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Abstract: The economic load dispatch (ELD) problem is an optimization problem of minimizing the
total fuel cost of generators while satisfying power balance constraints, operating capacity limits,
ramp-rate limits and prohibited operating zones. In this paper, a novel multi-population based chaotic
JAYA algorithm (MP-CJAYA) is proposed to solve the ELD problem by applying the multi-population
method (MP) and chaotic optimization algorithm (COA) on the original JAYA algorithm to guarantee
the best solution of the problem. MP-CJAYA is a modified version where the total population is
divided into a certain number of sub-populations to control the exploration and exploitation rates, at
the same time a chaos perturbation is implemented on each sub-population during every iteration to
keep on searching for the global optima. The proposed MP-CJAYA has been adopted to ELD cases and
the results obtained have been compared with other well-known algorithms reported in the literature.
The comparisons have indicated that MP-CJAYA outperforms all the other algorithms, achieving the
best performance in all the cases, which indicates that MP-CJAYA is a promising alternative approach
for solving ELD problems.

Keywords: JAYA algorithm; multi-population method (MP); chaos optimization algorithm (COA);
economic load dispatch problem (ELD); optimization methods

1. Introduction

With the issues of global warming and depletion of classical fossil fuels, saving energy and
reducing the operational cost have become the key topics in power systems nowadays. The economic
load dispatch problem (ELD) is a crucial issue of power system operation that minimizes the
operational cost while satisfying a set of physical and operational constraints imposed by generators
and system limitations [1]. A large number of conventional optimization methods have been applied
successfully for solving the ELD problem such as gradient method [2], lambda iteration method [3],
semi-definite programming [4], quadratic programming [5], dynamic programming [6], Lagrangian
relaxation method [7] and linear programming [8]. However, they suffer from difficulties when dealing
with problems with nonconvex objective function and complex constraints, which tends to exhibit
highly non-linear, non-convex and non-smooth characteristics with a number of local optima [9].

To overcome these drawbacks, meta-heuristic methods are proposed, such as genetic algorithm
(GA) [10], particle swarm optimization (PSO) [11], tabu search (TS) [12], artificial bee colony algorithm
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(ABC) [13], firefly algorithm [14], harmony search (HS) [15] and teaching-learning-based optimization
(TLBO) [16]. Additionally, hybrid meta-heuristic optimization approaches built by the combination
between conventional methods and meta-heuristic methods or among the meta-heuristic methods have
also been reported to deal with the ELD problem, such as DE-PSO method [17], HS-DE method [18],
GA-PS-SQP algorithm [19] and Quantum-PSO method [20]. Even though hybrid methods offer much
faster convergence rates, the combination may lead to increased numbers of parameters which causes
more difficulties in selecting the proper value for each one. Hence, a new method with strong searching
ability and less number of control parameters is needed.

The JAYA algorithm is a newly developed yet advanced heuristic algorithm for solving
constrained and unconstrained optimization problems [21]. Different from other algorithms requiring
for algorithm-specific parameters in addition to common parameters, the JAYA algorithm does
not require any algorithm-specific parameters except for two common parameters named the
population size (Npop) and the number of iteration (Niter). This significant benefit makes it popular in
various real-world optimization problems such as optimum power flow [22], heat exchangers [23],
photovoltaic models [24], thermal devices [25], MPPT of PV system [26], constrained mechanical
design optimization [27], modern machining processes [28] and PV-DSTATCOM [29]. However, as a
newly developed algorithm, the JAYA algorithm still has some disadvantages even though the number
of parameters is less and the convergence rate is accelerated. Since there is only guidance as approach
to get close to the best solution and get away from the worst solution, the population diversity may
not be maintained efficiently, easily leading to local optimal solutions.

The multi-population based optimization method (MP) is applied for improving the search
diversity by dividing the whole population into a certain number of sub-populations and distributing
them throughout the search area so that the problem changes can be monitored more effectively. The
MP method is aimed at maintaining population diversity during the search period by distributing
different sub-populations to different search spaces. Each population is used to either intensify
or diversifying the search process [30,31]. The interaction among the sub-populations occurs by
dividing and merging process as long as a change in the solution is detected. Branke proposed a
multi-population evolutionary algorithm in [32]. Turky and Abdullah proposed a multi-population
electromagnetic algorithm and a multi-population harmony search algorithm in [33,34]. Nseef
proposed a multi-population artificial bee colony algorithm in [35]. The published literature have
demonstrated that employing MP method is useful for maintaining the population diversity when
dealing with various problem changes.

Its worthy to be noted that the MP optimization method has superior behaviors because [36]:

(1) By dividing the whole population into sub-populations, population diversity can be maintained
since the sub-populations are located in different regions of the problem landscape.

(2) With the ability to search various regions simultaneously, it is able to track the movement of
optimum value more effectively.

(3) Population-based optimization algorithms can be easily integrated with MP method.

At the same time the chaotic optimization algorithm (COA) which adopts chaotic sequences
instead of random sequences is also employed here. Due to the non-repetitive characteristics of
chaotic sequences, the COA can execute with shorter execution time and more robust mechanisms
than stochastic ergodic searches that depending on random probabilities. It also has the feature
of easy implementation in meta-heuristic algorithms, such as chaotic evolutionary algorithms [37],
chaotic ant swarm optimization [38], chaotic harmony search algorithm [39], chaotic particle swarm
optimization [40], chaotic firefly algorithm [41]. The choice of chaotic sequences is justified theoretically
by their unpredictability, i.e., by their spread-spectrum characteristic, non-periodic, complex temporal
behavior and ergodic properties. Simulation results from the abovementioned literature have
demonstrated that the application of deterministic chaotic signals to meta-heuristic algorithms is
a promising strategy in engineering applications. In this paper, COA has been applied twice:
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(1) During the initialization step, chaotic sequences generated by a chaotic map are used to initialize
the initial solutions.

(2) During the iteration step, COA is conducted to search further around the solution obtained by
former algorithm to enhance the global convergence and to prevent to be trapped on local optima.

Based on the descriptions above, a novel multi-population based chaotic JAYA algorithm
(MP-CJAYA) is proposed in this paper. It is a modified version of JAYA algorithm where the
total population is divided into sub-populations by the MP method to control the exploration and
exploitation rates, meanwhile a chaos perturbation is implemented on each sub-population during
every iteration to keep on searching for the global optima. The MP-CJAYA algorithm is applied
for solving the ELD cases with constraints including valve-point effects, power balance constraints,
operating capacity limits, ramp-rate limits and prohibited operating zones. In all the experimented
ELD cases, the proposed MP-CJAYA has produced the most competitive results.

The rest of this paper is arranged as follows: In Section 2, the problem formulation of ELD problem
is constructed. The basic JAYA, the compared CJAYA and the proposed MP-CJAYA algorithms are
described in Section 3. The experimental results and comparisons of MP-CJAYA with other algorithms
are presented and analyzed in Section 4. Finally, the conclusions and future work are given in Section 5.

2. Problem Formulation

The ELD problem is described as an objective function to minimize the total fuel cost while
satisfying different constraints, we adopt the problem formulation described in [16,42].

2.1. Objective Function

The objective function is to sum up all the costs of committed generators as expressed below:

min F =
n

∑
i = 1

Fi(Pi) (1)

where n is the total generator number in power systems, Fi(Pi) is the cost function of ith generator
with output Pi.

Approximately, the cost function can be expressed as a quadratic polynomial by the following
equation:

Fi(Pi) = aiPi
2 + biPi + ci (2)

where ai, bi, ci are the cost coefficients of ith generator, which are constants.
In reality, a higher-order non-linearity rectified sinusoid contribution is usually added to the cost

function to model the valve-point effect, which is given below:

Fi(Pi) = aiPi
2 + biPi + ci +

∣∣∣ei × sin( fi × (Pi
min − Pi))

∣∣∣ (3)

where ei and fi are cost coefficients of ith generator due to valve-point effect, while Pi
min is the

minimum output for generator i.
According to the discussion above, the objective function of ELD problem considering the

valve-point effect can be represented as:

min F =
n

∑
i = 1

(aiPi
2 + biPi + ci +

∣∣∣ei × sin( fi × (Pi
min − Pi))

∣∣∣) (4)
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2.2. Constrained Functions

2.2.1. Power Losses

The total power generated by available units must equal to the summation of the demanded
power and the system power loss, which can be formulated as:

n

∑
i = 1

Pi = Pdemand + Ploss (5)

where Pdemand and Ploss is the value of the demanded power and the whole power loss in the system
respectively. Ploss is calculated by Kron’s formula:

Ploss =
n

∑
i = 1

n

∑
j = 1

PiBijPj +
n

∑
i = 1

Bi0Pi + B00 (6)

where Bij, Bi0, B00 are the loss coefficients that generally can be assumed to be constants under a
normal operating condition.

2.2.2. Generating Capacity

The real output Pi generated by a available unit must be ranged between its minimum limit and
maximum limit:

Pmin
i ≤ Pi ≤ Pi ≤ Pmax

i (7)

where Pmin
i and Pmax

i are the minimum and maximum limits of ith generator.

2.2.3. Ramp Rate Limit

In practical circumstances, the output power Pi can not be adjusted immediately, the operating
range is restricted by the ramp-rate limit constraint expressed below:

max(Pi
min, Pi

0 − DRi) ≤ Pi ≤ min(Pi
max, Pi

0 + URi) (8)

where Pi is the present power output, Pi
0 is the previous power output, URi and DRi is the up-ramp

and down-ramp limit of generator i respectively.

2.2.4. Prohibited Operating Zones

For generator with prohibited operating zones (POZs), which are the sets of output power ranges
where the generator can not work, the feasible operating zones are as discontinuous as follows:

Pi
min ≤ Pi ≤ Pi,1

lower

Pi,j−1
upper ≤ Pi ≤ Pi,j

lower

Pi,ni
upper ≤ Pi ≤ Pi

max
(9)

where j is the index of POZs, ni is the total number of POZs where j ∈ [1, ni], Pi,j
lower and Pi,j

upper are
the lower and upper bounds of the jth POZ of the ith unit, respectively.

3. The Proposed MP-CJAYA Algorithm

Since the proposed MP-CJAYA algorithm is a hybrid of the basic JAYA, COA and MP methods, it
is quite necessary to observe the relative strength of each constituent when solving the ELD problem,
so three different algorithms are studied:

(1) The basic JAYA algorithm: The classical JAYA algorithm with standard parameters; it is selected
to compare its performance at solving different ELD cases with the other two algorithms.
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(2) The compared CJAYA algorithm: The basic JAYA algorithm combined by COA but without the
MP method.

(3) The proposed MP-CJAYA algorithm: The basic JAYA algorithm integrated with both the COA
and MP methods.

3.1. The Basic JAYA Algorithm

The JAYA algorithm is a powerful heuristic algorithm proposed by Rao for solving optimization
problems. It always attempts to get success to reach the best solution as well as move far away
from the worst solution. Different from most of the other heuristic algorithms, JAYA is free from
algorithm-specific parameters, only two common parameters named the population size Npop and the
number of iterations Niter are required [21].

Suppose the objective function is F(X) which is required to be minimized or maximized. Let
F(X)best and F(X)worst represent the best value and the worst value of F(X) among the entire candidate
solutions during each iteration. Let Xj,k,i be the value of the jth variable for the kth candidate during
the ith iteration, then the new modified value X′j,k,i by JAYA algorithm is calculated by:

X′j,k,i = Xj,k,i + r1,j,i × (Xj,best,i −
∣∣∣Xj,k,i

∣∣∣)− r2,j,i × (Xj,worst,i −
∣∣∣Xj,k,i

∣∣∣) (10)

where X′j,k,i is the updated value of Xj,k,i. Xj,best,i and Xj,worst,i are the values of the jth variable for
F(X)best and F(X)worst during the ith iteration respectively. r1,j,i and r2,j,i are two random numbers
ranged in [0, 1]. The term ‘r1,j,i × (Xj,best,i − |Xj,k,i|)’ indicates the tendency of the solution to move

closer to the best solution and the term ‘r2,j,i × (Xj,worst,i −
∣∣∣Xj,k,i

∣∣∣)’ indicates the tendency of the

solution to avoid the worst solution. Suppose F(X)′ is the modified value of F(X), if F(X)′ provides
better value than F(X), then Xj,k,i is replaced by X′j,k,i and F(X) is replaced by F(X)′; otherwise,
keep the old value. All the values of new obtained Xj,k,i and F(X) at the end of every iteration are
maintained and become the inputs to the next iteration [21].

The procedure for the basic JAYA algorithm to solve ELD problem is described as follows:
Step 1: Set parameters. Common parameters of JAYA are initialized in this step. The first one is the

population size (Npop) which represents how many solutions will be generated; the second one is the
maximum iteration number (NJAYA_iter) which indicates the stopping condition during the calculation;
the last one is the total number of generators (Ngen) for Ngen-units system.

Set the iteration counter as iter.
Step 2: Initialize the solution. A set of initial solutions are randomly generated as follows:

Xj,k,i = Xj
min + (Xj

max − Xj
min). ∗ rand(Npop, Ngen) (11)

where j ∈ [1, Ngen], k ∈ [1, Npop], i ∈ [1, NJAYA_iter], Xj
min and Xj

max are the lower and upper limits of
jth generator given by generating capacity limits in Equation (7).

Step 3: Apply constraints. Apply the constraints in Section 2.2 by using Equations (5)–(9).
Step 4: Evaluate the solution. Calculate the objective function (cost function) by using Equation (3)

with considering the valve-point effect or Equation (2) without considering the valve-point effect to
obtain the initial value F(X).

Set iter = 1.
Step 5: Determine the best and worst. Choose Xj,best,i and Xj,worst,i according to the value of F(X)best

and F(X)worst, which means the lowest and highest value among all the populations.
Step 6: Generate new solution. Generate new output X′j,k,i by Equation (10).
Step 7: Apply constraints. Apply the constraints in Section 2.2 by using Equations (5)–(9).
Step 8: Evaluate the new solution. Calculate the new objective function value F(X)′ by Equation (3)

with considering the valve-point effect or Equation (2) without considering the valve-point effect.
Step 9: Compare. The new F(X)′ is compared with the old F(X), the values are updated as follows:
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If F(X)′ < F(X)

then F(X) = F(X)′ and Xj,k,i = X′j,k,i;
Otherwise, keep the old value.
Step 10: Check the stopping condition. If the current iteration number iter < NJAYA_iter, then

iter = iter + 1 and return to Step 5. Otherwise, stop the procedure.

3.2. The Compared CJAYA Algorithm

In this chapter, the Chaos Optimization Algorithm (COA) is combined with the basic JAYA
algorithm to form the compared CJAYA algorithm. COA has used chaotic map for new search surface
during every iteration, which is a discrete-time dynamical system running in chaotic state:

Z(k + 1) = f (Z(k)) (k = 0, 1, 2, 3, ...) (12)

A widely used logistic map which appears in nonlinear dynamics of biological population
evidencing chaotic behavior is shown below [43].

Zi(k + 1) = α× Zi(k)(1− Zi(k)) (13)

where i is the serial number of chaotic variables, k is the iteration number. The initial value of the ith
chaotic variable is Zi(0) where Zi(0) /∈ {0.0, 0.25, 0.5, 0.75, 1.0}. α = 4 is used in this paper. It is
obvious that Zi(k + 1) ∈ (0, 1) under the conditions of Zi(0) ∈ (0, 1).

The procedure for the CJAYA algorithm to solve ELD problem is provided here, the
symbol ∗ denotes a new added step compared with the basic JAYA:

Step 1: Set parameters. Common parameters of CJAYA are initialized in this step. The population
size (Npop), the maximum iteration number (NJAYA_iter) and the total number of generators (Ngen) are
as the same as basic JAYA. However, one more parameter (NCOA_iter) is introduced which represents
the maximum iteration number by COA.

Set the iteration counter as iter.
Step 2∗: Generate chaotic sequence. The chaotic sequence Zj,k,q is generated by Logistic map in this

step, where j denoting the number of generators of the system, k denoting the population number and
q denoting the number of iteration by COA, which is shown in the following equation:

Zj,k,q = 4× Zj,k−1,q(1− Zj,k−1,q) (14)

Here j ∈ [1, Ngen], k ∈ [1, Npop], q ∈ [1, NCOA_iter].
Step 3: Initialize the solution. By the carrier wave method, the set of initial variable Xj,k,i can be

transformed to chaos variables by:

Xj,k,i = Xj
min + (Xj

max − Xj
min). ∗ Zj,k,q (15)

where Xj
min and Xj

max are the lower and upper limits of jth generator given by generating capacity
limits in Equation (7).

Step 4: Apply constraints. As the same as Step 3 in Section 3.1.
Step 5: Evaluate the solution. As the same as Step 4 in Section 3.1.
Step 6: Determine the best and worst. As the same as Step 5 in Section 3.1.
Step 7: Generate new solution. As the same as Step 6 in Section 3.1.
Step 8: Apply constraints. As the same as Step 7 in Section 3.1.
Step 9: Evaluate the new solution. As the same as Step 8 in Section 3.1.
Step 10: Compare. As the same as Step 9 in Section 3.1.
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Step 11∗: Apply COA. In the former step we have obtained the best set of solutions Xj,k,i up to now,
then the second carrier wave method can be performed by:

X′j,k,i = Xj,k,i + R× Zj,k,q (16)

where R is a constant, R× Zj,k,q generates chaotic states with small ergodic ranges around current
Xj,k,i to seek further for improving the quality of current solutions. Then the generated neighborhood
solutions will be compared with current solutions to check if they give better objective function values
by the following steps:

(1) Apply constraints. As the same as Step 7 in Section 3.1.
(2) Evaluate the new solution. As the same as Step 8 in Section 3.1.
(3) Compare. As the same as Step 9 in Section 3.1.

Step 12: Check the stopping condition. If the current iteration number iter < NJAYA_iter, then
iter = iter + 1 and return to Step 6. Otherwise, stop the procedure.

3.3. The Proposed MP-CJAYA Algorithm

In this section, Multi-population based optimization method (MP) is combined with CJAYA
algorithm to form the proposed MP-CJAYA algorithm. Figure 1 presents the flowchart of the proposed
MP-CJAYA algorithm, the pseudo code of the proposed MP-CJAYA is described in Algorithm 1. The
whole steps of MP-CJAYA to solve ELD problem is described as follows, the symbol ∗ denotes a newly
added step compared with CJAYA:

Step 1: Set parameters. Common parameters of MP-CJAYA are initialized in this step. The
population size (Npop), the maximum iteration number (NJAYA_iter), the total number of generators
(Ngen) and the maximum COA iteration number (NCOA_iter) are as the same as basic JAYA and CJAYA.
However, another important parameter (K) is introduced which represents the divided number of
sub-populations, so the population size of the sub-populations (Nsub_pop) is:

Nsub_pop = Npop/K (17)

Set the iteration counter as iter.
Step 2: Generate chaotic sequence. As the same as Step 2 in Section 3.2.
Step 3: Initialize the solution. As the same as Step 3 in Section 3.2.
Step 4: Apply constraints. As the same as Step 3 in Section 3.1.
Step 5: Evaluate the solution. As the same as Step 4 in Section 3.1.
Step 6∗: Divide the population. The entire population is divided into K sub-populations with

population size of Nsub_pop by Equation (17). It is noted that the solutions in the whole population are
randomly assigned to a sub-population, each sub-population is arranged to explore a different area of
the whole search space.

The following steps are performed on each sub-population:
Step 7: Determine the best and worst. As the same as Step 5 in Section 3.1.
Step 8: Generate new solution. As the same as Step 6 in Section 3.1.
Step 9: Apply constraints. As the same as Step 7 in Section 3.1.
Step 10: Evaluate the new solution. As the same as Step 8 in Section 3.1.
Step 11: Compare. As the same as Step 9 in Section 3.1.
Step 12: Apply COA. As the same as Step 11 in Section 3.2.
Step 13: Check the stopping condition. If the current iteration number iter reaches NJAYA_iter, stop

the loop and report the best solution; otherwise follow the next step and set iter = iter + 1.
Step 14∗: Merge the sub-populations. All the sub-populations are merged together to form one

population, then for re-divide the population go to Step 6.
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Algorithm 1 Pseudo code of the MP-CJAYA Algorithm

Begin
Initialize Npop, NJAYA_iter, Ngen, NCOA_iter and K;
Generate initial solution Xj,k,i by chaotic sequence;
Calculate objective function value F(X);
Set iter = 1
While iter < NJAYA_iter do
Divide the whole population P into K sub-populations by Equation (17) randomly
P1, P2, ..., PK−1, PK

For m = 1→ K do
Confirm Xj,best,i and Xj,worst,i within Pm

For k = 1→ Nsub_pop do
Generate new solution X′j,k,i by Equation (10)

If F(X′j,k,i) is better than F(Xj,k,i) then

Xj,k,i = X′j,k,i
F(Xj,k,i) = F(X′j,k,i)

Else
Keep the old value
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End if
End for
For k = 1→ Nsub_pop do
Generate new solution X′j,k,i by Equation (16)

If F(X′j,k,i) is better than F(Xj,k,i) then

Xj,k,i = X′j,k,i
F(Xj,k,i) = F(X′j,k,i)

Else
Keep the old value
End if
End for
End for
Merge the sub-populations (P1, P2, ..., PK−1, PK) into P
iter = iter + 1
End while

4. Experimental Results and Analysis

In this section, the basic JAYA, the compared CJAYA and the proposed MP-CJAYA algorithms are
applied on the following ELD cases to test their performances:

Case I. 3-units system for load demand of 850 MW.
Case II. 13-units system for load demand of 2520 MW.
Case III. 40-units system for load demand of 10500 MW.
Case IV. 6-units system for load demand of 1263 MW.
Case V. 15-units system for load demand of 2630 MW.

Since for meta-heuristic algorithms, parameter setting is critical for the quality of their
performances, so the parameters used in the cases above are all listed below. All the cases are
run in MATLAB 2016 under windows 7 on Intel(R) Core(TM) i5-6500 CPU 3.20 GHz, with 8 GB RAM.

4.1. Case I: 3-Units System for Load Demand of 850 MW

All detailed data are provided in [44]. The common parameters and constraint conditions are
given in Table 1. The cost value of Fmean and Fbest obtained by JAYA, CJAYA and MP-CJAYA are
compared with GA [45], EP [45], EP-SQP [45], PSO [45], PSO-SQP [45], CPSO [46] and CPSO-SQP [46]
in Table 2. The best cost are highlighted in bold font. Obviously, all the compared algorithms give the
same best cost of 8234.07 $/h, except for GA who did not meet the load demand. However, JAYA,
CJAYA and MP-CJAYA are able to give continuously decreasing values of Fbest and MP-CJAYA achieves
the minimum value of 8223.29 $/h, as well as the minimum value of Fmean which is 8232.06 $/h. To
observe the cost convergence characteristics more visually, Figure 2 depicts one randomly chosen
convergence curve from 20 times of independent runs (Nruns). We can see that JAYA has been trapped
into local optimum at about 320 iterations and CJAYA has also settled down at around 230 iterations,
but MP-CJAYA has showed extraordinary fast convergence ability at the beginning of 10 iterations
and reached global optimum at approximately 200 iterations. It reveals that MP-CJAYA has faster
convergence rate compared with JAYA and CJAYA due to its strong searching ability. Figure 3 shows
the distribution outlines of Fbest at each independent run time. In case of MP-CJAYA, the value of Fbest
after each run remains more or less steady, whereas in CJAYA the value of Fbest varies much more than
MP-CJAYA, while JAYA shows the worst stability of Fbest with maximum cost as much as 8800 $/h.
This indicates that MP-CJAYA is more consistent and robust than CJAYA and JAYA.
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Table 1. Parameters and constraint conditions of the ELD cases.

Case I Case II Case III Case IV Case V

JAYA CJAYA MP-
CJAYA JAYA CJAYA MP-

CJAYA JAYA CJAYA MP-
CJAYA JAYA CJAYA MP-

CJAYA JAYA CJAYA MP-
CJAYA

Npop 20 20 20 50 50 50 100 100 100 20 20 20 100 100 100
NJAYA_iter 500 500 500 3000 3000 3000 5000 5000 5000 1000 1000 1000 5000 5000 5000
NCOA_iter - 20 20 - 20 20 - 30 30 - 20 20 - 30 30
Nsub_pop - - 10 - - 10 - - 20 - - 10 - - 20

Nruns 20 20 20 30 30 30 50 50 50 20 20 20 50 50 50
Valve-point effect - -
Ramp-rate limit - - -

POZ - - -
Ploss - -

Table 2. Best outputs for 3-units system (PD = 850 MW).

Unit GA [45] EP [45] EP-SQP [45] PSO [45] PSO-SQP [45] CPSO [46] CPSO-SQP [46] JAYA CJAYA MP-CJAYA

1 398.700 300.264 300.267 300.268 300.267 300.267 300.266 350.3314 350.0254 350.2464
2 399.600 400.000 400.000 400.000 400.000 400.000 400.000 400.0000 400.0000 400.0000
3 50.100 149.736 149.733 149.732 149.733 149.733 149.734 99.6453 99.9511 99.7576

Ptotal(MW) 848.400 850.000 850.000 850.000 850.000 850.000 850.000 849.977 849.977 850.004
Fmean($/h) 8234.72 8234.16 8234.09 8234.72 8234.07 NA NA 8382.10 8289.41 8232.06
Fbest($/h) 8222.07 8234.07 8234.07 8234.07 8234.07 8234.07 8234.07 8230.23 8226.18 8223.29

NA indicates the cost value is not found.
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Figure 2. Fuel cost convergence characteristic of 3-units system (PD = 850 MW).
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4.2. Case II: 13-Units System for Load Demand of 2520 MW

As the same as case I, all detailed data are provided in [44]. Since the increasing number of
generators causes more non-linearity and complexity, Npop, NJAYA_iter and Nruns have all increased in
this case, which are given in Table 1. The best individual of dispatched outputs obtained by different
methods including GA [47], SA [47], HSS [47], EP-SQP [45], PSO-SQP [45], CPSO [46], CPSO-SQP [46],
JAYA, CJAYA and MP-CJAYA are reported in Table 3. The best cost are highlighted in bold font. It
is observed that the minimum value of Fmean and Fbest are both achieved by MP-CJAYA, which is
24,228.1331 $/h and 24,175.5444 $/h respectively. In Figure 4 the convergence curve of MP-CJAYA is
compared with JAYA and CJAYA, it can be observed that JAYA has been trapped into a local optimum
in about 1300 iterations, while CJAYA has the same problem at around 1500 iterations. However, the
proposed MP-CJAYA has greatly accelerated the convergence rate and reached the best value within
only 750 iterations. Figure 5 is the distribution outlines of Fbest at each run time. Once again, it can
be easily compared that MP-CJAYA shows the most robust characteristic among the three versions
of JAYA due to most of its independent runs have achieved getting close to the best individual. All
the comparisons above real that MP-CJAYA has greatly improved the best cost, the mean cost, the
convergence rate and the consistency of the solution.
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Table 3. Best outputs for 13-units system (PD = 2520 MW).

Unit GA [47] SA [47] HSS [47] EP-SQP [45] PSO-SQP [45] CPSO [46] CPSO-SQP [46] JAYA CJAYA MP-CJAYA

1 628.32 668.40 628.23 628.3136 628.3205 628.32 628.31 628.3185 628.3185 628.3183
2 356.49 359.78 299.22 299.1715 299.0524 299.83 299.83 299.2009 299.1992 299.0170
3 359.43 358.20 299.17 299.0474 298.9681 299.17 299.16 306.9105 299.1993 299.1428
4 159.73 104.28 159.12 159.6399 159.4680 159.70 159.73 159.7339 159.7330 159.5714
5 109.86 60.36 159.95 159.6560 159.1429 159.64 159.73 159.7337 159.7331 159.6930
6 159.73 110.64 158.85 158.4831 159.2724 159.67 159.73 159.7338 159.7331 159.6801
7 159.63 162.12 157.26 159.6749 159.5371 159.64 159.73 109.8673 159.7330 159.7270
8 159.73 163.03 159.93 159.7265 158.8522 159.65 159.73 159.7342 159.7330 159.7328
9 159.73 161.52 159.86 159.6653 159.7845 159.78 159.73 159.7340 159.7331 159.5119

10 77.31 117.09 110.78 114.0334 110.9618 112.46 109.07 114.8012 110.0403 111.0288
11 75.00 75.00 75.00 75.00 75.00 74.00 77.40 114.8001 114.7994 77.1661
12 60.00 60.00 60.00 60.00 60.00 56.50 55.00 92.4018 55.0000 55.0014
13 55.00 119.58 92.62 87.5884 91.6401 91.64 92.85 55.0027 55.0000 92.3862

Ptotal(MW) 2520 2520 2520 2520 2520 2520 2520 2519.97 2519.96 2519.98
Fmean($/h) NA NA NA NA NA NA NA 24,476.5247 24,385.7604 24,228.1331
Fbest($/h) 24,398.23 24,970.91 24,275.71 24,266.44 24,261.05 24,211.56 24,190.97 24,220.7529 24,178.8040 24,175.5444

NA indicates the cost value is not found.
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Figure 4. Fuel cost convergence characteristic of 13-units system (PD = 2520 MW).
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4.3. Case III: 40-Units System for Load Demand of 10,500 MW

In order to investigate the effectiveness of MP-CJAYA for larger scale power system, it is further
evaluated by 40 generating units with load demand of 10,500 MW, which is the largest system of
ELD problem considering the valve-point effect in the available literature. Considering the increased
number of generators and the much more complex solution space, Npop, NJAYA_iter, NCOA_iter, Nsub_pop
and Nruns have all increased, as shown in Table 1. The results comparison from methods PSO-LRS [48],
NPSO [48], NPSO-LRS [48], SPSO [49], PC-PSO [49], SOH-PSO [49], JAYA, CJAYA and MP-CJAYA are
shown in Table 4. The minimum value of Fmean and Fbest are highlighted in bold font. It is observed
that MP-CJAYA has achieved the minimum value of Fbest among all the values by above-mentioned
methods, which is 121,480.10 $/h. What’s more, the minimum value of Fmean is also achieved by
MP-CJAYA, which is 121,861.08 $/h. In Figure 6 the convergence curve of MP-CJAYA is compared
with JAYA and CJAYA, it can easily be observed that CJAYA performs better than JAYA due to the local
searching ability provided by COA, while MP-CJAYA shows superiority over CJAYA due to the extra
searching diversification provided by MP method.
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Table 4. Best outputs for 40-units system (PD = 10,500 MW).

Unit PSO-LRS [48] NPSO [48] NPSO-LRS [48] SPSO [49] PC-PSO [49] SOH-PSO [49] JAYA CJAYA MP-CJAYA

1 111.9858 113.9891 113.9761 113.97 113.98 110.80 114.0000 113.5264 114.0000
2 110.5273 113.6334 113.9986 114.00 114.00 110.80 111.6651 110.7998 110.7998
3 98.5560 97.5500 97.4141 109.19 97.26 97.40 119.9876 120.0000 97.3999
4 182.9266 180.0059 179.7327 179.77 179.51 179.73 188.2606 179.7331 179.7331
5 87.7254 97.0000 89.6511 97.00 89.38 87.80 96.9763 97.0000 93.1276
6 139.9933 140.0000 105.4044 91.01 105.20 140.00 139.9488 140.0000 140.0000
7 259.6628 300.0000 259.7502 259.87 259.55 259.60 264.0949 300.0000 300.0000
8 297.7912 300.0000 288.4534 286.99 286.90 284.60 299.9814 284.5997 284.5997
9 284.8459 284.5797 284.6460 284.09 284.71 284.60 284.9042 284.5997 284.5997

10 130.0000 130.0517 204.8120 204.05 206.24 130.00 130.0908 130.0000 130.0000
11 94.6741 243.7131 168.8311 168.40 166.52 94.00 94.0011 94.0000 94.0000
12 94.3734 169.0104 94.00 94.00 94.00 94.00 94.0000 94.0000 94.0000
13 214.7369 125.0000 214.7663 212.30 214.56 304.52 125.1028 125.0000 125.0000
14 394.1370 393.9662 394.2852 393.76 392.76 304.52 394.2529 394.2794 394.2794
15 483.1816 304.7586 304.5187 303.62 306.24 394.28 484.1262 394.2794 394.2794
16 304.5381 304.5120 394.2811 392.05 394.88 394.28 304.5950 394.2794 394.2794
17 489.2139 489.6024 489.2807 489.49 489.26 489.28 490.8265 489.2794 489.2794
18 489.6154 489.6087 489.2832 489.35 489.82 489.28 489.3438 489.2794 489.2794
19 511.1782 511.7903 511.2845 512.39 510.62 511.28 511.3775 511.2794 511.2794
20 511.7336 511.2624 511.3049 511.21 511.68 511.27 512.1395 511.2794 511.2794
21 523.4072 523.3274 523.2916 522.61 523.52 523.28 523.6621 523.2794 523.2794
22 523.4599 523.2196 523.2853 523.65 523.26 523.28 523.3534 523.2794 523.2794
23 523.4756 523.4707 523.2797 523.06 523.98 523.28 524.9677 523.2794 523.2794
24 523.7032 523.0661 523.2994 520.72 523.21 523.28 524.2850 523.2794 523.2794
25 523.7854 523.3978 523.2865 524.86 523.54 523.28 522.9279 523.2794 523.2794
26 523.2757 523.2897 523.2936 525.22 523.10 523.28 523.2298 523.2794 523.2794
27 10.0000 10.0208 10.0000 10.00 10.00 10.00 10.0000 10.0000 10.0000
28 10.6251 10.0927 10.0000 10.00 10.00 10.00 10.0047 10.0000 10.0000
29 10.0727 10.0621 10.0000 10.00 10.00 10.00 10.0000 10.0000 10.0000
30 51.3321 88.9456 89.0139 87.64 89.05 97.00 97.0000 97.0000 87.7999
31 189.8048 189.9951 190.0000 190.00 190.00 190.00 190.0000 190.0000 190.0000
32 189.7386 190.0000 190.0000 190.00 190.00 190.00 189.9503 190.0000 190.0000
33 189.9122 190.0000 190.0000 190.00 190.00 190.00 190.0000 190.0000 190.0000
34 199.3258 165.9825 199.9998 200.00 200.00 185.20 169.8860 164.7998 200.0000
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Table 4. Cont.

Unit PSO-LRS [48] NPSO [48] NPSO-LRS [48] SPSO [49] PC-PSO [49] SOH-PSO [49] JAYA CJAYA MP-CJAYA

35 199.3065 172.4153 165.1397 167.18 164.78 164.80 199.8549 200.0000 200.0000
36 192.8977 191.2978 172.0275 172.12 172.89 200.00 199.9896 200.0000 200.0000
37 110.0000 109.9893 110.0000 110.00 110.00 110.00 109.9712 110.0000 110.0000
38 109.8628 109.9521 110.0000 110.00 110.00 110.00 109.9977 110.0000 110.0000
39 92.8751 109.8733 93.0962 95.58 94.24 110.00 109.9871 110.0000 110.0000
40 511.6883 511.5671 511.2996 510.85 511.36 511.28 511.2250 511.2794 511.2794

Ptotal(MW) 10,499.9452 10,499.9989 10,499.9871 10,500 10,500 10,500 10,499.97 10,499.97 10,499.97
Fmean($/h) 122,558.4565 122,221.3697 122,209.3185 NA NA 121,853.57 122,581.85 121,926.77 121,861.08
Fbest($/h) 122,035.7946 121,704.7391 121,664.43 122,049.66 121,767.89 121,501.14 121,799.88 121,516.97 121,480.10

NA indicates the cost value is not found.
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Figure 6. Fuel cost convergence characteristic of 40-units system (PD = 10500 MW).

Figure 7 is the distribution outlines of Fbest within 50 times of independent runs. Once again, it can
be observed that MP-CJAYA shows the most robust characteristic among the three versions of JAYA
because most of the Fbest value keeps steady and very close to the best individual. The comparisons
have verified that MP-CJAYA get better results than all of the other algorithms in best cost, mean cost,
convergence rate and consistency when dealing with larger scale power system.

Energies 2018, 11, x FOR PEER REVIEW  17 of 27 

 

 
Figure 6. Fuel cost convergence characteristic of 40-units system ( DP  = 10500 MW). 

Figure 7 is the distribution outlines of Fbest within 50 times of independent runs. Once again, it 
can be observed that MP-CJAYA shows the most robust characteristic among the three versions of 
JAYA because most of the Fbest value keeps steady and very close to the best individual. The 
comparisons have verified that MP-CJAYA get better results than all of the other algorithms in best 
cost, mean cost, convergence rate and consistency when dealing with larger scale power system. 

 
Figure 7. Fuel cost for 50 independent runs of 40-units system ( DP  = 10,500 MW). 

4.4. Case IV: 6-Units System for Load Demand of 1263 MW 

In this case, the three versions of JAYA are applied to 6-units system with constraints of ramp 

rate limit, prohibited operating zones (POZs) and transmission loss ( lossP ), as shown in Table 1. The 

generator data and B-coefficients have been taken from [50]. For every generator it has two POZs , this 
problem causes challenging complexity to find the global optima because of increasing number of 
non-convex decision spaces. 

The best individual achieved by MP-CJAYA, as well the other algorithms such as SA [51], GA 
[51], TS [51], PSO [51], MTS [51], PSO-LRS [48], NPSO [48], NPSO-LRS [48], JAYA and CJAYA have 
been recorded in Table 5. It can be observed that MP-CJAYA provides the lowest Fbest among all the 
methods as 15,446.17 $/h, while CJAYA and JAYA provide the second and third lowest Fbest as 
15,446.71 $/h and 15,447.09 $/h. Furthermore, the best cost Fbest, the worst cost Fworst and the mean cost 
Fmean of the three version of JAYA algorithms are also compared with those above-mentioned methods 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iterations

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

Fu
el

 C
os

t (
$/

h)

10 5

JAYA

CJAYA

MP-CJAYA

5 10 15 20 25 30 35 40 45 50

Number of independent runs

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

Fu
el

 C
os

t (
$/

h)

10 5

JAYA

CJAYA

MP-CJAYA

Figure 7. Fuel cost for 50 independent runs of 40-units system (PD = 10,500 MW).

4.4. Case IV: 6-Units System for Load Demand of 1263 MW

In this case, the three versions of JAYA are applied to 6-units system with constraints of ramp
rate limit, prohibited operating zones (POZs) and transmission loss (Ploss), as shown in Table 1. The
generator data and B-coefficients have been taken from [50]. For every generator it has two POZs, this
problem causes challenging complexity to find the global optima because of increasing number of
non-convex decision spaces.

The best individual achieved by MP-CJAYA, as well the other algorithms such as SA [51], GA [51],
TS [51], PSO [51], MTS [51], PSO-LRS [48], NPSO [48], NPSO-LRS [48], JAYA and CJAYA have been
recorded in Table 5. It can be observed that MP-CJAYA provides the lowest Fbest among all the methods
as 15,446.17 $/h, while CJAYA and JAYA provide the second and third lowest Fbest as 15,446.71 $/h
and 15,447.09 $/h. Furthermore, the best cost Fbest, the worst cost Fworst and the mean cost Fmean of
the three version of JAYA algorithms are also compared with those above-mentioned methods and
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summarized in Table 6. It can be found that MP-CJAYA is superior to all the other compared methods
and achieves the minimum value of Fbest, Fworst and Fmean at the same time, which are highlighted in
bold font. Figure 8 is the distribution outlines of Fbes, it can be noticed that MP-CJAYA shows the most
robust characteristic and the value keeps almost steady within 20 independent runs, which has greatly
surpassed JAYA and a little surpassed CJAYA. One randomly chosen convergence curve of fuel cost is
shown in Figure 9, from which we can see that MP-CJAYA is extraordinary fast in convergence rate
and approaches global optimum within only about 60 iterations. It all demonstrates that MP-CJAYA
has the strongest capabilities of handling ELD problems with different constraint conditions.
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Table 5. Best outputs for 6-units system (PD = 1263 MW).

Generator SA [51] GA [51] TS [51] PSO [51] MTS [51] PSO-LRS [48] NPSO [48] NPSO-LRS [48] JAYA CJAYA MP-CJAYA

1 478.1258 462.0444 459.0753 447.5823 448.1277 447.4440 447.4734 446.96 457.9858 452.3884 444.7000
2 163.0249 189.4456 185.0675 172.8387 172.8082 173.3430 173.1012 173.3944 176.8785 162.1065 171.1458
3 261.7146 254.8535 264.2094 261.3300 262.5932 263.3646 262.6804 262.3436 250.0717 256.4885 253.8111
4 125.7665 127.4296 138.1222 138.6812 136.9605 139.1279 139.4156 139.5120 129.3748 142.1863 134.8118
5 153.7056 151.5388 154.4716 169.6781 168.2031 165.5076 165.3002 164.7089 172.8886 170.7924 175.4557
6 93.7965 90.7150 74.9900 85.8963 87.3304 87.1698 87.9761 89.0162 88.4618 91.5015 95.6913

Ptotal (MW) 1276.1339 1276.0270 1275.94 1276.0066 1276.0232 1275.95 1275.96 1275.94 1275.6611 1275.4637 1275.6158
Ploss (MW) 13.1317 13.0268 12.9422 13.0066 13.0205 12.9571 12.9470 12.9361 12.6665 12.4444 12.6030
Fbest ($/h) 15,461.10 15,457.96 15,454.89 15,450.14 15,450.06 15,450.00 15,450.00 15,450.00 15,447.09 15,446.71 15,446.17
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Table 6. Results comparison of 6-units system (PD = 1263 MW).

Fbest($/h) Fworst($/h) Fmean($/h)

SA [51] 15,461.10 15,545.50 15,488.98
GA [51] 15,457.96 15,524.69 15,477.71
TS [51] 15,454.89 15,498.05 15,472.56

PSO [51] 15,450.14 15,491.71 15,465.83
MTS [51] 15,450.06 15,453.64 15,451.17

PSO-LRS [48] 15,450.00 15,455.00 15,454.00
NPSO [48] 15,450.00 15,454.00 15,452.00

NPSO-LRS [48] 15,450.00 15,452.00 15,450.50
JAYA 15,447.09 15,622.16 15,500.11

CJAYA 15,446.71 15,484.34 15,461.62
MP-CJAYA 15,446.17 15,451.68 15,449.23

4.5. Case V: 15-Units System for Load Demand of 2630 MW

In the last case, the three versions of JAYA are applied to a larger 15-units system with the same
constraints as in case 4, the system data and B-coefficients have been taken from [50]. There are 4
generators having POZs. Generators 2, 5 and 6 have three POZs and generator 12 has two POZs.
Considering that these POZs result in non-convex decision spaces consisting of 192 convex sub-spaces,
the value of Npop, NJAYA_iter, NCOA_iter, Nsub_pop and Nruns are all increased compared to Case IV to
cope with the challenges.

The best outputs from JAYA, CJAYA, MP-CJAYA and other algorithms including SA [51], GA [51],
TS [51], PSO [51], MTS [51], TSA [52], DSPSO-TSA [52] and AIS [53] are summarized in Table 7. From
the table we can observe that DSPSO-TSA has provided lower Fbest than JAYA, but it is not as lowest as
CJAYA and MP-CJAYA, which obtains 32,710.0768 $/h and 32,706.5158 $/h respectively and ranks
the second and first best value among all the algorithms. Furthermore, in addition to the best cost
Fbest, the worst cost Fworst and the mean cost Fmean of the three version of JAYA algorithms are also
compared with those above-mentioned methods in Table 8. It can be found that MP-CJAYA achieves
the minimum value of Fbest, Fworst and Fmean at the same time, which are highlighted in bold font.
Figure 10 is the distribution outlines of Fbest, we can notice that MP-CJAYA exhibits the best consistency
in achieving minimum Fbest within 50 independent runs. One randomly chosen convergence curve
is shown in Figure 11, from which we can see that CJAYA has improved the convergence rate and
accuracy of basic JAYA, while MP-CJAYA has made further improvements of CJAYA in the rate of
approaching the lowest cost. From the analysis above, it can be concluded that MP-CJAYA has the
strongest capabilities of handling larger size of ELD problems with different constraint conditions.
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Table 7. Best outputs for 15-units system (PD = 2630 MW).

Unit SA [51] GA [51] TS [51] PSO [51] MTS [51] TSA [52] DSPSO-TSA [52] AIS [53] JAYA CJAYA MP-CJAYA

1 453.6646 445.5619 453.5374 454.7167 453.9922 440.500 453.627 441.159 455.0000 455.0000 455.0000
2 377.6091 380.0000 371.9761 376.2002 379.7434 346.800 379.895 409.587 379.9848 380.0000 380.0000
3 120.3744 129.0605 129.7823 129.5547 130.0000 110.880 129.482 117.298 130.0000 130.0000 130.0000
4 126.2668 129.5250 129.3411 129.7083 129.9232 122.460 129.923 131.258 129.9821 130.0000 130.0000
5 165.3048 169.9659 169.5950 169.4407 168.0877 177.740 168.956 151.011 169.6535 170.0000 170.0000
6 459.2455 458.7544 457.9928 458.8153 460.0000 459.110 459.907 466.258 460.0000 460.0000 460.0000
7 422.8619 417.9041 426.8879 427.5733 429.2253 406.410 429.971 423.368 429.0688 430.0000 430.0000
8 126.4025 97.8230 95.1680 67.2834 104.3097 107.550 103.673 99.948 81.7235 106.1556 71.8662
9 54.4742 54.2933 76.8439 75.2673 35.0358 107.270 34.909 110.684 51.3258 25.0000 58.9683

10 149.0879 144.2214 133.5044 155.5899 155.8829 140.560 154.593 100.229 146.6714 160.0000 160.0000
11 77.9594 77.3002 68.3087 79.9522 79.8994 78.470 79.559 32.057 79.1805 80.0000 80.0000
12 93.9489 77.0371 79.6815 79.8947 79.9037 74.170 79.388 78.815 80.0000 80.0000 80.0000
13 25.0022 31.1537 28.3082 25.2744 25.0220 31.950 25.487 23.568 25.0000 25.0000 25.0000
14 16.0636 15.0233 17.7661 16.7318 15.2586 37.380 15.952 40.258 27.7503 15.0000 15.0000
15 15.0196 33.6125 22.8446 15.1967 15.0796 22.470 15.640 36.906 15.0000 15.0000 15.0000

Ptotal (MW) 2663.29 2661.23 2661.53 2661.19 2661.36 2663.70 2660.96 2662.04 2660.3408 2661.1556 2660.8346
Ploss (MW) 33.2737 31.2363 31.4100 31.1697 31.3523 33.8110 30.9520 32.4075 30.3442 31.1643 30.8346
Fbest ($/h) 32,786.40 32,779.81 32,762.12 32,724.17 32,716.87 32,918.00 32,715.06 32,854.00 32,716.8706 32,710.0768 32,706.5158
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Table 8. Results comparison of 15-units system (PD = 2630 MW).

Fbest($/h) Fworst($/h) Fmean($/h)

SA [51] 32,786.40 33,028.95 32,869.51
GA [51] 32,779.81 33,041.64 32,841.21
TS [51] 32,762.12 32,942.71 32,822.84

PSO [51] 32,724.17 32,841.38 32,807.45
MTS [51] 32,716.87 32,796.15 32,767.21
TSA [52] 32,917.87 33,245.54 33,066.76

DSPSO-TSA [52] 32,715.06 32,730.39 32,724.63
AIS [53] 32,854.00 32,892.00 32,873.25

JAYA 32,716.8706 32,967.8314 32,789.1472
CJAYA 32,710.0768 32,828.6554 32,740.0719

MP-CJAYA 32,706.5158 32,708.8736 32,706.7150
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5. Discussion and Conclusions

A novel multi-population based chaotic JAYA algorithm (MP-CJAYA) is proposed in this paper. By
introducing the MP method and chaotic map to the basic JAYA algorithm, both the global exploration
capability and the local searching capability have been greatly improved. MP-CJAYA is employed in
five typical ELD cases to compare the performances with other well-established algorithms in terms of
best solutions, convergence rate and robustness. The results have proved that MP-CJAYA algorithm
has outstanding superiority to all the other compared algorithms in all cases.

It is noteworthy that for most of the meta-heuristic algorithms, parameter setting is critical for
the quality of their results. But for MP-CJAYA, it does not require for specific algorithm parameters
except for common parameters. What’s more, it is observed that the common parameter population
size (Npop) does not affect the performance of its final optimal solution significantly, as shown in
Figure 12. With increased Npop of 30, 50, 100 and 200 under the same circumstances, a slightly steady
improvement of the convergence rate can be observed at initial part of the iteration. However, after
about 5000 iterations, the differences among those curves become difficult to be observed and they
all have reached the same best solution, which has proved that MP-CJAYA algorithm is not highly
dependent on the common parameter Npop.
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