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Abstract: Wind energy is a commonly utilized renewable energy source, due to its merits of extensive
distribution and rich reserves. However, as wind speed fluctuates violently and uncertainly at all
times, wind power integration may affect the security and stability of power system. In this study,
we propose an ensemble model for probabilistic wind speed forecasting. It consists of wavelet
threshold denoising (WTD), recurrent neural network (RNN) and adaptive neuro fuzzy inference
system (ANFIS). Firstly, WTD smooths the wind speed series in order to better capture its variation
trend. Secondly, RNNs with different architectures are trained on the denoising datasets, operating
as sub-models for point wind speed forecasting. Thirdly, ANFIS is innovatively established as the
top layer of the entire ensemble model to compute the final point prediction result, in order to
take full advantages of a limited number of deep-learning-based sub-models. Lastly, variances are
obtained from sub-models and then prediction intervals of probabilistic forecasting can be calculated,
where the variances inventively consist of modeling and forecasting uncertainties. The proposed
ensemble model is established and verified on less than one-hour-ahead ultra-short-term wind speed
forecasting. We compare it with other soft computing models. The results indicate the feasibility and
superiority of the proposed model in both point and probabilistic wind speed forecasting.

Keywords: recurrent neural network; adaptive neuro fuzzy inference system; probabilistic wind
speed forecasting; deep learning; ensemble learning

1. Introduction

The demand of renewable energy application is growing stronger over the recent years, in response
to increasingly high energy consumption and serious environment pollutions [1]. The global renewable
energy capacity has exceeded 1800 GW by the end of 2015 [2,3]. Among those energy sources, wind
power is a typical kind, which is widely distributed and easy to access and it has become one of the
fastest developing sources. Nevertheless, the chaotic nature of wind speed is unavoidable, which
restricts the application of in-grid wind power. As wind fluctuates arbitrarily and uncertainly, wind
power integration will challenge the security and stability of power system operations. Therefore, an
accurate wind speed forecasting is expected for the development of large-scale wind power utilization,
which can benefit wind power integrated system.
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There are customarily three major methodologies for wind energy forecasting, that is, physical,
statistical and soft computing methodologies [4–6]. Firstly, physical models are established based on
numerous physical variables, including geographical and meteorological factors. As the formation
of wind is influenced by many elements, for example, surface temperature and sunshine duration,
physical models specialize in long-term forecasting and trend forecasting [7,8]. However, physical
methodologies usually take a great deal of computation time due to the large number of inputs and
their accuracies depend on the results from numerical weather prediction (NWP). Secondly, statistical
models are aimed at developing relationships between the historical (input) and future (output)
wind energy data. Auto regressive moving average (ARMA), auto regressive integrated moving
average (ARIMA) and their hybrid models are most frequently utilized in statistical prediction
methodologies [9–12]. Lastly, soft computing methodologies are most widely used in renewable
energy forecasting [13]. Among those methods, artificial neural network (ANN) is a typical soft
computing model. In Reference [14–16], polynomial ANN, radial basis function (RBF) ANN and
physical hybrid (PH) ANN are introduced for wind and solar energy forecasting. Besides, there are
massive other forecasting models proved efficient in literatures. In Reference [17–19], support vector
machine (SVM) is introduced to achieve better wind power forecasting results when the number of
training samples are limited. Extreme learning machine (ELM) is a recently proposed model that has a
high training speed and is suitable for ultra-short online forecasting [20–22]. Adaptive neuro-fuzzy
inference system (ANFIS) is a simpler model than ANN while can also approximate any non-linear
function, which is proven feasible in wind speed forecasting [23]. Nevertheless, those models have
limited generalization performance and can be hardly trained on a large amount of training data.

As a result, deep learning theory has been developed in order to overcome the shallow learning
abilities of traditional soft computing methods. As they can be trained on a large number of samples,
they are ideally suitable for big data analysis and have emerged their superiorities in the field of
renewable energy forecasting. Stacked auto-encoder (SAE) and deep belief network (DBN) are two
models that solve the optimization problem in deep multi-layer perceptron (MLP), which have
successfully been applied in wind speed and power forecasting [24–26]. In Reference [27], deep
convolutional neural network (CNN) is introduced to predict wind power using two-dimensional
inputs. Besides, recurrent neural network (RNN) is also a new deep-learning-based model, which
holds the ability to learn temporal correlations in a complete sequence. It has also been introduced
to point wind speed forecasting [28,29]. Hence, RNN is chosen as the sub-model in this study for
probabilistic wind speed forecasting and it will be compared with other soft computing methods.

Moreover, in order to combine the advantages of different models, extensive hybrid forecasting
models have been proposed. In addition to pre-processing and post-processing, the ensemble of
sub-models is an efficient approach [30], which is also called competitive ensemble forecasting [31].
The final forecasting result is usually calculated via an averaging or weighting procedure [32].
This method has two advantages: first, the prediction error of a sole model can be reduced through
competitions in sub-models; second, a confidence level for probabilistic forecasting can be obtained
based on the variance of those sub-models. In Reference [33], an ensemble model based on Gaussian
process regression (GPR) and ANN possesses a superb precision in short-term wind power forecasting.
In Reference [34], adaptive boosting (AdaBoost) is combined with ELM for multi-step-ahead wind
speed forecasting. A wind power forecasting model mixed bagging and ANN is proposed in
Reference [35]. Those models share a common characteristic that the number of sub-models is
considerable. However, it costs a lot of computation time to train a sole deep-learning-based sub-model.
In order to ensure the performance of ensemble with a small number of RNNs, an ANFIS model is
built as the top layer of the ensemble forecasting model in this study. A combined result of those
sub-models is achieved through the learnt fuzzy rules, rather than a simple weighting approach.

In this study, a hybrid ensemble model is proposed for short-term probabilistic wind speed
forecasting, which consists of wavelet threshold denoising (WTD), RNN and ANFIS. The WTD is a
pre-processing approach to decrease the fluctuations in wind speed datasets. RNN and ANFIS are
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utilized to build an ensemble probabilistic forecasting model. The main contributions of this study are
listed as follows:

1. The ANFIS model is innovatively established as the top layer of the ensemble model to calculate
a better forecasting result rather than just an averaged value from sub-models.

2. In order to maintain diversities of sub-models and take advantages of ensemble learning, different
architectures are introduced to build RNNs, including long short-term memory (LSTM), gated
recurrent unit (GRU) and dropout layer.

3. The variances collected from sub-models are introduced to probabilistic forecasting problem, which
inventively consist of two parts, namely modeling uncertainties and forecasting uncertainties.

We compare the proposed WTD-RNN-ANFIS model with several soft computing models in
various point and probabilistic forecasting cases, in order to prove its feasibility and superiority.
The rest of this paper is structured as follows. Section 2 introduces the utilized datasets, as well as
detailed architecture and algorithms of the probabilistic forecasting model. Section 3 presents concise
forecasting results based on the proposed approach. Section 4 contains the detailed discussion and
comparisons in probabilistic forecasting performance. Finally, a conclusion is drawn in Section 5.

2. Materials and Methods

2.1. Datasets

The training and testing datasets utilized in this study are based on wind speed data measured
in the interval of 15 min at the height of 50 m, which are collected by the wind tower of National
Renewable Energy Laboratory (NREL) National Wind Technology Center (NWTC) [36]. The tower is
located in the latitude of 39.91◦ N, the longitude of 105.23◦ W and the elevation of 1855 m. When the
measured data is missing or incorrect due to equipment failure, it can be substituted by the mean value
obtained from previous or subsequent points, or by the value calculated from intelligent imputation
technologies for example, decision tree [37].

In Figure 1, the monthly averaged values of wind speed from 2015 to 2017 are exhibited, from
which it can be found that wind speed varies under a certain seasonal regularity. The averaged values
of wind speed in May, June, July and August are smaller than those in November, December, January
and February. In this study, the wind speed datasets in 2015 and 2016 are used as training samples and
those in 2017 are for the test phase. Specially, according to the above analysis, we choose four testing
cases of different seasons. The wind speed data on 22 March 2017, 23 June 2017, 22 September 2017 and
23 December 2017 are chosen to be testing samples as representative dates of spring, summer, autumn and
winter seasons, in order to fully validate and compare the performances of different forecasting models.
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Figure 1. The monthly averaged wind speed of datasets in years 2015–2017. 
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2.2. Architecture of the Entire Forecasting Model

The probabilistic wind speed forecasting model proposed in this study consists of WTD, RNN and
ANFIS. Firstly, WTD is used to decompose and smooth historical time series of wind speed in order to
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reduce its volatility. In that case, it is easier for a forecasting model to capture the variation trend of
wind speed. Secondly, six RNNs with dissimilar architectures and parameters, namely sub-models, are
established and trained for prediction. Thirdly, an ANFIS is utilized as the top layer of the ensemble
model. The outputs of those RNNs are entered into the ANFIS and the final forecasting result is
attained from its output. Finally, variances are gathered from different sub-models, along with errors
between the final predicted value and the actual value, so prediction intervals of different confidence
levels can be calculated. The structure of the entire WTD-RNN-ANFIS model is shown in Figure 2.
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2.3. Wavelet Threshold Denoising (WTD)

WTD is based on wavelet transform (WT), which is a time-scale approach for signal processing.
As WT holds the characteristics of local feature representation and multi-resolution analysis [38], it has
been proved effective in dealing with non-stationary series and time varying problems [39,40]. A mother
wavelet ϕ(t) is essential in WT. It can be scaled and time-shifted via scale factor a and shift factor b,
producing a set of child wavelets to extract features under different resolutions. Moreover, WT includes
two categories: continuous wavelet transform (CWT) and discrete wavelet transform (DWT). DWT has
scale and shift factors in discrete forms, which reduces computation cost with little loss of signal
information. It is especially suitable for sampled signals as well. The wavelet function of DWT is
expressed as follows [41]:

φj,k(t) = 2−
j
2 φ(2−jt− k), (1)

where j and k are integer-valued scale and shift factors, respectively; t represents the time variable; and
ϕ(t) is the mother wavelet. The wavelet functions are binary wavelets and they are utilized to conduct
DWT as [41]:

Wj,k(t) = 2−
j
2 ∑

t
x(t)φ∗(2−jt− k), (2)

where ϕ*(·) represents a convolution operation using wavelet function and x(t) is the sampled signal.
Mallat algorithm is commonly used for DWT, where scale functions and wavelet functions are

operating as low and high pass filters, respectively. The multi-level decomposition of the algorithm is



Energies 2018, 11, 1958 5 of 23

shown in Figure 3. After decomposition, approximation and detail components are obtained, which
contain low-frequency and high-frequency information, respectively [41]:

x(t) = ∑
k

Aj,k(t)ψj,k(t) + ∑
j

∑
k

Dj,k(t)φj,k(t), (3)

where ψj,k and ϕj,k are the scale and wavelet functions, respectively; Aj,k is called the approximation
component or scale coefficient and Dj,k is the detail component or wavelet coefficient. As the Gaussian
white noise in a signal is discontinuous, its coefficients in wavelet domain, which are centered in detail
components, also follow the Gaussian distribution. Therefore, coefficients of noise are smaller than
those of the effective signal. In this case, WTD is able to utilize a certain threshold to extract the noise
and sets its coefficients to be zero.
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Figure 3. A three-level decomposition of discrete wavelet transform (DWT) using Mallat algorithm.

Based on the above explanations, the procedure of WTD for wind speed is simply summed up
into three steps:

1. Decompose the original time series of wind speed using WT;
2. Calculate the threshold to distinguish the noise from the effective signal;
3. Set the wavelet coefficients of noise to be zero and reconstruct the wind speed series.

It also should be mentioned that there are several parameters in WTD to be determined artificially:
the wavelet basis function, the number of decomposition levels, threshold computation approach and
denoising approach.

2.4. Recurrent Neural Network (RNN)

RNN has a strong power to handle a sequence with temporal correlation and it has been widely
utilized in solving time-varying problems [42,43], especially natural language processing [44]. Unlike a
common neural network that has no connections within hidden layers, RNN is able to connect hidden
layers with the former ones circularly. Those hidden layers of RNN, which are also named recurrent
units, can save historical information from the sequence. The sequential structure of a one-hidden-layer
RNN is shown in Figure 4. It can be unfolded to several networks with hidden layers connected, each
of which has a point input of a sequence. Therefore, a RNN possesses an extremely deep architecture,
the number of whose hidden layers is equal to the length of input sequence.
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In this study, RNNs are established and trained as sub-models for ensemble forecasting. In order
to make full use of ensemble technology and enhance forecasting accuracy, it is of great significance to
keeping diversities of sub-models. In order to deal with this issue, several approaches are considered
and discussed as follows:

• Choose different datasets to train sub-models, for example, bagging technology. In bagging,
a random sampling with replacement is operated for training datasets. Thus, datasets may contain
duplicated samples or not [45]. However, a quite large number of sub-models is essential for this
method, whereas it is expensive in terms of computation cost for deep-learning-based models.

• Set dissimilar parameters for sub-models, for example, the numbers of neural nodes and hidden
layers in ANN. Nevertheless, it is hard in itself to set those parameters as they are often determined
by trial and error of many times in practical application.

• Establish diverse models or models with different architectures, for example, different recurrent
units in RNN.

• Adopt dropout technology in ANN. Dropout is a state-of-art method to regularize fixed-sized
models and prevent them from over-fitting [46]. As model training has a certain randomness with
dropout, diversities of sub-models are generated.

Accordingly, two recurrent architectures are utilized to build sub-models of RNNs in this study,
namely LSTM and GRU. Dropout is used as well and it is in the form of layer structures in RNN.

2.4.1. Dropout Layer

The structure of a dropout layer is shown in Figure 5. Several connections of neural nodes between
two hidden layers are blocked with a certain dropout rate p in one iteration and those nodes are not
able to participate in training [47].

During the training phase, a certain proportion (p) of the nodes are abandoned randomly, whose
weights W are not updated. Therefore, different parts of an ANN are trained in different iterations.
While the testing stage, a ‘thinner’ network is obtained, where all nodes are connected with the new
weights pW.
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Figure 5. A dropout layer with rate p = 0.25. (a) dropout during the training phase; (b) dropout during
the testing phase.

2.4.2. LSTM

A simple RNN shown in Figure 4 has numerous connections between current and previous
hidden layers. Thus, training such a network becomes quite difficult, where the vanishing gradient
problem will arise. In order to overcome the problem, LSTM was proposed in 1997 [48,49] and has
been improved during the recent rapid development of deep learning technology [50]. It is a building
unit for layers of RNN, which is able to remember short-term memory that lasts for a long period
of time. The structure of a LSTM block is presented in Figure 6, which consists of four major parts,
namely input gate, forget gate, memory cell and output gate.
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From the shown structure of LSTM, it is seen that two parallel lines are working to deal with the
hidden layer information and memory, which is the most significant variance from a simple RNN.
Hidden layer line h computes its output value based on the input and historical hidden information
and its computation result is sent to both the next layer and memory line c. The memory line
receives those results and forgets redundant ones, producing a modified output to affect hidden layer
line. The realizations of the above functions are decided by these controllable gates with dissimilar
architectures and equations [29]:

Input gate. It receives information from the previous hidden layer and the current input. Then it
computes to obtain an output with the following equation:

it = σ(wxixt + whiht−1 + bi), (4)

where it is the output of input gate; xt and ht−1 are the current input and the previous hidden layer
output, respectively; wxi and whi are weights for inputs xt and ht−1, respectively; and bi is the bias of
the input gate. σ is the activation function and a soft sign function is adopted in this study as:

σsoftsign(x) =
x

1+|x| , (5)

where x denotes an independent variable of the activation function.
Moreover, a temporary memory is also achieved via the input gate:

c̃t = tanh(wxcxt + whcht−1 + bc), (6)

where wxc, whc and bc are the weight for xt, weight for ht−1 and bias for c̃t, respectively.
Forget gate. The output of the forget gate has the similar computation formula as the input gate

with different weights (wxf, whf) and bias (bf):

ft = σ(wx f xt + wh f ht−1 + b f ), (7)

Memory cell. The current memory ct is calculated under the following equation:

ct = ft · ct−1 + it · c̃t, (8)

where ct−1 is the previous output of memory cell.
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Output gate. Its result is determined by the current input, the current memory and the previous
hidden layer output. The calculation formulas can be described as follows:

ot = σ(wxoxt + whoht−1 + b0), (9)

ht = ot · tanh(ct), (10)

where ot and ht denote the outputs of the output gate and the current hidden layer, respectively;
wxo, who and bo are the weight for xt, the weight for ht−1 and bias for ot, respectively.

2.4.3. GRU

GRU, which is a recently proposed architecture of RNN, is a simplified variant of LSTM [51].
There are mainly two changes in GRU. First, the input and forget gates of LSTM are merged in
the model, producing a sole update gate. Second, the two lines in LSTM, that is, the memory and
the hidden layer, are also combined together. The integrate structure of GRU is shown in Figure 7.
The following equations are designed for calculations in GRU [52]:

zt = σ(wxzxt + whzht−1 + bz), (11)

rt = σ(wxrxt + whrht−1 + br), (12)

h̃t = tanh(wxhxt + whhrtht−1 + bh), (13)

ht = (1− zt) · ht−1 + zt · h̃t, (14)

where xt and ht−1 are the current input and the previous output of GRU, respectively; wxz, whz, wxr,
whr, wxh and whh are weights in GRU; bz, br and bh are biases; zt, rt and are outputs during intermediate
procedures; and ht is the final output of the GRU block.
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2.4.4. Proposed RNN Structure

In this study, two kinds of RNNs are utilized, that is, the LSTM and the GRU networks. Each RNN
has four computation layers, including two recurrent units and two fully-connected layers (also named
dense layers). As wind speed data are sampled in the interval of 15 min, a time sequence of wind speed
with 48 points is chosen as an input sample by trial and error, which contains historical information of
12 h. Therefore, the input size of the proposed RNNs is 48 × 1. Those deep-learning-based models
are established through Tensorflow 1.4.0 [53] and Keras 2.0.8 [54] under Python 3.5.4 and they are
trained on a standard PC under Windows 10 operating system with Z270-A motherboard, an Intel
Core i7-7700K 4.2 GHz CPU, a NVIDIA GTX 1080 GPU and 16.0 GB of RAM. CUDA Toolkit 9.1 is also
utilized. The structures and parameters of RNNs are listed in Tables 1 and 2, where rectified linear
unit (ReLU) and sigmoid are two adopted activation functions:

σReLU(x) = max(x, 0), (15)

σsigmoid(x) =
1

1 + e−x , (16)
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From the model structures, the total numbers of trainable parameters in the LSTM and GRU
networks are 52,033 and 39,553, respectively. As the number of training samples in this study is more
than 70 thousand, the over-fitting problem is effectively avoided. Besides, the computation time for
training a RNN sub-model is approximately 380 s (6.3 min), which meets the needs of engineering
application. If those sub-models are trained parallel, the entire ensemble model is also suitable for
online training and forecasting.

Table 1. The structure of the proposed LSTM network.

Layer Hyper-Parameters Number of Parameters

LSTM 1
Unit number: 64

Input shape: 48 × 1
Activation: soft sign

16,896

LSTM 2 Unit number: 64
Activation: soft sign 33,024

Dense 1 Unit number: 32 2080
Activation 1 Activation: ReLU None

Dropout Rate: 0.00/0.25/0.50 None
Dense 2 Unit number: 1 33

Activation 2 Activation: sigmoid None
Summary None 52,033

Table 2. The structure of the proposed GRU network.

Layer Hyper-Parameters Number of Parameters

GRU 1
Unit number: 64

Input shape: 48 × 1
Activation: soft sign

12,672

GRU 2 Unit number: 64
Activation: soft sign 24,768

Dense 1 Unit number: 32 2080
Activation 1 Activation: ReLU None

Dropout Rate: 0.00/0.25/0.50 None
Dense 2 Unit number: 1 33

Activation 2 Activation: sigmoid None
Summary None 39,533

2.5. Adaptive Neuro Fuzzy Inference System (ANFIS) Based Ensemble Approach

The common practice for building ensemble models is to calculate an average value from
prediction results of different sub-models. Hence, a quite large number of sub-models is essential.
However, due to the long training time of deep-learning-based sub-models, the number of those
models is actually limited. Based on this situation, an ANFIS is built in this study as the top layer of the
entire ensemble model, in order to fully analyze the small number of sub-models. The final prediction
result will be decided by the fuzzy inference system (FIS), which is the output of the ANFIS model.

Generally, there are three methods that can establish FIS of an ANFIS model [55]. In consideration
of the number of model inputs, an ANFIS with fuzzy-c-means (ANFIS-FCM) is chosen to be utilized.
A diagram of ANFIS-FCM is exhibited in Figure 8. The number of fuzzy rules is equal to that of
clusters obtained by FCM, as well as that of membership functions (MFs) for each input. In this study,
the number of inputs is 6, which is the same number of sub-models. And the number of clusters
should be set artificially, which is chosen to be 4 by trial and error.
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Figure 8. An example model of adaptive neural fuzzy inference system-fuzzy c-means (ANFIS-FCM)
with 3 inputs and 2 clusters.

Based on the architecture of ANFIS-FCM in Figure 8, there are five layers in this model and their
computation formulas can be described as follows [56].

1. In layer 1, input variables are fuzzified via MFs:

O1,i =


µAi (x), i = 1, 2

µBi−2(x), i = 3, 4

µCi−4(x), i = 5, 6

, (17)

where x and O1,i are the input and the ith output of layer 1, respectively; µA, µB and µC are MFs.
2. In layer 2, namely rule layer, the outputs from the previous layer are multiplied together and the

firing strengths of rules are calculated:

O2,i = wi = µAi (x)µBi (x)µCi (x), i = 1, 2, (18)

3. Layer 3 normalizes the firing strength of each rule as:

O3,i = wi = wi/(w1 + w2), i = 1, 2, (19)

4. Layer 4 is a defuzzification layer, where adaptive nodes are utilized to calculate the weighted
contributions of different rules:

O4,i = wi fi = wi(pix1 + qix2 + rix3 + si), i = 1, 2, (20)

where pi, qi, ri and si are called consequent parameters.
5. In layer 5, the final output is obtained by summing contributions of rules:

O5 = ∑
i

wi fi = ∑
i

wi fi/∑
i

wi, i = 1, 2, (21)

where the output is adopted as the point forecasting result of the entire ensemble model.

A hybrid algorithm is commonly used to train ANFIS models. The trainable parameters in ANFIS
contain premise parameters in MFs and consequent parameters in layer 4, which are determined via
the least square fitting and the gradient descent algorithm, respectively. In this study, the number of
inputs is 6, which is the same as that of sub-models. The number of clusters should be set artificially,
which is chosen to be 4 by trial and error. The numbers of nodes in layer 2–4 remain the same, which
are equal to that of clusters. As a result, the structure of the utilized ANFIS-FCM can be decided, as is
shown in Table 3.
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Table 3. The structure of the utilized ANFIS-FCM.

Layer Number of Nodes Number of Parameters

Layer 1 24 48
Layer 2 4 None
Layer 3 4 None
Layer 4 4 28
Layer 5 1 None

2.6. Probabilistic Forecasting Approach

As wind speed varies randomly and violently, a probabilistic forecasting model can provide
more effective information of its future state. In order to measure the range of prediction errors,
the uncertainties from the modeling and the forecasting procedures are considered.

The modeling uncertainty is obtained by the variance in sub-models. In the proposed
WTD-RNN-ANFIS model, there are six prediction results from RNNs and a result from ANFIS:

ỹe(t) = A(ỹsi(t)), i = 1, 2, · · · , 6, (22)

where ỹe(t) is the ensemble output of the ANFIS, A(·) is the ANFIS computation, ỹsi(t) is the output
of the ith sub-model and t is the time to be predicted. Therefore, the modeling uncertainty can be
described as the variance:

σ2
m(t) =

1
6

6

∑
i=1

(ỹsi(t)− ỹe(t))
2, (23)

The final prediction value can hardly be equal to the actual value. As a result, the forecasting
uncertainty is produced based on the variance of their differences. The uncertainty is estimated at the
training phase, where the actual outputs of the training samples are y(1), y(2), . . . , y(s). The mean and
variance of forecasting differences can be easily calculated as follows:

e f =
1
s

s

∑
t=1

(ỹe(t)− y(t)), (24)

σ2
f =

1
s

s

∑
t=1

(
ỹe(t)− y(t)− e f

)2
, (25)

where s is number of training samples; the variance σ2
f denotes the forecasting uncertainty, which is a

constant obtained during the training stage.
It is assumed that the above two uncertainties are independent. Therefore, the total uncertainty of

the proposed model is the sum of those two parts:

σ2
t (t) = σ2

m(t) + σ2
f . (26)

Based on the uncertainty, the bounds of the prediction interval for confidence level 100·(1−α)%
are obtained under the following equations:

lα(t) = ỹe(t)− zα/2 ·
√

σ2
t (t), (27)

uα(t) = ỹe(t) + zα/2 ·
√

σ2
t (t), (28)

where lα(t) and uα(t) are the lower and upper bounds of the confidence interval, respectively; zα/2 is
the critical value of a Gaussian distribution.
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3. Forecasting Results

In this study, the proposed WTD-RNN-ANFIS model is established to predict wind speed for
different steps ahead of time. Other models, including SVM and three-layer ANN, are utilized and
compared with the proposed model. Both the point and probabilistic forecasting results are presented
based on several performance criteria.

3.1. Performance Criteria

3.1.1. Criteria for Point Forecasting

Root mean square error (RMSE), mean absolute error (MAE) and normalized mean absolute
percentage error (NMAPE) are adopted performance criteria for point forecasting in this study.
Their calculation equations are as follows:

RMSE =

√
1
n

n

∑
t=1

(ỹe(t)− y(t))2, (29)

MAE =
1
n

n

∑
t=1
|ỹe(t)− y(t)|, (30)

NMAPE =
1
n

n

∑
t=1

|ỹe(t)− y(t)|
max

t∈[1,n]
y(t)

× 100%, (31)

where n is the number of testing samples. A better prediction performance is achieved when RMSE,
MAE and NMAPE are smaller.

3.1.2. Criteria for Probabilistic Forecasting

In this study, average coverage error (ACE) and interval sharpness (IS) are two criteria for
evaluating the performance of probabilistic forecasting. ACE is an indicator to appraise the reliability
of prediction interval, which has the following equation:

ACEα =
1
n

n

∑
t=1

ct × 100%− 100 · (1− α)%, (32)

where ct is the indicative function of coverage and its calculation equation is as:

ct =

{
1, y(t) ∈ [lα(t), uα(t)]

0, y(t) /∈ [lα(t), uα(t)]
. (33)

From the equation of ACE, a value close to zero denotes the high reliability of prediction interval.
As an infinitely wide prediction interval is meaningless, IS is another indicator contrary to the

coverage rate of interval, which measures the accuracy of probabilistic forecasting. It can be calculated
under the following equation:

ISα =
1
n

n

∑
t=1


−2α[uα(t)− lα(t)]− 4[lα(t)− y(t)], y(t) < lα(t)

−2α[uα(t)− lα(t)], y(t) ∈ [lα(t), uα(t)]

−2α[uα(t)− lα(t)]− 4[y(t)− uα(t)], y(t) > uα(t)

(34)

It can be found that ISα is always equal to a negative value. A great prediction interval obtains
high reliability with a narrow width, which has a small absolute value of IS.
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3.2. Denoising Results

The best parameters of WTD are tried and decided when the highest forecasting accuracy is
acquired. In this study, the wavelet basis function, the number of decomposition levels are chosen
to be sym4 and 2, respectively. The threshold computation and denoising approaches are selected to
be the heuristic algorithm and the soft thresholding method, respectively. Those decomposed series
of wind speed are used to construct training and testing samples. In order to display the denoising
results, the denoising series in training samples of four days, that is, 1 March, 1 June, 1 September and
1 December in 2016, are presented as examples in Figure 9.
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Figure 9. The denoising results of wind speed series using WTD. (a) 1 March 2016; (b) 1 June 2016; (c) 

1 September 2016; (d) 1 December 2016. 
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3.3. Point Forecasting Results

In this study, the proposed WTD-RNN-ANFIS model is validated on forecasting wind speed under
multi-step-ahead situations, that is, 1-step-ahead (15 min), 2-step-ahead (30 min) and 3-step-ahead
(45 min). It is compared with three-layer ANN, SVM, RNN, WTD-ANN, WTD-SVM and WTD-RNN.
Specially, the performance criteria in WTD-RNN are the averaged values of the six sub-models in
the proposed WTD-RNN-ANFIS, in order to validate the ensemble method that is based on ANFIS.
Besides, as mentioned before in Section 2, the wind speed data at 22 March, 23 June, 22 September and
23 December in 2017 are chosen as four testing cases of different seasons.

The point forecasting results are presented in Table 4, where the best criteria of each case are
emphasized in bold and the comparisons of those criteria are shown in Figure 10. From the results,
it can be found that WTD is a great pre-processing method in wind speed forecasting, as it reduces
the uncertainties of wind speed variation. The comparisons indicate that SVM performs worse than
ANN and RNN. Besides, SVM costs rather long computation time when trained on a large number of
training samples, which is not suitable for online training of short-term forecasting. It is noted that
RNN usually achieves better performance than ANN whether or not WTD is utilized. The proposed
WTD-RNN-ANFIS obtains the best forecasting results in all four cases. Therefore, it is a perfect
ensemble model for short-term wind speed forecasting rather than just calculating an averaged output
from different sub-models. Moreover, the prediction curves of 1-step-ahead point forecasting using
several representative models are presented as examples in Figure 11. The curve of the proposed
WTD-RNN-ANFIS fits the actual value best, which denotes the superb point forecasting performance
of the model.

Table 4. The performance criteria of different models for point wind speed forecasting.

Season Model
1-Step-Ahead 2-Step-Ahead 3-Step-Ahead

RMSE MAE NMAPE RMSE MAE NMAPE RMSE MAE NMAPE

Spring ANN 1.1676 0.8034 7.6767 1.5123 0.9878 9.4385 1.6500 1.0770 10.2908
SVM 1.1461 0.7999 7.6433 1.5747 1.1415 10.9071 1.6708 1.1970 11.4368
RNN 1.1253 0.7860 7.5103 1.4866 0.9709 9.2768 1.6256 1.0718 10.2412

WTD-ANN 0.8958 0.5871 5.6100 1.2388 0.8087 7.7271 1.4950 0.9895 9.4544
WTD-SVM 0.8824 0.5650 5.3989 1.1766 0.7553 7.2164 1.4644 0.9541 9.1163
WTD-RNN 0.8387 0.5608 5.3582 1.1213 0.7792 7.4449 1.3069 0.9003 8.6018

WTD-RNN-ANFIS 0.8226 0.5261 5.0270 1.0697 0.6823 6.5195 1.2524 0.8316 7.9453

Summer ANN 1.3205 0.8373 6.3250 1.6402 1.0331 7.8044 1.9126 1.2185 9.2043
SVM 1.4019 0.9338 7.0542 1.8009 1.2332 9.3159 2.0291 1.3786 10.4139
RNN 1.3059 0.8206 6.1986 1.6444 1.0264 7.7535 1.8712 1.1770 8.8909

WTD-ANN 1.1123 0.6739 5.0905 1.4491 0.9314 7.0362 1.7341 1.0919 8.2483
WTD-SVM 1.1424 0.7134 5.3887 1.6273 1.1049 8.3464 1.8413 1.2233 9.2410
WTD-RNN 1.1109 0.6679 5.0453 1.4540 0.8883 6.7102 1.7202 1.0640 8.0373

WTD-RNN-ANFIS 1.0929 0.6410 4.8420 1.4330 0.8554 6.4617 1.7021 1.0185 7.6939

Autumn ANN 1.1547 0.8981 8.6419 1.4514 1.1184 10.7618 1.6540 1.2927 12.4394
SVM 1.2365 0.9430 9.0740 1.6358 1.2294 11.8301 1.8663 1.3675 13.1595
RNN 1.1436 0.8919 8.5824 1.4171 1.1079 10.6614 1.6299 1.2848 12.3633

WTD-ANN 0.9238 0.6854 6.5955 1.2646 0.9723 9.3561 1.5324 1.1980 11.5280
WTD-SVM 0.9903 0.7496 7.2130 1.3523 1.0248 9.8611 1.7073 1.2700 12.2206
WTD-RNN 0.9100 0.7006 6.7421 1.2563 0.9694 9.3281 1.5174 1.1585 11.1482

WTD-RNN-ANFIS 0.8371 0.6270 6.0333 1.1504 0.8609 8.2839 1.4619 1.0671 10.2689

Winter ANN 1.4992 1.1780 10.5903 1.8225 1.4006 12.5916 1.9744 1.5596 14.0211
SVM 1.5738 1.1762 10.5745 1.9390 1.4541 13.0726 2.1495 1.6796 15.0998
RNN 1.5076 1.1710 10.5278 1.8090 1.3623 12.2480 1.9499 1.5373 13.8208

WTD-ANN 1.1708 0.8830 7.9384 1.5748 1.1821 10.6272 1.8417 1.4049 12.6303
WTD-SVM 1.2165 0.8884 7.9867 1.6361 1.1929 10.7250 1.9997 1.5163 13.6325
WTD-RNN 1.1263 0.8663 7.7883 1.5652 1.1676 10.4973 1.8326 1.3983 12.5713

WTD-RNN-ANFIS 1.0641 0.8123 7.3025 1.5236 1.1108 9.9867 1.7849 1.3511 12.1470

Overall ANN 1.2930 0.9292 7.0191 1.6052 1.1324 8.5539 1.8038 1.2869 9.7216
SVM 1.3495 0.9632 7.2763 1.7435 1.2646 9.5525 1.9373 1.4057 10.6184
RNN 1.2799 0.9174 6.9298 1.6041 1.1195 8.4568 1.7750 1.2677 9.5764

WTD-ANN 1.0272 0.7074 5.3434 1.3737 0.9662 7.2991 1.6390 1.1624 8.7811
WTD-SVM 1.0659 0.7291 5.5075 1.4610 1.0195 7.7011 1.7641 1.2409 9.3740
WTD-RNN 1.0045 0.6989 5.2795 1.3649 0.9585 7.2405 1.6097 1.1389 8.6032

WTD-RNN-ANFIS 0.9678 0.6516 4.9221 1.3079 0.8774 6.6276 1.5643 1.0671 8.0608
1 The numbers in bold are the best criteria of each studied case.
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Figure 10. The comparisons of performance criteria for point wind speed forecasting. (a) RMSE; (b) 

MAE; (c) NMAPE. 
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Figure 10. The comparisons of performance criteria for point wind speed forecasting. (a) RMSE;
(b) MAE; (c) NMAPE.
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Figure 11. The prediction curves of 1-step-ahead point wind speed forecasting. (a) Spring; (b) 

summer; (c) autumn; (d) winter. 
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Figure 11. The prediction curves of 1-step-ahead point wind speed forecasting. (a) Spring; (b) summer;
(c) autumn; (d) winter.

3.4. Probabilistic Forecasting Results

In order to validate the feasibility of the proposed WTD-RNN-ANFIS model for probabilistic
wind speed forecasting, we establish it to calculate the prediction intervals of wind speed under
1~3 steps ahead timescales. Different prediction interval nominal confidences (PINCs) are verified in
this study, including 85%, 90% and 95%. The comparison results based on criteria ACE and IS are
presented in Tables 5 and 6. From the results, the criteria ACE and IS maintain within certain ranges in
all verified time scales, which indicates that the proposed WTD-RNN-ANFIS model achieves a rather
high reliability in ultra-short probabilistic forecasting. Moreover, prediction intervals of 1-step-ahead
forecasting obtained by the proposed model under four cases are shown as examples in Figure 12.
It can be discovered that the intervals cover the actual series of wind speed perfectly.
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Figure 12. The prediction intervals of 1-step-ahead probabilistic wind speed forecasting using  

WTD-RNN-ANFIS. (a) Spring; (b) summer; (c) autumn; (d) winter. 

  

Figure 12. The prediction intervals of 1-step-ahead probabilistic wind speed forecasting using
WTD-RNN-ANFIS. (a) Spring; (b) summer; (c) autumn; (d) winter.
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Table 5. The criterion ACE (%) of probabilistic wind speed forecasting using WTD-RNN-ANFIS.

Time Scale PINC (%) Spring Summer Autumn Winter Overall

1-step-ahead 85 10.83 7.71 11.88 2.50 8.23
90 6.88 3.75 7.92 0.63 4.79
95 1.88 −0.21 2.92 −1.25 0.83

2-step-ahead 85 12.92 4.58 8.75 −0.63 6.41
90 6.88 1.67 −4.58 −3.54 0.10
95 2.92 −3.33 1.88 −2.29 −0.21

3-step-ahead 85 11.88 1.46 7.71 1.46 5.63
90 7.92 −1.46 5.83 −0.42 2.97
95 2.92 −0.21 0.83 −0.21 0.83

Table 6. The criterion IS of probabilistic wind speed forecasting using WTD-RNN-ANFIS.

Time Scale PINC (%) Spring Summer Autumn Winter Overall

1-step-ahead 85 −1.10 −1.41 −1.10 −1.25 −1.21
90 −0.86 −1.12 −0.84 −0.91 −0.93
95 −0.54 −0.75 −0.50 −0.52 −0.58

2-step-ahead 85 −1.48 −1.52 −1.47 −1.87 −1.60
90 −1.12 −1.25 −1.11 −1.38 −1.21
95 −0.72 −0.70 −0.63 −0.79 −0.71

3-step-ahead 85 −1.73 −1.76 −1.83 −2.09 −1.86
90 −1.32 −1.36 −1.33 −1.54 −1.38
95 −0.81 −0.78 −0.76 −0.88 −0.82

4. Comparisons and Discussion

In this section, in order to fully verify the superiority of the proposed model, we further compare
different probabilistic forecasting models for 1-step-ahead wind speed forecasting. The tested PINCs
are also chosen to be 85%, 90% and 95%. In addition to the proposed WTD-RNN-ANFIS, we establish
another 4 models that have been introduced in the literatures. In Reference [57], He et al. proposed a
probability density forecasting method based on Copula theory and support vector quantile regression
(SVQR). Similarly, He et al. [58] proposed another probability density forecasting method based
on quantile regression neural network (QRNN) and kernel density estimation. Those two models
both utilize quantile regression (QR) to calculate prediction intervals and will be compared with the
proposed model in this study. In Reference [59], a probabilistic wind speed forecasting model is
introduced by Hu et al., which consists of empirical wavelet transform (EWT) and GPR. GPR is a
non-parametric estimation method that defines mean and variance functions, where the variance can
be directly used for probabilistic forecasting. Moreover, in order to validate the proposed probabilistic
forecasting approach that is based on variances of sub-models, we compute modeling and forecasting
uncertainties using another ensemble model [60] for comparison. It is introduced by Lee et al. that
calculates an averaged result from random forest, gradient boosting machine (GBM), ridge regression,
auto-regressive (AR) model and AR with exogenous (ARX). Their comparisons based on criteria ACE
and IS are shown in Tables 7 and 8.
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Table 7. Comparisons of the criterion ACE (%) for probabilistic wind speed forecasting.

Model PINC (%) Spring Summer Autumn Winter Overall

He et al. [57] 85 −14.18 −11.04 −14.17 −13.13 −13.13
90 −11.88 −4.58 −4.58 −12.92 −8.49
95 −3.33 −5.42 −4.38 −8.54 −5.42

He et al. [58] 85 −13.13 −11.04 −14.17 −12.08 −12.60
90 −12.92 −6.67 −4.58 −12.92 −9.27
95 −5.42 −5.42 −3.33 −10.63 −6.20

Hu et al. [59] 85 11.88 13.96 11.88 10.83 12.14
90 8.96 8.96 7.92 10.00 8.96
95 3.96 3.96 2.92 5.00 3.96

Lee et al. [60] 85 12.92 8.75 8.75 4.58 8.75
90 8.96 4.79 5.83 2.71 5.57
95 3.96 1.88 3.96 −2.29 −1.88

WTD-RNN-ANFIS 85 10.83 7.71 11.88 2.50 8.23
90 6.88 3.75 7.92 0.63 4.79
95 1.88 −0.21 2.92 −1.25 0.83

The numbers in bold are the best criteria of each studied case.

Table 8. Comparisons of the criterion IS for probabilistic wind speed forecasting.

Model PINC (%) Spring Summer Autumn Winter Overall

He et al. [57] 85 −1.55 −1.55 −1.43 −2.39 −1.73
90 −1.22 −1.20 −1.07 −1.88 −1.34
95 −0.79 −0.72 −0.63 −1.18 −0.83

He et al. [58] 85 −1.57 −1.55 −1.49 −2.41 −1.75
90 −1.14 −1.15 −1.09 −1.77 −1.29
95 −0.78 −0.69 −0.64 −1.19 −0.82

Hu et al. [59] 85 −1.50 −1.89 −1.94 −2.01 −1.84
90 −1.14 −1.76 −1.45 −1.48 −1.46
95 −0.72 −0.99 −0.83 −0.84 −0.85

Lee et al. [60] 85 −1.44 −1.73 −1.47 −1.76 −1.60
90 −1.10 −1.34 −1.10 −1.26 −1.20
95 −0.69 −0.87 −0.64 −0.68 −0.72

WTD-RNN-ANFIS 85 −1.10 −1.41 −1.10 −1.25 −1.21
90 −0.86 −1.12 −0.84 −0.91 −0.93
95 −0.54 −0.75 −0.50 −0.52 −0.58

The numbers in bold are the best criteria of each studied case.

From the comparison results, the two QR models obtains the worst criterion of ACE and GPR
acquires the worst criterion of IS. According to the comparison between QR and GPR, QR merely
achieves better IS than GPR whereas it can hardly cover the actual wind speed series. The reason
may be that QR extremely concentrates on achieving the minimum quantile loss function so that it
ignores the coverage rate. It is to say otherwise that machine-learning-based QR model reveals no
significant merits in probabilistic forecasting. As a result, the QR models in Reference [57,58] adopt
kernel destiny estimation method to ameliorate this situation and improve forecasting performance.
Besides, those two kinds of models, QR and GPR, calculate prediction intervals directly based on the
distribution of historical time series whereas the unavoidable forecasting errors in models are not
included. On the contrary, we involve forecasting errors as forecasting uncertainties in our proposed
probabilistic forecasting approach and test two ensemble models, that is, the model proposed by Lee
et al. [60] and WTD-RNN-ANFIS. The two models achieve better ACE and slightly improve the IS.
Hence, the proposed probabilistic forecasting approach increases the prediction reliability of models
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without enlarging their widths of prediction intervals. Moreover, WTD-RNN-ANFIS performs better
than the ensemble model in Reference [60], probably due to the denoising procedure of WTD and the
strong learning ability of RNN.

As the forecasting accuracy of wind speed further increases owing to the proposed
WTD-RNN-ANFIS model, especially ultra-short-term forecasting, it can help the operators of wind
power integrated system to better guide the real-time scheduling and dispatching of electrical power
system. In this study, we mainly introduce state-of-the-art technologies of ensemble learning and deep
learning into the field of renewable energy forecasting, in order to improve the operation reliability and
security of power system. If the acquisition and storage technology for real-time data can be improved,
as well as the calculation capability in power system, its operators will benefit much more from the
contributions of the study. Moreover, we provide a feasible probabilistic forecasting approach based
on deep learning without adding too much calculation burden. However, it still remains limitations
that merely one kind of sub-model is utilized in ensemble and the prediction accuracy is not greatly
enhanced due to the rapid fluctuation of wind speed. Therefore, it is of great application value to
research and verify more deep-learning-based models for renewable energy forecasting and it will be
involved in our future work.

5. Conclusions

An ensemble WTD-RNN-ANFIS model is proposed in this study for probabilistic wind speed
forecasting. The model is based on wavelet decomposition, deep learning and ensemble learning
technologies. It is aimed at less than one-hour-ahead ultra-short-term forecasting of wind speed,
which utilizes historical wind speed data as inputs. We compare the proposed model with other
commonly-used machine learning models to predict wind speed based on four cases of different
seasons and the prediction results are in both point and interval forms.

From the comparisons, WTD evidently reduces the volatilities and uncertainties in wind speed
series, so that forecasting models can better capture the variation trend of wind speed and improve
their prediction accuracies. A RNN model, which are based on deep learning technology, is able to
learn the correlations among data points in an entire time series. It is proved to achieve better results
in wind speed forecasting than shallow ANN in this study. Besides, ANFIS successfully increases
prediction accuracy of the ensemble model using only a small number of sub-models. It performs
better than the ensemble model that merely calculates an averaged output value from sub-models.

Specifically, based on the overall testing datasets, the criteria RMSE, MAE and NMAPE of the
proposed model in 15-min-ahead forecasting reach 0.9678 m/s, 0.6516 m/s and 4.9221%, respectively.
Those criteria in 30-min-ahead and 45-min-ahead forecasting are 1.3079 m/s and 1.5643 m/s,
0.8774 m/s and 1.0671 m/s, 6.6276% and 8.0608%, respectively. The above prediction results indicate
the superiority of the proposed ensemble model in ultra-short point wind speed forecasting. The high
forecasting accuracy of the proposed model can meet the needs of practical engineering projects, which
can benefit the secure operations of wind power integrated system. Moreover, the best ACE and IS of
the proposed model tested on the overall datasets are −0.21% and −0.58, respectively. Comparing
to traditional QR models, it achieves more reliable prediction intervals, demonstrating its excellent
performance in ultra-short probabilistic wind speed forecasting.

As wind speed fluctuates rapidly and arbitrarily, the improvement in performance of prediction
models is limited. Therefore, it is desired that in the future advanced signal decomposition and
denoising technologies can be adopted and merged into hybrid wind speed forecasting methods.
Besides, the ensemble model proposed in this study merely utilizes RNNs as sub-models. It remains
to be studied further that other state-of-the-art deep-learning-based models are combined for
ensemble learning.
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