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Abstract: This paper presents a three-phase loss allocation procedure for distribution networks.
The key contribution of the paper is the computation of specific marginal loss coefficients (MLCs)
per bus and per phase expressly considering non-linear load models for Electric Vehicles (EV).
The method was applied in a unbalanced 12.47 kV feeder with 12,780 households and 1000 EVs under
peak and off-peak load conditions. Results obtained were also compared with the traditional roll-in
embedded allocation procedure (pro rata) using non-linear and standard constant power models.
Results show the influence of the non-linear load model in the energy losses allocated. This result
highlights the importance of considering an appropriate EV load model to appraise the overall losses
encouraging the use and further development of the methodology

Keywords: power loss allocation; plug-in electric vehicle; smart grid; locational marginal prices

1. Introduction

Electrical distribution systems are immersed in a deep process of transformation becoming very
different from what they used to be. The increasing penetration of distributed generators, the expected
connection of a large amount of plug-in electric vehicles (EV) and the adoption of advanced metering
and communication infrastructure (AMI) are creating new challenges for regulators. The widespread
integration of EVs into existing distribution networks will increase feeder demands and therefore
will produce rising energy losses [1]. Moreover, due to the different nature of EV loads (slow and
fast battery charging stations), one-phase and two-phase connections may increase system unbalance
producing additional losses. A recent study about the impact of the placement of fast charging stations
in distribution systems showed a power loss increase of 85% [2] with respect to a base layer with no EV
integration. Therefore, some conceptual and regulatory questions can be raised about the EV impacts
on the increase of energy losses in distribution networks:

1. How much should an EV load pay for the incremental losses in the grid [3]?
2. Should incremental losses produced by EVs connected to fast and slow charging stations be

allocated in a proportional manner among all distribution loads [3]?
3. Can a price signal for losses (sent in real-time via AMI and smart metering) force the EV loads to

provide volt/var support in order to improve voltage profile and reduce system losses [4]?

These regulatory aspects can be addressed by means of a cost-reflective energy loss allocation
procedure in order to send economical signals to consumers and producers with the aim of improving
overall performance of the system. The energy loss allocation is not new issue in electricity
markets. It has been widely treated in the literature mainly at transmission systems [5] and more
recently in distribution systems considering increasing integration of distributed generators [6].
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In general, the majority of the loss allocation procedures discussed in the literature are based upon
positive-sequence power flow models with balanced power injections where all loads are modeled
using standard constant real and reactive power (PQ) models [7–9]. In this case, load demands are not
affected by voltage fluctuations (constant power load models).

Power loss allocation constitutes an important strategy to determine locational prices at
distribution level in order to send efficiency economical signals to demands [10,11] and distributed
generators [12] at distribution level. Recent contributions are devoted to extending positive-sequence
power loss allocation procedures into unbalanced three phase domain [13,14]. Based upon the
calculation of sensitivity loss factors in the context of the optimal power flow problem, some work is
carried out to assess locational marginal pricing and EV charging management [15].

However, previous loss allocation methods discussed in literature only consider constant power
loads and do not take into account non-linear nature of EV loads [16]. System unbalance produced by
fast charging stations with single- and two-phase connections as well as the above-mentioned voltage
dependence justify the development of detailed three-phase loss allocation procedure to assess the
impact of EV loads on incremental losses.

To fill the research gap, this paper presents three-phase loss allocation procedure for distribution
networks that expressly incorporates a non-linear load model. This model can be adjusted as
exponential, constant power, current and impedance depending on EV load parametrization.
The proposed procedure is based on the computation of specific marginal loss coefficients (MLCs) per
bus and phase.

The method is illustrated in a unbalanced 12.47 kV feeder with 12,780 residential customers.
Daily energy losses were allocated considering five levels of EV penetration: 200, 400, 800 and
1000 units corresponding to 5%, 10%, 15%, 20% and 25% of consumption without EV presence.
Two operational scenarios with two different type of charging stations are studied. A 3.75 kW slow
battery charger from 0:00 to 8:00 and a 7.5 kW fast charger from 18:00 to 22:00. Results obtained
were also compared with traditional roll-in embedded allocation method (pro rata) [17]. Finally,
a sensitivity analysis was performed to compare the results with ones obtained using a standard
constant power model.

This paper is organized as follows. Section 2 is devoted to present the proposed method. Section 3
defines the case study. Section 4 discusses the results. Section 5 draws the conclusions.

2. The Energy Loss Allocation Model

The system model is based upon a typical n buses three-phase unbalanced distribution network
with two types of loads connected at each bus i: residential loads and non linear EV loads, as shown in
Figure 1.

Figure 1. Three-phase distribution system with Electric Vehicles (EV) loads.

In this paper, we assess the energy loss allocation problem among all loads considering a passive
network with EV integration. The model can be extended to active networks with distributed
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generation and bidirectional EV injections. However, our purpose here is to analyze technical
and economical impacts of EV’s connected to slow and fast charging stations under peak and
off-peak conditions.

2.1. PQ and EV Load Modeling

Distribution loads characteristics depend on the share of different demand types (industrial,
commercial and residential) and can be modeled in a more complex way as a mix of different
voltage–current models as constant impedance, constant current and constant power. For the sake
of simplicity, in this paper, all residential demands are regarded as constant loads. This means that
constant loads such as induction motors are predominant at demand side. In the reminder of the paper,
these constant power loads are denoted as constant real and reactive power (PQ) loads. Constant
power loads do not depend on voltage fluctuations.

Then, at given time t of a period T, the apparent power of a PQ load at bus i and phase p is
denoted as:

Sp,PQ
Di,t = Pp,PQ

Di,t + jQp,PQ
Di,t i = 2, . . . , n p = 1, 2, 3 t = 1, . . . , T (1)

where Pp,PQ
Di,t and Qp,PQ

Di,t are the real and the reactive power of a PQ load. No loads are connected at
source bus i = 1.

The second type of load considered in the formulation is the aggregation of a number of EVs
connected to a given bus i. There are several load models for EVs. Many parametric models are based
on real power injections [18,19] considering a power factor equal to 1. Without loss of generality, due
to regulatory and operational reasons [20], EVs can be requested to provide voltage and reactive power
support. In this case, apparent, real and reactive power are modeled using a non-linear function [21]
and a fixed power factor angle φ

p
Di,t, respectively:

Sp,EV
Di,t = Pp,EV

Di,t + jQp,EV
Di,t i = 2, . . . , n p = 1, 2, 3 t = 1, . . . , T (2)

where the real power demanded by aggregate EVs at time t, bus i and phase p is given by

Pp,EV
Di,t = Po[a + b(

Vp
i

Vo
)]α i = 2, . . . , n p = 1, 2, 3 t = 1, . . . , T (3)

where a + b = 1.
The reactive power demanded by EVs at time t, bus i and phase p is given by

Qp,EV
Di,t = Pp,EV

Di,t tan φ
p
Di,t =

√
(Sp,EV

Di,t )2 − (Pp,EV
Di,t )2 i = 2, . . . , n p = 1, 2, 3 t = 1, . . . , T (4)

Parameters a, b and α depend on EV charger characteristics and the equivalent resistance R
between each connection outlet at low voltage and the system bus i. Po and Vo are the nominal power
and nominal voltage. Some values of the EV parameters can be found in [21]. Note that, if α = 0, the
model reflects a PQ load; if α = 1, the model reflects a constant current load; and, if α = 2, the model
reflects a constant impedance load. In general, EV load parametrization leads to negative values of α

as indicated by [21].
At given time t, the system power balance is given by:

3

∑
p=1

Sp
G1,t = ∆St +

n

∑
i=2

3

∑
p=1

Sp,PQ
Di,t +

n

∑
i=2

3

∑
p=1

Sp,EV
Di,t t = 1, . . . , T (5)

where Sp
Gi,t is the power injected at reference bus 1 at Phases 1, 2 and 3, and ∆St is the total

apparent losses. Total apparent losses can be split into real losses ∆Pt = Re(∆St) and reactive losses
∆Qt = Im(∆St).
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Total real energy consumed by PQ and EV loads at each bus i during a period T, i.e., 24 h are
given by:

WPQ
Di =

T

∑
t=1

3

∑
p=1

Pp,PQ
Di,t ; WEV

Di =
T

∑
t=1

3

∑
p=1

Pp,EV
Di,t i = 2, . . . , n (6)

Total real energy delivered by the source bus 1 is given by:

W1 =
T

∑
t=1

3

∑
p=1

Pp
G1,t (7)

The system real energy balance is given by:

W1 =
n

∑
i=2

WPQ
Di +

n

∑
i=2

WEV
Di + ∆W (8)

and, then total real energy losses are

∆W =
T

∑
t=1

3

∑
p=1

Pp
G1,t −

T

∑
t=1

n

∑
i=2

3

∑
p=1

Pp,PQ
Di,t −

T

∑
t=1

n

∑
i=2

3

∑
p=1

Pp,EV
Di,t (9)

where ∆W is the system real energy losses to be allocated between all network users (PQ and EV loads)
during a defined time interval T.

2.2. Evaluation of Power Losses to Be Allocated among the Network Users

The power and losses to be allocated can be evaluated from the solution of the standard
three-phase power flow problem. The solution comprises all system voltages (magnitude and angle)
except the voltages fixed at reference. There are several methods to solve this issue. In general, when
all loads are regarded as PQ constant, Newton–Raphson method can be applied either by its complete
formulation [22] or decoupled formulation [23]. Other Gauss-based methods suitable to be applied at
distribution level can be used instead [24,25].

For non-linear loads (such as EVs), if the three-phase admittance matrix (YBUS) is known, the
power flow solution can be obtained at given operating point (time t) from a set of 3(n− 1) equations
and 3(n− 1) unknowns:

Pp
i,t = −Pp,PQ

Di,t − Pp,EV
Di,t (Vp

i,t) = Vp
i,t

n

∑
k=1

3

∑
p=1

3

∑
m=1

Vm
k,t[G

pm
ik cos θ

pm
ik,t + Bpm

ik sin θ
pm
ik,t ] ∀i 6= 1, p (10)

where θ
pm
ik,t = θ

p
i,t − θm

k,t.

Qp
i,t = −Qp,PQ

Di,t −Qp,EV
Di,t (Vp

i,t) = Vp
i,t

n

∑
k=1

3

∑
p=1

3

∑
m=1

Vm
k,t[G

pm
ik sin θ

pm
ik,t − Bpm

ik cos θ
pm
ik,t ] ∀i 6= 1, p (11)

where Pp,PQ
Di,t and Qp,PQ

Di,t are constant parameters, and Pp,EV
Di,t and Qp,EV

Di,t are non-linear functions
depending on its own voltage magnitude as given in Equations (3) and (4). At reference bus 1,
voltage magnitude and angle are known for all phases: V1

1 = V1ej0, V2
1 = V1ej−2π

3 and V3
1 = V1ej 2π

3

where V1 is the voltage magnitude at reference bus 1. Then, once the power flow algorithm is applied
to solve the set of Equations (10) and (11), the solution xt = [V1

1,t, . . . , Vp
i,t, . . . , V3

n,t; θ1
1,t, . . . , θ

p
i,t, . . . , θ3

n,t]

is evaluated in the following expression in order to get the real system power losses:

∆Pt =
n

∑
i=1

n

∑
k=1

3

∑
p=1

3

∑
m=1

Vp
i,tV

m
k,t[G

pm
ik cos θ

pm
ik,t + Bpm

ik sin θ
pm
ik,t ] t = 1, . . . , T (12)
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The Gpm
ik and Bpm

ik entries correspond to the conductance and susceptance terms of the admittance
matrix (YBUS) between phase p at bus i and phase m at bus k.

The total real energy to allocate among network users is given by:

∆W =
T

∑
t=1

∆Pt (13)

2.3. Energy Loss Allocation Procedures

We consider two procedures to allocate energy losses among network PQ loads and non-linear
EV loads:

1. The proposed marginal allocation procedure per bus and per phase
2. The standard pro rata or proportional allocation for comparison purposes [17]

2.3.1. Marginal Loss Allocation

Distribution losses can be allocated among network users is means of the sensitivity factors also
known as marginal loss coefficients (MLCs) [26]. This allocation process yields on different charges
depending on the effect of each user on overall losses. Thus, the power losses allocated or assigned to
PQ loads located at bus i, phase p, at time t are:

LM,p,PQ
Di,t = kr,t||MLCp

Di,t||P
p,PQ
Di,t i = 2, . . . , n p = 1, 2, 3 t = 1, . . . , T (14)

and power losses allocated to EV loads located at bus i, phase p, at time t are:

LM,p,EV
Di,t = kr,t||MLCp

Di,t||P
p,EV
Di,t (Vp

i,t) i = 2, . . . , n p = 1, 2, 3 t = 1, . . . , T (15)

It must be highlighted that the application of MLCs produce an over-recovery of losses [27].
This is due to the nonlinear nature (quadratic) of losses. To reconcile the total power losses, i.e., recover
the exact amount of grid losses, it is necessary to multiply the allocated power losses by a reconciliation
factor kr,t. This factor avoids a over recovery of power losses at each time t:

kr,t =
∆Pt

∑n
i=2 ∑3

p=1 ||MLCp
Di,t||P

p,EV
Di,t (Vp

i,t)
t = 1, . . . , T (16)

The total real energy losses allocated to loads at bus i and phase p are:

AM,p,PQ
Di =

T

∑
t=1

LM,p,Q
Di,t ; AM,p,EV

Di =
T

∑
t=1

LM,p,EV
Di,t i = 2, . . . , n p = 1, 2, 3 (17)

The total real energy losses allocated to PQ and EV loads under proposed marginal approach are:

AM,PQ
D =

T

∑
t=1

n

∑
i=2

3

∑
p=1

AM,p,PQ
Di,t ; AM,EV

D =
T

∑
t=1

n

∑
i=2

3

∑
p=1

AM,p,EV
Di,t (18)

Considering that losses are recovered using a 24-h day-ahead spot price ρt in USD/MWh,
the payments per losses of loads at bus i and phase p are:

ΩM,p,PQ
Di =

T

∑
t=1

ρtL
M,p,PQ
Di,t ; ΩM,p,EV

Di =
T

∑
t=1

ρtL
M,p,EV
Di,t i = 2, . . . , n p = 1, 2, 3 (19)
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Global energy loss payments under the marginal approach are:

ΩM,PQ
D =

T

∑
t=1

n

∑
i=2

3

∑
p=1

ρtL
M,p,PQ
Di,t ; ΩM,EV

D =
T

∑
t=1

n

∑
i=2

3

∑
p=1

ρtL
M,p,EV
Di,t (20)

Determining the three-phase MLCs: To get the marginal loss coefficients, we can solve the network
stating an optimization problem as follows:

min ∆Pt =
n

∑
i=1

n

∑
k=1

3

∑
p=1

3

∑
m=1

Vp
i,tV

m
k,t[G

pm
ik cos θ

pm
ik,t + Bpm

ik sin θ
pm
ik,t ] t = 1, . . . , T (21)

subject to:

Pp
i,t = −Pp,PQ

Di,t − Pp,EV
Di,t (Vp

i,t) = Vp
i,t

n

∑
k=1

3

∑
p=1

3

∑
m=1

Vm
k,t[G

pm
ik cos θ

pm
ik,t + Bpm

ik sin θ
pm
ik,t ] ∀i 6= 1 (22)

Qp
i,t = −Qp,PQ

Di,t −Qp,EV
Di,t (Vp

i,t) = Vp
i,t

n

∑
k=1

3

∑
p=1

3

∑
m=1

Vm
k,t[G

pm
ik sin θ

pm
ik,t − Bpm

ik cos θ
pm
ik,t ] ∀i 6= 1 (23)

As the formulation has the same number of equations and unknowns, the optimization problem
is determined. The results coincide with the power flow solution. However, it should be highlighted
that the Lagrange multiplier associated with Equation (22) for bus i and phase p is just the marginal
loss coefficient MLCp

Di,t:

MLCp
Di,t =

∂∆Pt

∂Pp
i,t

i = 2, . . . , n p = 1, 2, 3 t = 1, . . . , T (24)

Lagrange multipliers are usually provided by any optimization package. In the test case we used
the fmincon optimization solver of Matlab (version R2017, v.9.2) to get the MLCs and to illustrate the
application of the method.

2.3.2. Pro Rata or Proportional Allocation

Pro rata method describes a proportionate allocation of losses among all loads according the
amount of power demand at each bus and phase. It consists of assigning an amount to a fraction
according to its share of the whole [17]. Thus, the power losses allocated to PQ loads at bus i, phase p
and time t are:

LP,p,PQ
Di,t = ∆Pt

Pp,PQ
Di,t

∑n
i=2 ∑3

p=1 Pp,PQ
Di,t + ∑n

i=2 ∑3
p=1 Pp,EV

Di,t (Vp
i,t)

i = 2, . . . , n p = 1, 2, 3 t = 1, . . . , T (25)

and power losses to be allocated to EV loads located at bus i, phase p, at time t are:

LP,p,EV
Di,t = ∆Pt

Pp,EV
Di,t (Vp

i,t)

∑n
i=2 ∑3

p=1 Pp,PQ
Di,t + ∑n

i=2 ∑3
p=1 Pp,EV

Di,t (Vp
i,t)

i = 2, . . . , n p = 1, 2, 3 t = 1, . . . , T (26)

The total real energy losses to be allocated to loads at bus i and phase p are:

AP,p,PQ
Di =

T

∑
t=1

LP,p,Q
Di,t ; AP,p,EV

Di =
T

∑
t=1

LP,p,EV
Di,t i = 2, . . . , n p = 1, 2, 3 (27)
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The total real energy losses allocated to PQ and EV loads under pro rata approach are:

AP,PQ
D =

T

∑
t=1

n

∑
i=2

3

∑
p=1

AP,p,PQ
Di,t ; AP,EV

D =
T

∑
t=1

n

∑
i=2

3

∑
p=1

AP,p,EV
Di,t (28)

Considering that losses are recovered using a uniform price ρ in USD/MWh, the payments per
losses of loads at bus i and phase p are:

ΩP,p,PQ
Di = ρAP,p,PQ

Di ; ΩP,p,EV
Di = ρAP,p,EV

Di i = 2, . . . , n p = 1, 2, 3 (29)

Global energy loss payments under the pro rata approach are:

ΩP,PQ
D =

n

∑
i=2

3

∑
p=1

ρAP,p,PQ
Di ; ΩPEV

D =
n

∑
i=2

3

∑
p=1

ρAP,p,EV
Di (30)

3. Case Study

The proposed energy loss allocation procedure was applied in the well-known 21-bus Kersting
NEV test system [28]. This system has a three-phase main feeder connected to an ideal 12.47 kV
(line-to-line) source. The feeder has 1828.8 m (6000 ft) long and an average pole span of 91.44 m (300 ft).
The original test case has a unique load concentrated at the ending node. We modified the loading
scheme by introducing a uniformly increasing load in each phase from bus 2 to bus 21 according to
Table 1. The loading scheme considers a substation with four main feeders in a high density area.
In this case, according to [29], the load increase is linear with respect to the distance. Then, source bus
1 has no load and the last bus 21 has the highest load value. For the sake of simplicity, only the main
feeder is considered for the proposed analysis. Single phase derivations and laterals are neglected.

Table 1. Base load: No EV connected, only PQ loads.

Bus Total Phase 1 Phase 2 Phase 3

WPQ
Di PPQ

Di W1,PQ
Di P1,PQ

Di W2,PQ
Di P2,PQ

Di W3,PQ
Di P3,PQ

Di

MW·h/day kW MW·h/day kW MW·h/day kW MWh/day kW

2 0.6 0.04 0.2 0.01 0.2 0.02 0.2 0.01
3 1.2 0.08 0.4 0.03 0.5 0.03 0.4 0.02
4 1.8 0.12 0.6 0.04 0.7 0.05 0.5 0.04
5 2.4 0.16 0.8 0.05 0.9 0.06 0.7 0.05
6 3.0 0.20 1.0 0.07 1.1 0.08 0.9 0.06
7 3.7 0.24 1.2 0.08 1.4 0.09 1.1 0.07
8 4.3 0.28 1.4 0.09 1.6 0.11 1.2 0.08
9 4.9 0.32 1.6 0.11 1.8 0.12 1.4 0.10
10 5.5 0.37 1.8 0.12 2.1 0.14 1.6 0.11
11 6.1 0.41 2.0 0.14 2.3 0.15 1.8 0.12
12 6.7 0.45 2.2 0.15 2.5 0.17 2.0 0.13
13 7.3 0.49 2.4 0.16 2.7 0.18 2.1 0.14
14 7.9 0.53 2.6 0.18 3.0 0.20 2.3 0.15
15 8.5 0.57 2.8 0.19 3.2 0.21 2.5 0.17
16 9.1 0.61 3.0 0.20 3.4 0.23 2.7 0.18
17 9.7 0.65 3.2 0.22 3.6 0.24 2.9 0.19
18 10.3 0.69 3.4 0.23 3.9 0.26 3.0 0.20
19 11.0 0.73 3.6 0.24 4.1 0.27 3.2 0.21
20 11.6 0.77 3.8 0.26 4.3 0.29 3.4 0.23
21 12.2 0.81 4.0 0.27 4.6 0.30 3.6 0.24

Total 127.8 8.53 42.5 2.84 47.8 3.19 37.5 2.50
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The last row of Table 1 corresponds to the sum of all energy consumptions at substation (bus 1)
and the sum of all coincident demands flowing at main feeder (between buses 1 and 2). Total peak
power flowing by the main feeder (bus 1) is 8526 kW at 20:00. Total three-phase load consumption
is 127.8 MW·h/day, corresponding to 12,780 customers (each household consumes 10 kW·h/day,
300 kW·h/month with load factor 0.62). The 24-h real power load curve in p.u. for all buses and phases
is depicted in Figure 2. For simplicity, all loads Pp,PQ

Di,t , i = 2, . . . , 21, p = 1, 2, 3, t = 1, . . . , 24 have the
same load curve. Then, all maximum demands are coincident at 20:00 but with different real power
values per phase and bus (as shown in Table 1) ensuring unbalanced operation.

Figure 2. Base load curve: No EV connected, only constant real and reactive power (PQ) loads.

The network structure was scripted in OpenDSS (version 7.6.5.52, Electric Power Research
Institute, Inc., Palo Alto, CA, USA) [30] (included in the Appendix A to extract the three-phase
network model (admittance matrix). Power flow solution at base layer (with no EV penetration)
showed that total peak power losses reach 115 kW at 20:00. Total energy losses are 1.33 MW·h/day
(approximately 1.04% of total). The worst voltage drop is 3.69% at node 21 phase a.

In this paper, we do not emphasize on voltage profile results since our objective is to illustrate from
conceptual viewpoint the proposed three-phase loss allocation procedure under specified operation
battery charging schemes. There are other type studies, e.g., hosting capacity [31], where realistic
operation schemes is addressed using Monte Carlo simulations with stochastic EV demands [32–36].
Thus, this work does not intend to replicate the probabilistic behavior of EV connection in a given
period. Further research can be conducted to assess realistic loss allocation payments in a city and a
country with specific patterns of consumption.

The procedure was tested considering five levels of EV load integration (k = 5), corresponding
to the connection of 200, 400, 600, 800 and 1000 EVs at Phases 1, 2 and 3 according to the scheme
presented in Table A1 (included in the Appendix A). Level 0 correspond to the base case with no EV
units connected to the grid. Each EV has a battery of 30 kW·h capacity, and then the integration Levels
1–5 correspond to an increase of demand consumption of 5%, 10%, 14%, 19% and 25% with respect the
base case, respectively, as shown in Table 2.

Table 2. Base load, EV load, total load, and share at each level.

Level Base Load EV Load Total Load Share

MW·h/day %

Level 0—000EV 127.8 0 127.8 0%
Level 1—200EV 127.8 6 133.8 5%
Level 2—400EV 127.8 12 139.8 10%
Level 3—600EV 127.8 18 145.8 14%
Level 4—800EV 127.8 24 151.8 19%
Level 5—1000EV 127.8 30 157.8 25%

Total load at level k is the sum of the base load (level 0) and the EV loaf at level k.
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4. Results

Two operational scenarios for EV’s battery charging are considered in the application of the
proposed energy loss allocation method:

1. Slow charging at off-peak load conditions: 3.75 kW (16 A) 8 h.
2. Fast charging at peak load conditions: 7.50 kW (32 A) 4 h.

The parameters of the EV load model are a = 0.9537 , α = −2.324, and b = 0.0463 and were taken
from [21] for a resistance R = 1.0 ohm.

The same amount of energy required by aggregated slow and fast EV’s battery chargers is
integrated under peak and off-peak conditions for comparison purposes. The illustrative example
allows us to assess how a progressive integration of EV (with a share from 0% to 25% of total energy)
will affect the overall energy losses of the grid and the corresponding allocation results. Results are
discussed under peak and off-peak load conditions for the marginal-based approach proposed in
Section 2.3.1 and the standard roll-in embedded method discussed in Section 2.3.2.

4.1. Scenario 1: Slow Charging at Off-Peak Load Conditions

In this case, slow battery charging stations operate from 00:00 to 08:00 with the five levels of
penetration defined above. The optimization problem stated in Equations (21)–(23) was scripted
in Matlab (version R2017, v.9.2) and solved by means of the fmincon tool. The parameters of the
admittance matrix were taken from OpenDSS simulation tool [30].

When the solution algorithm converges, the state of the system for each level k = 0, ..., 5 is given
by xk

t = [V1
1,t, . . . , V3

21,t; θ1
1,t, . . . , θ3

21,t] for t = 1, ..., 24. Thereafter, power losses ∆Pt per hour and per level
are evaluated by Equation (12) for each state of the system result xk

t for k = 0, ..., 5. Level 0 corresponds
to a grid operation with no EV penetration. Levels 1–5 correspond to the EV penetration from 5% to
25% in total daily consumed energy by EVs with respect to overall PQ load consumption.

The 24-h power loss curves by each level for the connection of EV loads under off-peak conditions
are depicted in Figure 3. Total real energy losses ∆W to be allocated among network users is evaluated
by EV penetration level using Equation (9) and results are depicted in Figure 4. This figure also shows
the resultant load and loss factor. Load and loss factors are defined as the ratio between average and
maximum values of demands and losses, respectively.

Figure 3. Off-peak load scenario: 24-h power losses by EV penetration level.

Results reveal how the progressive integration of slow charging stations at off-peak load
conditions produces a flattening effect of the load curve. The load factor increased from 0.62 at
level 0 to 0.77. However, the loss factor also increased from 0.48 to 0.61. This means that 24-h power
loss curve is also becoming flat. As result energy losses rose in magnitude from 1.24 MW·h/day, 1.05%
(level 0) to 1.70 MW·h/day, 1.08% (level 5). This result is important since despite energy losses grew
almost 50% in magnitude, the relative energy losses remains constant around 1.05–1.08%.
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Figure 4. Off-peak load scenario: energy losses, loss and load factors by EV penetration level: (a) total
energy losses; (b) loss factor; (c) load factor.

The absolute value of Marginal Loss Coefficients ||MLCp
Di,t|| are directly obtained for at each

level k, each bus i, phase p and time t from fmincon results via Lagrange multipliers as indicated in
Section 2.3.1.

Figure 5 displays the MLCs curves when EVs are charging at off-peak time. The MLCs are applied
to agents connected at bus 21 along 24 h. Note that under lower EV penetration (5%, red curve), MLCs
observed between 01:00 and 09:00 are significantly lower than ones achieved between 10:00 and 22:00.
For a high EV penetration (25%, orange curve), the MLCs obtained between 01:00 and 09:00 are similar
to those achieved between 10:00 and 22:00 when no EV is connected (around 0.02–0.03 along the day).
Then, under EV charging at off-peak load conditions, the pattern of MLCs is somehow flat, similar to a
uniform marginal coefficient. This uniform coefficient produces similar results of a roll-in embedded
method applied to recover the power losses.

Figure 6 depicts a complete pattern for calculated MLCs by location and by time for each
penetration level. It is worth to note in all phases that MLCs associated to high EV penetration
(Level 5, 25%) cover more area (in time and location) than MLCs produced by lower levels.

Table 3 lists the general results for the allocated energy losses for aggregate PQ and EV loads under
off-peak condition. The reconciliation factor kr was around 0.5 in all levels. Equations (18) and (28)
were applied for the marginal and pro rata procedure, respectively. Energy losses range from
1339.08 kW·h/day at level 0 to 1696.64 kW·h/day at Level 5. At level 0, EVs do not exist then
all losses are assigned to PQ loads. Regarding the allocation results, three facts can be highlighted:

EV charging stations operating under off-peak conditions and marginal loss allocation do not pay
for additional energy losses. The marginal procedure assigns lower losses to EV than expected under a
pro-rata procedure. This means that EV loads reach a small benefit by their produced losses at off-peak
conditions. In fact, PQ loads do no take advantage of the marginal procedure being slightly penalized
(they should pay for 1389 kW·h/day with respect to 1372 kW·h/day under the proportional approach).

Pro rata and marginal methods can produce a similar output when EV charging stations are
operating under off-peak conditions. The share of energy losses attributable to EV loads (18%) are
similar in both approaches: marginal and pro rata. This means that the MLCs are acting as a uniform
factor capable to recover the cost of losses.

The EV share of losses is lesser than the EV share of consumption. For instance, at level 5 the ratio
between EV and PQ loads consumption is 25%. The EV share of losses is lesser, 18%.

Payment for energy losses by EV location are calculated in a monthly basis using
Equations (19) and (29) for marginal and pro rata procedure, respectively. Considering a flat energy
price ρ of 0.05 USD/kW·h, left-hand chart of Figure 7 shows how the marginal procedure penalize
the slow EV charging stations connected from bus 15 to bus 21. A similar effect is also seen in PQ
loads (right-hand chart of Figure 7) connected from bus 15 to bus 21. In this scenario, marginal
procedure is applying higher charges to loads (EV and PQ) connected at the end of the line. Figure 7
also indicates that the application of MLCs for loads (EV and PQ) connected near to the origin have a
lesser responsibility in the coverage of the entire energy losses.
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Figure 5. Off-peak load scenario: marginal loss coefficients (MLCs) at Bus 21 by EV penetration level
and by time.

Figure 6. Off-peak load scenario: MLCs pattern by node and by time (Levels 0, 3 and 5).
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Table 3. Off-peak load scenario: total energy losses allocated to PQ and EV loads by EV penetration
level (kW·h/day).

Level Pro Rata Marginal Energy Losses

AP,PQ
D AP,EV

D AM,PQ
D AM,EV

D ∆W

Level 0 1339.08, 100% 0.00, 0% 1339.08, 100% 0.00 0,% 1339.08
Level 1 1324.41, 96% 61.93, 4% 1352.52, 98% 33.82, 2% 1386.34
Level 2 1321.66, 91% 124.55, 9% 1363.84, 94% 82.37, 6% 1446.21
Level 3 1329.09, 88% 187.43, 12% 1373.19, 91% 143.32, 9% 1516.51
Level 4 1347.19, 84% 253.33, 16% 1381.59, 86% 218.93, 14% 1600.52
Level 5 1372.92, 81% 323.72, 19% 1389.30, 82% 307.33, 18% 1696.64

Figure 7. Off-peak load scenario: economic allocation between PQ and EV users connected at Phase 1
(Level 5).

4.2. Scenario 2: Fast Charging at Peak Load Conditions

In this scenario, EV connection was implemented at peak load conditions: from 18:00 to 21:00
with a 7.5 kW charging station considering the same five levels of integration applied in the case of EV
charging at peak load conditions (Scenario 1), that is 200, 400, 600, 800 and 1000 units until reach a
penetration of 25% of base energy consumption along one day.

The 24-h power loss curves by each level for the connection of EV loads under peak conditions
are depicted in Figure 8. It is clear that the load curve becomes more sharp due to the progressive
incorporation of slow EV charging stations.

Figure 8. Peak load scenario: 24-h power losses by EV penetration level.

Total real energy losses ∆W to be allocated for each level among network users are indicated in
Figure 9. Unlike Scenario 1, results show how the progressive integration of fast charging stations at
peak load conditions produces a significative distortion effect of the load curve. EVs are charging only
from 17:00 to 22:00. Then, the load factor decreased from 0.62 at Level 0 to 0.42 at Level 5. In this case,
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average demand does not grow in the same extent than the maximum value. As a result, the load factor
falls. The loss factor also fall from 0.48 to 0.26 at Level 5. This means that energy losses drastically
rose in magnitude from 1.24 MW·h/day, 1.05% (Level 0) to 2.30 MW·h/day, 1.8% (level 5). In this
circumstance, the effects of EV charging stations at peak load condition are too harsh.

Figure 9. Peak load scenario: energy losses, loss and load factors by EV penetration level: (a) total
energy losses; (b) loss factor; (c) load factor.

In Figure 10, the MLCs curves by EV penetration level at bus 21 along 24-h period is presented for
the peak load conditions. It should be noted how marginal coefficients are able to reach high values
0.07 at peak time (18:00 and 21:00).

Figure 10. Peak load scenario: MLCs at Bus 21 by EV penetration level and by time.

Figure 11 displays the MLCs curves when EVs are charging at 20:00. The MLCs are applied to
agents connected from bus 2 to bus 21. As the load is increasing with the distance, the MLC magnitude
at each bus also grows with the distance with respect to the reference bus. Then, closer loads to
reference produce lower losses (and lower MLCs) than farther loads and therefore loads connected
near to substation pay less for power losses than farthest loads.
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Figure 11. Peak load scenario: MLCs at 20:00 by EV penetration level and by bus.

In Table 4, the energy allocation results for aggregate PQ and EV loads are presented for
the peak load condition. The reconciliation factor kr also fluctuates around 0.5 in all levels.
Equations (18) and (28) were applied for the marginal and pro rata procedure, respectively.

Unlike Scenario 1 where aggregate EV loads collect some marginal benefits due to the flattering
effect over the load curve, Scenario 2 displays severe charges against EV loads due to energy losses
associated with fast charging at peak conditions in all levels. If the marginal procedure is applied, PQ
load should assume only a small part of the additional losses (23%). At Level 5, additional loses are
949 kW·h/day and PQ loads have to pay for 224 = 1563−1339 kW·h/day. Otherwise, if the pro rata
procedure is applied, PQ loads should cover 46% of the incremental loads observed between Level 0
and Level 5.

Table 4. Peak load scenario: total losses allocated to PQ and EV loads (kW·h/day).

Level Pro Rata Marginal Energy Losses

AP,PQ
D AP,EV

D AM,PQ
D AM,EV

D ∆W

Level 0 1339.08, 100% 0.00, 0% 1339.08, 100% 0.00, 0% 1339.08
Level 1 1410.22, 96% 66.03, 4% 1382.69, 94% 93.57, 6% 1476.26
Level 2 1499.45, 91% 141.52, 9% 1426.40, 87% 214.56, 13% 1640.96
Level 3 1601.37, 88% 226.19, 12% 1469.93, 80% 357.63, 20% 1827.56
Level 4 1720.74, 84% 324.16, 16% 1516.01, 74% 528.89, 26% 2044.90
Level 5 1851.48, 81% 437.40, 19% 1563.97, 68% 724.91, 32% 2288.88

At Scenario 1 (EVs are charging at peak load conditions) pro rata and marginal allocation results
lead to similar pattern. However, at Scenario 2 (EVs are charging at peak load conditions) marginal
and pro rata loss allocation produce dissimilar results. EVs must pay for additional energy losses.
The marginal procedure assigns higher losses to EV than calculated by the pro-rata procedure. This
means that EV loads are duly charged by their produced losses at peak conditions. In this case, PQ
loads take advantage of the marginal procedure since they have not to pay for additional losses.



Energies 2018, 11, 1962 15 of 19

The share of energy losses attributable to EV loads under marginal approach (32%) is significantly
higher than the share obtained by the pro rata procedure (19%). If we consider a flat energy price
ρ of 0.05 USD/kW·h, the left-hand chart of Figure 12 shows how the marginal procedure strongly
penalize EVs connected from the middle to the end of the circuit. Note how EVs connected from bus 9
to bus 21 are facing high charges due to increasing losses. Conversely, the right-hand chart of Figure 12
visualizes how the marginal and pro rata procedures yield in similar charges. This means that there is
not significative economical difference for PQ charges but strong incentives to EV loads to perform
power loss reduction tasks.

Figure 12. Peak load scenario: economic allocation between PQ and EV users connected at phase 1
(Level 5).

4.3. The Economical Effects in a Single EV Unit Under Off-Peak and Peak Load Conditions

Consider now the perspective of a single EV of 30kW·h capacity when Level 5 is reached (25% of
penetration). If a fixed energy price ρ of 0.05 USD/kW·h is considered, the overall charging or energy
cost for the EV is 1.5 USD/day. At off-peak and peak conditions, the connection of a single EV unit has
different outcomes.

On the one hand, under off-peak load conditions (slow charging from 01:00 to 09:00), when the
EV is connected at bus 21, phase 1 (ending node) the payment for losses under marginal procedure is
almost 0.43 USD/day. This amount corresponds to 29% of total payment for energy (1.5 USD/day).
On the other hand, under peak load conditions (fast charging from 19:00 to 21:00) the payment for
losses under marginal procedure is 0.64 USD/day (54% of total payment for energy). This result is
important since the best economic solution for the EV is charging under off-peak conditions.

Consider now that the EV is connected at bus 2, phase 1 (very close to substation). In this case,
both scenarios show the same result, the EV has to pay only 0.03 USD/day (2% of total payment
for energy). This charge is very low when compared with charges applied to loads at the end of the
feeder. Then, the incentive is to connect EVs as close as possible to substation since no additional losses
are produced.

Economic results for the marginal allocation procedure evidence EV loads connected at farthest
loads have to pay important shares due to incremental losses becoming an important incentive
(mainly at peak conditions) to provide network support. Under standard pro rata approach, the overall
cost is distributed among all loads in a proportional manner and no incentive is provided by time of
use and location of the EV charger.

4.4. The Impact of the EV Load Modeling on Loss Allocation Results

All results presented above were obtained assuming a specific EV load parametrization: a = 0.9537,
b = 0.0463, and α = −2.324 in Equation (3). To evaluate the effects of the EV load model in the results,
we ran the model under peak loading conditions (Level 5) varying α from 0 (PQ load) to −8.0 and b
from 0.0 (PQ load) to 0.10. Results of the sensitivity analysis are depicted in Figure 13.
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Figure 13. Sensitivity analysis: MLCs and total losses against EV parameters α and b.

If the EV load is regarded as constant PQ (α = 0, b = 0.0), the marginal loss factor at 20:00,
bus 21, Phase 3 (MLC3

D21,20:00) is 0.014401769 and total losses to be allocated ∆W is 2284.12 kWh/day.
Conversely, if the EV parameters take a non-linear form α = −8.0, b = 0.1, the marginal loss factor
at 20:00, bus 21, Phase 3 (MLC3

D21,20:00) is 0.014904362 and total losses to be allocated ∆W increased
2317.50 kW·h/day. These variations on MLCs and energy losses represent 3.5% and 1.5% of the
values achieved when loads were assumed as PQ constant, respectively. As a result, we observe
significant differences on loss factors and overall energy losses to be allocated among the network
users. The adoption of a correct EV load model for economic evaluation of the impacts on losses
becomes an important issue to consider to guarantee the fairness of the allocation procedure. As there
are several charging protocols of EV batteries [37], future research on economical impacts of EVs on
system losses should be devoted to include more detailed models.

5. Conclusions

This paper presents three-phase loss allocation procedure for distribution networks considering
widespread connection of non-linear electric vehicle loads. The method was based on the computation
of specific marginal loss coefficients (MLCs) per bus and phase. The method was applied in an
illustrative unbalanced 12.47 kV feeder with 12,780 residential customers supposing different levels of
EV penetration. Two operational cases with two different type of charging stations were considered.
Results obtained were also compared with a traditional roll-in embedded method (pro rata).

Depending on the operational scheme adopted, two different situations deserve mention. Firstly,
slow EV charging under off-peak demand conditions helps to flatten the load curve yielding moderate
MLCs similar to those obtained by means of the pro rata procedure. Secondly, fast EV charging under
peak conditions leads to a sharpened load curve with increasing losses and volatile MLCs for EV
agents. In this case, marginal loss prices may become a strong incentive to optimize distribution
system operation.

Sensitivity analysis results show the influence of the non-linear EV load model in the energy
losses allocated. This result highlights the importance of considering an appropriate EV load model to
appraise the overall losses to be allocated.
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Appendix A
! Kersting NEV Test system
! W. H. Kersting, A three-phase unbalanced line model with grounded
! neutrals through a resistance, 2008 Ieee Power and Energy Society General
! Meeting, Vols 1-11 (2008) 2651-2652
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! 3 phase approach (kron’s reduction) with incremental load
clear
! **** DEFINE SOURCE BUS
new circuit.KersNEV2nThreeP basekV = 12.47 phases = 3 !Define a 3-phase source
~ mvasc3 = 2000000000 mvasc1 = 2100000000
! **** DEFINE DISTRIBUTION LINE
set earthmodel = carson
! **** DEFINE WIRE DATA STRUCTURE
new wiredata.conductor Runits = mi Rac = 0.306 GMRunits = ft GMRac = 0.0244 Radunits = in Diam = 0.721
new wiredata.neutral Runits = mi Rac = 0.592 GMRunits = ft GMRac = 0.00814 Radunits = in Diam = 0.563
! **** DEFINE LINE GEOMETRY; REDUCE OUT THE NEUTRAL WITH KRON
new linegeometry.4wire nconds = 4 nphases = 3 reduce = yes
~ cond = 1 wire = conductor units = ft x = -4 h = 28
~ cond = 2 wire = conductor units = ft x = -1.5 h = 28
~ cond = 3 wire = conductor units = ft x = 3 h = 28
~ cond = 4 wire = neutral units = ft x = 0 h = 24
! **** 12.47 KV LINE!
new line.line1 geometry = 4wire length = 300 units = ft bus1 = sourcebus.1.2.3 bus2 = n1.1.2.3
new line.line2 geometry = 4wire length = 300 units = ft bus1 = n1.1.2.3 bus2 = n2.1.2.3
new line.line3 geometry = 4wire length = 300 units = ft bus1 = n2.1.2.3 bus2 = n3.1.2.3
new line.line4 geometry = 4wire length = 300 units = ft bus1 = n3.1.2.3 bus2 = n4.1.2.3
new line.line5 geometry = 4wire length = 300 units = ft bus1 = n4.1.2.3 bus2 = n5.1.2.3
new line.line6 geometry = 4wire length = 300 units = ft bus1 = n5.1.2.3 bus2 = n6.1.2.3
new line.line7 geometry = 4wire length = 300 units = ft bus1 = n6.1.2.3 bus2 = n7.1.2.3
new line.line8 geometry = 4wire length = 300 units = ft bus1 = n7.1.2.3 bus2 = n8.1.2.3
new line.line9 geometry = 4wire length = 300 units = ft bus1 = n8.1.2.3 bus2 = n9.1.2.3
new line.line10 geometry = 4wire length = 300 units = ft bus1 = n9.1.2.3 bus2 = n10.1.2.3
new line.line11 geometry = 4wire length = 300 units = ft bus1 = n10.1.2.3 bus2 = n11.1.2.3
new line.line12 geometry = 4wire length = 300 units = ft bus1 = n11.1.2.3 bus2 = n12.1.2.3
new line.line13 geometry = 4wire length = 300 units = ft bus1 = n12.1.2.3 bus2 = n13.1.2.3
new line.line14 geometry = 4wire length = 300 units = ft bus1 = n13.1.2.3 bus2 = n14.1.2.3
new line.line15 geometry = 4wire length = 300 units = ft bus1 = n14.1.2.3 bus2 = n15.1.2.3
new line.line16 geometry = 4wire length = 300 units = ft bus1 = n15.1.2.3 bus2 = n16.1.2.3
new line.line17 geometry = 4wire length = 300 units = ft bus1 = n16.1.2.3 bus2 = n17.1.2.3
new line.line18 geometry = 4wire length = 300 units = ft bus1 = n17.1.2.3 bus2 = n18.1.2.3
new line.line19 geometry = 4wire length = 300 units = ft bus1 = n18.1.2.3 bus2 = n19.1.2.3
new line.line20 geometry = 4wire length = 300 units = ft bus1 = n19.1.2.3 bus2 = n20.1.2.3
vsource.source.enabled = no
solve

Table A1. EV units connected per bus and per phase at each EV penetration level.

Level 1 - 200EV Level 2 - 400EV Level 3 - 600EV Level 4 - 800EV Level 5 - 1000EV
Bus/Phase 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 1 1 1 1 1 1 1 1 1 2 2 1
3 1 1 1 1 1 1 2 2 2 3 3 2 3 4 3
4 1 1 1 2 2 2 3 3 3 4 4 3 5 5 4
5 1 1 1 3 3 2 4 4 3 5 6 4 6 7 6
6 2 2 1 3 4 3 5 5 4 6 7 6 8 9 7
7 2 2 2 4 4 3 6 6 5 8 9 7 10 11 8
8 2 2 2 4 5 4 7 7 6 9 10 8 11 12 10
9 3 3 2 5 6 4 8 9 7 10 11 9 13 14 11

10 3 3 3 6 6 5 9 10 8 11 13 10 14 16 13
11 3 4 3 6 7 6 10 11 8 13 14 11 16 18 14
12 3 4 3 7 8 6 10 12 9 14 16 12 17 20 15
13 4 4 3 8 9 7 11 13 10 15 17 13 19 21 17
14 4 5 4 8 9 7 12 14 11 16 19 15 21 23 18
15 4 5 4 9 10 8 13 15 12 18 20 16 22 25 20
16 5 5 4 10 11 8 14 16 13 19 21 17 24 27 21
17 5 6 4 10 11 9 15 17 13 20 23 18 25 29 22
18 5 6 5 11 12 9 16 18 14 22 24 19 27 30 24
19 6 6 6 11 12 10 17 19 15 23 26 20 29 32 25
20 6 7 5 12 14 11 18 20 16 24 27 21 30 34 27
21 6 7 6 13 14 11 19 21 17 25 29 22 32 33 28

SubTotal 66 74 60 134 149 117 200 223 177 266 300 234 334 372 294
Total 200 400 600 800 1000
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