weight factor (w) 0.7
Iterations 8
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Test Case 1 refers to a case where there are three 30% shaded PV modules at the upper right
corner and three 50% shaded modules at the lower left corner, as illustrated in Figure 7. Presented in
Figure 8 is a plot of the global optimal value gbest versus the number of iterations, and in Figure 9 is
the P-V characteristic curve comparison between pre- and post-output power optimization, while in
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Figure 10 is the optimized PV module configuration. As can be seen in Figure 8, the optimized
module configuration is successfully found following 7 iterations, and it is indicated in Table 3 that the
optimization leads to a 16.68% rise (31.4 W) in the output power.Energies 2018, 11, x FOR PEER REVIEW  9 of 16 

 

 

Figure 7. The pre-optimized array configuration in Case 1. 

100

120

140

160

180

200

220

240

260

0 5 10 15 20 25 30 35 40 45
 

Figure 8. A plot of the measured gbest against the number of iterations in Case 1 before configuration 
optimization. 

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90

 

Figure 9. P-V characteristic curve comparison between pre- and post-optimization in Case 1. 

Figure 7. The pre-optimized array configuration in Case 1.

Energies 2018, 11, x FOR PEER REVIEW  9 of 16 

 

 

Figure 7. The pre-optimized array configuration in Case 1. 

100

120

140

160

180

200

220

240

260

0 5 10 15 20 25 30 35 40 45
 

Figure 8. A plot of the measured gbest against the number of iterations in Case 1 before configuration 
optimization. 

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90

 

Figure 9. P-V characteristic curve comparison between pre- and post-optimization in Case 1. 

Figure 8. A plot of the measured gbest against the number of iterations in Case 1 before
configuration optimization.

Energies 2018, 11, x FOR PEER REVIEW  9 of 16 

 

 

Figure 7. The pre-optimized array configuration in Case 1. 

100

120

140

160

180

200

220

240

260

0 5 10 15 20 25 30 35 40 45
 

Figure 8. A plot of the measured gbest against the number of iterations in Case 1 before configuration 
optimization. 

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90

 

Figure 9. P-V characteristic curve comparison between pre- and post-optimization in Case 1. Figure 9. P-V characteristic curve comparison between pre- and post-optimization in Case 1.



Energies 2018, 11, 2005 10 of 16
Energies 2018, 11, x FOR PEER REVIEW  10 of 16 

 

 

Figure 10. The post-optimized array configuration in Case 1. 

Table 3. Output power comparison between pre- and post-optimization in Case 1. 

Output power of pre-optimization 188.29 W 
Output power of post-optimization 219.70 W 

Increase power 31.41 W (16.68%) 

As presented in Figure 11, there are three 30% shaded PV modules at the upper left corner in 
test Case 2, and the output power is plotted against the number of iterations in Figure 12. The 
comparison of P-V characteristic curves between the pre- and the post-optimization cases is exhibited 
in Figure 13, and the optimized PV module configuration is demonstrated in Figure 14. It is found in 
Figure 12 that the configuration is successfully optimized following 7 iterations. Table 4 gives a 3.22% 
rise (8.06 W) in the output power after optimization. 

 

Figure 11. The pre-optimized array configuration in Case 2. 

Figure 10. The post-optimized array configuration in Case 1.

Table 3. Output power comparison between pre- and post-optimization in Case 1.

Output power of pre-optimization 188.29 W
Output power of post-optimization 219.70 W

Increase power 31.41 W (16.68%)

As presented in Figure 11, there are three 30% shaded PV modules at the upper left corner in test
Case 2, and the output power is plotted against the number of iterations in Figure 12. The comparison
of P-V characteristic curves between the pre- and the post-optimization cases is exhibited in Figure 13,
and the optimized PV module configuration is demonstrated in Figure 14. It is found in Figure 12 that
the configuration is successfully optimized following 7 iterations. Table 4 gives a 3.22% rise (8.06 W) in
the output power after optimization.
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Table 4. Output power comparison between pre- and post-optimization in Case 2.

Output power of pre-optimization 250.51 W
Output power of post-optimization 258.57 W

Increase power 8.06 W (3.22%)
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As illustrated in Figure 15, there is a single PV malfunctioning module, the second in the middle
branch. A plot of the output power versus the number of iterations performed is presented in Figure 16,
a comparison of P-V characteristic curves is made between the pre- and post-optimization cases in
Figure 17, and the optimized module configuration is demonstrated in Figure 18. It is noted in Figure 16
that the PV module configuration in this case is optimized following 6 iterations, and Table 5 gives a
4.12% rise (9.51 W) in the output power after optimization.

Table 5. Output power comparison between pre- and post-optimization in Case 3.

Output power of pre-optimization 230.89 W
Output power of post-optimization 240.40 W

Increase power 9.51 W (4.12%)
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The curves in Figures 8, 9, 12, 13, 16 and 17 are drawn with the data collected using PIC
microcontroller. Because the microcontroller does not have the ability to draw, the data collected from
microcontroller is then rendered in a MatLab software package. In a word, all the figures are presented
with real data.

In this paper, experiments are conducted on a 4-series 3-parallel PV array with SANYO HIP2717
modules. Tabulated in Table 1 are the electric specifications of HIP2717 module under standard test
condition. Therefore, the theoretical maximum output power of a 4-series 3-parallel PV array is
334.44 W at standard test condition. The theoretical maximum power outputs for pre-optimization
and post-optimization of three different shaded test cases at standard test condition are listed in
Tables 3–5, respectively. The theoretical maximum power of the PV module array is approximately
334.44 W in normal operation, but only 188.29 W, 250.51 W and 230.89 W were extractable without the
optimized configuration strategy in Case 1, Case 2 and Case 3 shaded or fault conditions, respectively.
Therefore, the utilization factors of the PV module array without the optimized configuration strategy
are 0.563, 0.749 and 0.690, respectively. However, 219.7 W, 258.57 W and 240.4 W can be extracted
with the optimized configuration strategy in Case 1, Case 2 and Case 3 shaded or fault conditions,
respectively. The utilization factors of the PV module array can be promoted to 0.657, 0.773 and 0.719,
respectively. So it proved that the power generation efficiency of the PV module array can be improved
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by using the proposed PSO-based global MPP tracker and PV module array optimized configuration
strategy under shaded or malfunctioning conditions.

The three test cases investigated in the present study underwent MPPT for 8 iterations under the
proposed PSO-based global MPP tracker. According to the average tracking time and MPP tabulated
in Table 6, the method accurately identified the real MPP.

Table 6. The measurement results of the three test cases obtained using PSO-based global MPP tracker
without and with configuration optimization.

Test Case
Without Configuration Optimization With Configuration Optimization

P-V Curve
Peaks

Average
Tracking Time

Average
MPP

P-V Curve
Peaks

Average
Tracking Time

Average
MPP

1 Triple 3.3 s 188.29 W Double 2.5 s 219.70 W
2 Double 2.8 s 250.51 W Single 2.4 s 258.57 W
3 Double 3.4 s 230.89 W Double 2.7 s 240.40 W

7. Conclusions

This paper presents a PSO-based smart algorithm for PV module configuration optimization;
such that a PV module array is operated at the global MPP for arbitrary cases when there is any
shaded or malfunctioning event in a PV module(s). The development of a PSO algorithm is inspired
by the flocking behavior of birds that forage in a distributed manner with memory, and accordingly
the foraging route is minimized. In this manner, the entire particle swarm approaches the global
optimal value. This proposed PSO-based algorithm does as intended enable a PV module array to
operate at the global MPP for the purpose of power generation efficiency elevation, and is validated
experimentally as an effective approach to dealing with the shadow or/and malfunction problem in
PV modules.
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Nomenclature

PSO particle swarm optimization
PV photovoltaic
MPP maximum power point
MPPT maximum power point tracker
TCT total cross-tied
HC honey-comb
pbest particle optimal value
gbest global optimal value
vk

j velocities of particle j at discrete time instant k
C1, C2 learning factors
pbest

k
j optimal value of particle j at time instant k

Xk
j position of particle j at time instant k

P(V, I) output power of the photovoltaic module array
VPV output voltage of the photovoltaic module array
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IPV output current of the photovoltaic module array
STC standard test condition
Pmax maximum output power of the photovoltaic module array
Impp current of the MPP
Vmpp voltage of the MPP
Isc short current of the photovoltaic module array
Voc open voltage of the photovoltaic module array
w weight factor of the PSO algorithm
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