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Abstract: In order to complete the reasonable parameter matching of the pure electric vehicle (PEV)
with a hybrid energy storage system (HESS) consisting of a battery pack and an ultra-capacitor pack,
the impact of the selection of the economic index and the control strategy on the parameters matching
cannot be ignored. This paper applies a more comprehensive total cost of ownership (TCO) of HESS
as the optimal target and proposes an optimal methodology integrating parameters and control
strategy for the PEV with HESS. Through the integrated optimal methodology, the application value
of HESS is analyzed under various types of driving cycles and the results indicate that the HESS can
significantly improve the economic performance of PEVs under both urban and suburban driving
cycles. Due to the poor adaptability of traditional control strategies to different driving cycles, a novel
extreme learning machine (ELM) based controller is established. Firstly, a dynamic programming
(DP) based controller is applied for the offline optimization of the HESS power allocation under
several typical driving cycles. Then, an analytical method combining correlation analysis and mean
impact value (MIV) is employed to deal with offline sample data from DP and obtain the characteristic
variables of the ELM model. Ultimately, the instantaneous power allocation strategy of HESS is
acquired by utilizing ELM to learn offline data of HESS. Comparative simulations between the
ELM-based controller and the rule-based controller are conducted, and the simulation results show
that compared to the rule-based controller (RBC), the ELM-based controller reduces the electricity
consumption by 3.78% and battery life loss by 6.51%.

Keywords: pure electric vehicles; hybrid energy storage system; parameter matching; power allocation

1. Introduction

1.1. Motivation

Pure electric vehicles (PEVs) have broad development prospects due to their zero emission and
pollution property [1]. But some problems such as high battery costs, short lifespan, low energy
density, and power density limit the further progress of PEVs. The hybrid energy store system (HESS)
consisting of a battery pack and an ultra-capacitor pack can almost solve the problems above by
combining the advantage of the battery and ultra-capacitor [2], which has caused the HESS to become
a hot issue in the research and application area of PEVs. However, the two energy sources of HESS
contribute to the great flexibility of the parameter matching and control strategy. In order to enhance
the performance of HESS, it is essential to implement the reasonable selection of parameters and the
power allocation of HESS. In the following, research related to the parameter matching and control
strategy is reviewed.
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1.2. Literature Review

In the aspect of parameter matching, the optimal target has a crucial influence on the
selection of parameters. In order to minimize the operating cost of the HESS, the Pontryagin’s
minimum principle (PMP) was employed to implement the parameter optimization [3]. Additionally,
the literature [4] obtained the optimal number of ultra-capacitor cells by utilizing the genetic algorithm
(GA) to reduce the manufacturing cost of the battery. Similarly, the Dijkstra algorithm has been applied
to minimize the total cost of an electric vehicle under travel [5]. In addition, the total cost of ownership
(TCO) and lifespan are of equal importance. It can be observed in the literature [6,7] that the TCO
was considered and the battery size was optimized. Multi-objective optimization of lifespan, cost,
and size was carried out [8–10]. Rather than ignoring the interaction between the parameter and the
control strategy as in the above literature, literature [11] put forward a collaboration optimization
method to make the HESS operate better. In the existing research of parameter matching, the optimal
targets mainly focus on the operating or manufacturing cost of HESS. However, the TCO of HESS is
the crucial economic index for HESS, and in the present research on TCO, the replacement cost of the
battery, the electricity fee, and the DC/DC converter cost are not included at the same time, which
are important indexes of HESS cost. Also, the impact of control strategy on parameters should be
considered [11].

As for the control strategy, various control strategies for HESS are illustrated in the research of
HESS. The rule-based controller (RBC) [12–14] and fuzzy logic controller (FLC) [15,16] are the most
common control strategies. The thresholds in RBS and the fuzzy logic rules are predefined without
any prior knowledge, but greatly rely on expert experiences. Besides, the filtration principle is also
applied to the control strategy of HESS. Filtration-based controllers (FBCs) were put forward in [17,18],
respectively, where the ultra-capacitor undertook the high frequency of the output power and the
battery bore the low frequency. A comparative work about the three kinds of controller was carried out
by [19] and the results showed that the rule-based controller and fuzzy logic controller could achieve
similar economic enhancement of HESS with the global optimal control strategy under certain driving
cycles. To further enhance the economic performance of HESS, various optimal algorithms were
applied to HESS, such as particle swarm optimization (PSO) [20,21], convex programming (CP) [22],
and dynamic programming [23,24]. Nevertheless, these optimal algorithms-based controllers (OABCs)
possess a strong dependence on driving cycles, which are received in advance. Thus, considering the
real-time performance of the control strategy, the model predictive controller (MPC) was put forward
to predict the future condition of vehicles [25,26]. In addition, some scholars introduced driving cycle
recognition to enhance the adaptability of controllers to driving cycles [27,28]. The data of driving cycles
are analyzed and some representative variables of driving cycles are obtained in these studies. From all
the research above, it is not hard to discover that the current research about the control strategy of HESS
mostly focuses on RBC, FLC, FBC, and OABC. However, these controllers possess poor adaptability
to driving cycles. Furthermore, the MPCs can hardly get rid of the inaccurate prediction of vehicle
condition and most of them still employ traditional control methods to deal with the information of
driving cycles. As for the driving cycle recognition, there are too many representative variables in
the recognition model, which leads to a high computational load. For instance, the representative
variables in [27,28] are 40 and 10, respectively.

1.3. Original Contributions of This Paper

Therefore, in order to better evaluate the economic performance of HESS, this paper establishes
a complete TCO of HESS and proposes an optimal methodology integrating parameters and control
strategy for HESS. Then, to improve the adaptability of the control strategy to driving cycles,
the DP-based strategy is applied to several typical driving cycles and the offline data of optimal
instantaneous power allocation for HESS is obtained, and then the characteristic variables of the
extreme learning machine (ELM) model are acquired through the method combining the correlation
analysis and the mean impact value (MIV). Finally, by employing the ELM to learn the law between
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the characteristic variables and the instantaneous power allocation, the online ELM-based controller
is received.

1.4. Organization of This Paper

The remainder of this paper is organized as follows. In Section 2, the integrated optimal
methodology is proposed. The novel ELM-based controller is discussed in Section 3. Then, Section 4
lists the comparative simulations. Finally, the conclusions are given in Section 5.

2. Optimization Integrating Parameters and Control Strategy

Through comprehensively considering the control difficulty, cost, and efficiency of each structural
scheme of HESS, this paper selects a semi-active HESS with DC/DC and ultra-capacitor connection [29],
as depicted in Figure 1. The basic parameters of the vehicle are listed in Table 1.

Figure 1. Semi-active with DC/DC and ultra-capacitor connection.

Table 1. Basic parameters of the vehicle.

Parameter Value

Total weight/kg 1900
Curb weight/kg 1500
Front section/m2 2.3

Aerodynamic drag factor 0.29
Rolling resistance 0.012
Wheel radius/m 0.307

Motor rated power/kW 80
Motor peak power/kW 105
Motor voltage class/V ≤360

2.1. Capacity Loss Model of Battery

Prolonging battery life is one of the purposes of parameter matching and controlling HESS.
To estimate the life of the battery, an accurate capacity loss model of the battery should be established.
In this paper, a lithium iron phosphate battery is selected and its basic parameters are illustrated
in Table 2.
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Table 2. Basic parameters of the lithium iron phosphate battery.

Index Value

Nominal capacity/Ah 20
Nominal voltage/V 3.2

Internal resistance/mΩ ≤6
Weight/g 514 ± 10

Charge voltage/V 3.65 ± 0.05
Discharge termination voltage/V 2.0

Operating temperature/◦C −20–60

According to the semi empirical model of capacity loss for the lithium iron phosphate battery
in [30] and the improved semi empirical model in literature [31,32], the capacity loss model of the
lithium iron phosphate battery is set up, as indicated in Equation (1), and in this model, the influences
of the battery discharge depth, operating temperature, battery discharge rate, and discharge time on
capacity loss of battery are considered.

Qloss = B1e
−31329.7

RT ×
(

0.55
√
(1.169e−0.3375n + 0.146e0.1271n)× e(−0.1494+0.1494n) × Ahn

)0.55
(1)

where Qloss denotes the capacity loss of battery. R is the ideal gas constant and T presents the Kelvin
temperature of the battery operating, K. Ahn is the Ah-throughput, Ah. n represents the charge rate
and B1 is the pre-exponential factor.

Generally, when the battery capacity reaches 20% of its initial capacity, it can be considered that
the life of the battery is terminated. The life loss of the battery Lloss is defined as the Equation (2).

Lloss =
Ahn

Ahn(20%)
(2)

where Ahn(20%) is the Ah-throughput when the battery capacity arrives at 20%.

2.2. Optimal Parameter Matching

In order to minimize the TCO of HESS and consider the impact of the control strategy on parameter
matching, an optimal methodology integrating parameters and control strategy is designed. In this
method, the number of the battery cells, the number of ultra-capacitor cells, and the threshold of the
rule-based strategy are selected as the optimal variables, and the optimal target is the life cycle cost
of HESS.

2.2.1. Restrictions of Optimal Variables and Target

Minimum number of battery cells

The driving mileage of PEV determines the minimum battery capacity. A PEV should possess
more than a 200 km driving mileage when the vehicle runs at a constant speed of 60 km/h [33].
It should be noted that the discharge depth of a battery needs to be at near 80%. Thus, the minimum
number of battery cells can be computed by:

Nbat ≥
1000SPreq

vCbat.sigUbat.sigηdod
(3)

in which Nbat illustrates the number of battery cells. S is the driving mileage, km. Preq presents the
power requirement of running at 60 km/h, kW. v represents the driving speed, km/h. Cbat.sig and
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Ubat.sig denote the capacity (Ah) and nominal voltage (V) of a single battery cell and the nominal
voltage, respectively. ηdod is the depth of discharge, whose value is 80%.

Maximum number of battery cells

In this paper, the battery cells undertake the power requirement of an average motor. While the
discharge termination voltage of the battery cells is 2 V and the discharge rate is 1 C, the safety of
the short-term peak discharge of the battery cells is guaranteed [34]. Thus, the maximum number of
battery cells can be obtained by Equation (4). To take into account the economic impact of the battery
mass, the mass of 425 battery cells is regarded as the basic battery mass and 0.514 kg is added to the
basic battery mass when a single battery cell is incremented.

Nbat ≤
1000Pmax

Vbat.sig Abat.sig
(4)

where Pmax is the maximum power of load; and Vbat.sig and Abat.sig display the voltage and the current
of the battery cells, respectively.

Minimum number of ultra-capacitor cells

As the non-essential energy sources in PEV, the minimum number of ultra-capacitor cells can be 0.

Maximum number of ultra-capacitor cells

The ultra-capacitor cells should be able to absorb the maximum continuous regenerative braking
energy and provide the maximum continuous positive power requirement.

Nuc1 =
Ebra

Euc.sig
(5)

Nuc2 =
Edri

Euc.sig
(6)

Nuc_max = max(Nuc1, Nuc2) (7)

In Equations (5)–(7), Nuci is the number of the ultra-capacitor. Ebra and Edri are the maximum
continuous regenerative braking energy and the maximum continuous driving energy, respectively.
Euc.sig denotes the energy of a single ultra-capacitor cell. Nuc_max represents the maximum number of
ultra-capacitor cells. The selection of the ultra-capacitor is the 3 V, 3000 F model from the Maxwell
company (San Diego, CA, USA).

1. Optimal target

The TCO of HESS CHESS is chosen as the optimal target, which consists of the initial cost of
battery packs Cbat.init, ultra-capacitor packs Cuc, and the DC/DC converter CDC/DC; the replacement
cost of battery packs Cbat.rep; and the total electricity fee Celec. These costs can be described by
Equations (8)–(13). The Urban Dynamometer Driving Schedule (UDDS), adopted by US Environmental
Protection Agency (EPA), is chosen as the testing driving cycle [35]. Owing to the fact that the total
mileage of a vehicle during a life cycle is generally 150,000 to 300,000 km according to some automotive
manufacturers and relevant research institutions [36], the PEV in this paper runs five UDDS driving
cycles each day, and the vehicle operates 300 days per year for a total of 10 years.

Cbat.init = NbatEbat.sig pricebat (8)

Cbat.init =

{
0

NbatEbat.sig pricebat

Lloss < 1
Lloss ≥ 1

(9)
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Cuc = NucEuc.sig priceuc (10)

CDC/DC = (Puc.max × 110%)priceDC/DC (11)

Cele =

(∫
Pbatdt +

∫
Pucdt

)
ηelec priceelec

3600
(12)

CHESS = Cbat.init + Cbat.rep + Cuc + CDC/DC + Celec (13)

In Equations (8)–(13), Puc.max presents the maximum output power of ultra-capacitor packs.
Pbat denotes the battery power. Puc is the instantaneous power of the ultra-capacitor. ηelec is the charge
efficiency from the grid and its value is 98%. Ebat.sig and Euc.sig are the energy of a single battery cell
and single ultra-capacitor cell, respectively. pricebat, priceuc, priceDC/DC, and priceelec are the price of
the battery, ultra-capacitor, DC/DC converter, and electricity, respectively, and the values of these
prices are 2.5 yuan/Wh, 78 yuan/Wh, 370 yuan/kW, and 0.68 yuan/kWh, respectively.

2.2.2. Rule-Based Controller

The RBC is simple and convenient, and possesses an excellent performance when compared
with the FLC, FBC, and MPC [19]. Thus, this paper chooses the RBC as the control strategy and
the rule-based controller is formulated in Figure 2. The rule-based controller determines the output
power of battery Pbat and ultra-capacitor Puc referring to the power requirement of motor Preq and the
threshold of battery output power Pmin. The state of charge (SOC) of the ultra-capacitor SOCuc should
remain between the maximum limit SOCuc.max and the minimum limit SOCuc.min, and tries to follow
the target value SOCuc.tag.

Figure 2. Diagram of the rule-based controller.

The target value of the ultra-capacitor SOCuc.tag needs to satisfy Equation (14) and the charge
power of the ultra-capacitor Pch should meet Equation (15), which are according to the principle of the
maximum recovery of braking energy.

SOCuc.tag = SOCuc.max −
v2

c
v2

max
(SOCuc.max − SOCuc.min) (14)

Pch = Pbat.max ×
SOCuc.tag − SOCuc

(SOCuc.max − SOCuc.min)/2
(15)
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where vc is the current speed of the vehicle and vmax is the maximum speed of the vehicle.
Pbat.max depicts the maximum output power of the battery.

2.2.3. Optimization Results

After defining the optimal variables, target, and control strategy, the genetic algorithm (GA) is
selected to conduct the optimization integrating parameters and control strategy. The details of the
parameters optimization are shown in Figure 3.

Figure 3. Diagram of parameters optimization.

The results of parameter matching are as follows: the number of battery cells and ultra-capacitor
cells is 594 and 67, respectively; the threshold of battery output power is 13.34 kW; and the TCO
of HESS is 147.1 thousand yuan. The series and parallel number of battery cells can be 99 and 6,
respectively. Furthermore, the series and parallel number of the ultra-capacitor can be 67 and 1,
respectively. To verify the effectiveness of the proposed method in this paper, a comparison between
three methods is conducted in Table 3. Method I denotes the method put forward in this paper.
In method II, a PEV with a battery energy store system (BESS) possessing the same driving mileage as
the PEV with HESS is selected as the object for parameter matching, and method III employs a PEV
with BESS owning the same driving range to the PEV with HESS. As listed in Table 3, compared to the
PEV with BESS, the PEV with HESS possessing the same driving mileage reduces TOC by about 3.22%
and improves the driving range by 39.9%. Furthermore, the PEV with HESS owning the same driving
range reduces about TOC by 28.77%.

Table 3. Results comparison of three parameters matching methods.

Methods of
Parameters Matching Cbat.init Cbat.rep Cuc CDC/DC Celec TOC Driving

Range

Method I 9.5 — 1.95 1.46 1.80 14.71 279.2
Method II 6.8 6.8 — — 1.60 15.20 200
Method III 9.5 9.5 — — 1.65 20.65 279.2

In order to specify the application value of HESS under different types of driving cycles,
a minimum driving range of 200 km and mileage of 180,000 km are taken as the constraints, and the
integrated optimal methodology is applied to the PEV with HESS and the PEV with the battery energy
store system (BESS) under various driving cycles. The optimal parameter matching is obtained under
MANHATTAN, NYCC, NEDC, UDDS, WVUINTER, and HWFET driving cycles and the optimization
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of TCO for HESS and BESS is shown in Figure 4. Figure 5 depicts the distribution of power requirement
under the six driving cycles.

Figure 4. Optimal economic results of hybrid energy storage system (HESS) and battery energy store
system (BESS).

Figure 5. Power distributions under various driving cycles.

It can be observed in Figure 4 that compared to the BESS, the TCOs of HESS decrease by 35.2%,
46.59%, 7.59%, and 3.22%, respectively, under MANHATTAN, NYCC, NEDC, and UDDS driving
cycles. This is because under urban and suburban driving cycles, there is frequent acceleration and
braking, which is conducive for the ultra-capacitor to absorb braking energy and utilize the energy
to smooth the large driving power. Then, the battery life is prolonged and the replacement of the
battery may be avoided during a vehicle life cycle. Moreover, under WVUINTER and HWFET driving
cycles, the optimal results of HESS are almost the same as BESS, which means that HESS will not bring
evident economic enhancement under expressway conditions compared to BESS.

3. Instantaneous Power Allocation Strategy

In Section 2, the RBC achieves a good control effect under specific driving cycles. However,
poor adaptability of RBC to various types of driving cycles contributes to limited performance
improvement when applied to reality. Therefore, in this paper, to enhance the adaptability of the
control strategy to driving cycles and explore the economic potential of HESS, a novel ELM-based
controller is designed. The design process is displayed in Figure 6. At first, the offline optimization
of DP is applied to some typical driving cycles to acquire the data of optimal instantaneous power
allocation of HESS. Then, in order to improve the accuracy of ELM and decrease the training time of
ELM, the characteristic variables of ELM are screened through correlation analysis and mean impact
value (MIV). Finally, instantaneous power allocation laws of different driving cycles are received by
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means of adopting the ELM to learn offline data from DP, and then the online power allocation strategy
is obtained.

Figure 6. Design process of the ELM-based controller.

3.1. Offline Optimization of Dynamic Programming

The control strategy based on DP is established in this section. In this paper, the power of the
battery is selected as the control variable, as described in Equation (19), and the state variables are the
SOC of the battery and ultra-capacitor, which are shown in Equation (17). The capacity loss of the
battery is calculated by Equations (18) and (19) determines the electricity depletionn of the battery.
Due to the fact that the discrete step dt and the nominal capacity of battery Qrate are specified under
a certain state, Equation (18) or Equation (19) are equivalent to the cost function and any one of the
two equations is suitable.

u = {Pbat(t)} (16)

x = {SOCbat, SOCuc} (17)

C =
Ibat

Qrate
(18)

∆SOC =
Ibat × dt

3600Qrate
(19)

UKBUS6, MANHATTN, NYCC, UDDS, New York Bus, INDIAHWY, EUDC_LOW, and HWFET,
which contain urban, suburban, and highway conditions, are selected as the driving cycles for the
offline optimization of DP. The discrete step of DP is 1 s and 9003 control points are acquired from the
eight driving cycles. In this paper, only the power relationships of MANHATTN, UDDS, and HWFET
driving cycles are given, as indicated in Figures 7–9. It is not hard to discover that the power of the
ultra-capacitor under various driving cycles can be divided into three regions. Additionally, there is
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an approximately linear relationship in each region. Region 1 represents that the ultra-capacitor
absorbs all of the braking energy at a certain time. It can be seen from region 2 that when the power
requirement of the motor is positive and less than a certain threshold, the ultra-capacitor does not
provide the output power. In region 3, the output power of the ultra-capacitor increases with the
power requirement when the power requirement is greater than the threshold. In view of the obvious
regularity of instantaneous power allocation, it is significantly possible to discover the law of power
allocation through a learning algorithm and improve the performance of HESS. Thus, this paper plans
to employ ELM to learn offline data from DP and obtain the novel power allocation strategy.

Figure 7. MANHATTAN driving cycle. UC: ultra-capacitor; Preq: power requirement of the motor.
(a) Instantaneous power allocation; (b) Power relationship.

Figure 8. The Urban Dynamometer Driving Schedule (UDDS) driving cycle. (a) Instantaneous power
allocation; (b) Power relationship.

Figure 9. HWFET driving cycle. (a) Instantaneous power allocation; (b) Power relationship.
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3.2. Screening of Characteristic Variables

ELM is an algorithm for solving a single hidden layer neural network (SHLNN). Compared to
the traditional neural network (NN), ELM possesses the advantages of a fast learning speed and high
accuracy [37]. Thus, ELM is selected as the learning algorithm for offline data.

The training samples are the offline data of power allocation from DP obtained in Section 3.1.
The initial input variables of training net are the current speed v, the speed of the previous moment vpre,
the current acceleration a, the acceleration of the previous moment apre, the current power requirement
of the motor Preq, the motor power requirement of the previous moment Preq.pre, the battery output
power of the previous moment Pbat.pre, the ultra-capacitor output power of the previous moment Puc.pre,
and the current SOC of the ultra-capacitor SOCuc. Furthermore, the output power of the ultra-capacitor
Puc is the output variable of the training net. The mean square error E and coefficient of determination
R2 are selected to evaluate the effect of the training net.

The mean square error E can be computed by:

E =
1
l

l

∑
i=1

(ŷi − yi)
2 (20)

where l is the number of training samples. ŷi presents the predicted value of the ith sample, and the
real value of the ith sample is labeled by yi.

The coefficient of determination R2 can be obtained by:

R2 =

(
l ∑l

i=1 ŷiyi −∑l
i=1 ŷi ∑l

i=1 yi

)2(
l ∑l

i=1 ŷ2
i − (∑l

i=1 ŷi)
2)(

l ∑l
i=1 y2

i − (∑l
i=1 yi)

2) (21)

The coefficient of determination is in the range [0, 1], and the closer its value is to 1, the better the
performance of the model is. On the contrary, the poorer the performance model is, the closer its value
is to 0.

To enhance the learning efficiency and establish a more accurate model of ELM, it is essential to
delete some unimportant characteristic variables and obtain crucial characteristic variables. Correlation
analysis is a statistical method of studying the correlation between variables. It can analyze the
correlation between the objects of study and express the extent of the correlation. Moreover, MIV [38] is
the index reflecting the influence of input neurons on output neurons, and it is used to screen the
characteristic parameters of the neural network. In the two methods above, the correlation analysis
is simpler and applied more widely, and MIV is regarded as one of the best indexes evaluating the
correlation between characteristic variables in the neural network. Thus, in this section, the correlation
analysis is employed to complete the initial screening of variables, and then the further optimal
selection of variables is conducted by MIV.

3.2.1. Initial Screening of Correlation Analysis

The pearson correlation coefficient is adopted to explore the correlation degree among the
characteristic variables, as shown in Equation (22).

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2 ∑n

i=1(yi − y)2
(22)

in which n presents the sample size. xi and yi denote te sample data of sample size n, respectively.
x and y are the average values of sample data, respectively.

The correlation coefficients between characteristic variables are obtained through the correlation
analysis of input variables, as listed in Table 4.



Energies 2018, 11, 1933 12 of 18

Table 4. Correlation coefficients between characteristic variables.

r v vpre a apre Preq Preq.pre Pbat.pre Puc.pre SOCuc

v 1.000 0.997 0.035 0.095 0.457 0.500 0.631 0.113 −0.834
vpre 0.997 1.000 0.036 0.035 0.405 0.457 0.598 0.065 −0.837

a 0.035 0.036 1.000 0.833 0.717 0.603 0.455 0.668 0.046
apre 0.095 0.035 0.833 1.000 0.638 0.717 0.553 0.768 0.006
Preq 0.457 0.405 0.717 0.638 1.000 0.890 0.818 0.745 −0.305

Preq.pre 0.500 0.457 0.603 0.717 0.890 1.000 0.901 0.866 −0.351
Pbat.pre 0.631 0.598 0.455 0.553 0.818 0.901 1.000 0.639 −0.468
Puc.pre 0.113 0.065 0.668 0.768 0.745 0.866 0.639 1.000 −0.029
SOCuc −0.834 −0.837 0.046 0.006 −0.305 −0.351 −0.468 −0.029 1.000

When the correlation coefficients between two variables is greater than 0.8, the two variables are
considered to be highly correlated and they can be substituted with each other. After screening group
1 of characteristic variables, group 2 is obtained.
Group 1: v, vpre, a, apre, Preq, Preq.pre, Pbat.pre, Puc.pre, SOCuc

Group 2: v, a, Preq, Puc.pre

Mean square error E and coefficient of determination R2 are calculated in the training of ELM ten
times, as displayed in Figure 10. Compared to variable group 1, the training results of variable group 2
possess a smaller mean square error and greater coefficient of determination, which means a higher
accuracy of the ELM model. Besides, from the training trend of two variable groups, it is not hard to
discover that group 2 has a lower training time.

Figure 10. Model performance comparisons of two groups of characteristic variables.

3.2.2. Mean Impact Value

MIV can reflect the alternation of the weight matrix in the neural network and is mainly applied
to the modification of the neural network model. The concrete process of MIV is as follows:

(1) X is set as the input of the training sample. The ith variable in X is added and reduced by 10%
to form a new input of training samples Xi(1) and Xi(2), as shown in Equations (23)–(25).

X =


x11 x12 . . . x1m
x21 x22 . . . x2m
. . . . . . . . . . . .
xn1 xn2 . . . xnm

 (23)

Xi(1) =


x11 x12 . . . x1i(1 + 10%) . . . x1m
x21 x22 . . . xi2(1 + 10%) . . . x2m
. . . . . . . . . . . . . . . . . .
xn1 xn2 . . . xni(1 + 10%) . . . xnm

 (24)
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Xi(2) =


x11 x12 . . . x1i(1− 10%) . . . x1m
x21 x22 . . . xi2(1− 10%) . . . x2m
. . . . . . . . . . . . . . . . . .
xn1 xn2 . . . xni(1− 10%) . . . xnm

 (25)

where m is the number of characteristic variables and n presents the number of training samples.
(2) Xi(1) and Xi(2) are taken as the new inputs of the training sample to the NN model and the

outputs are Yi(1) and Yi(2), as depicted in Equations (26) and (27). The difference value between Yi(1)
and Yi(2) is the impact value (IV) of the input variable on the output, which is shown in Equation (28).

Yi(1) =
[

yi1(1) yi2(1) . . . yin(1)
]T

(26)

Yi(2) =
[

yi1(2) yi2(2) . . . yin(2)
]T

(27)

IVi = Yi(1)−Yi(2) (28)

(3) MIV of characteristic variables can be computed by the average value of IV, as displayed
in Equation (29).

MIVi =
1
n

n

∑
j=1

IVi(j), i = 1, 2, . . . , m (29)

(4) According to the process above, the MIV of each input variable can be obtained. The positive
or negative MIV denotes the direction of correlation, and the absolute value of MIV represents the
degree of correlation.

After the correlation analysis in Section 3.2.1, MIV is applied to the four input variables in variable
group 2. The results are listed in Table 5.

Table 5. Mean impact value (MIV) of each characteristic variable.

Input Variables v a Preq Puc.pre

MIV −18.792 326.81 24.987 −0.0138

From Table 5, the influences of characteristic variables on output are sorted from large to small as:
a, Preq, v, and Puc.pre. Then, the deletion of variables is started from the variable possessing the least
influence on the output, and when the performance of the ELM model becomes poorer, the deletion of
variables will stop. The groups of variables are listed below:
Group 2: a, Preq, v, Puc.pre

Group 3: a, Preq, v
Group 4: a, Preq

Figure 11 describes the mean square error E and coefficient of determination R2 in the ten training
sets of ELM. Group 3 results in the least mean square error, highest model accuracy, and a fast learning
rate. Thus, the variables in group 3 are selected as the characteristic variables for ELM.
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Figure 11. Model performance comparisons of three input variable groups. (a) Mean square error;
(b) Coefficient of determination.

3.3. Instantaneous Power Allocation

After obtaining the characteristic variables of ELM in Section 3.2, the online instantaneous power
allocation strategy is formulated by adopting ELM to learn the offline data from DP in this section.

4. Results and Analysis

To test the control effect of the ELM-based controller, a comprehensive driving cycle consisting
of 10–15, WVUSUB, INDIAURBAN, IM240, and WVUINTER is set up, as shown in Figure 12,
which contains the conditions of urban congestion, suburb, and expressway. Comparative simulations
are carried out between the RBC in Section 2 and the ELM-based controller under the comprehensive
cycles. It should be noted that the threshold of RBC is optimized by GA.

Figure 12. Comprehensive driving cycle.

In addition, at the end of the driving cycle, in order to avoid the comparison error caused by the
unequal SOC of the ultra-capacitor in two controllers, the SOC of the ultra-capacitor is compensated
by the battery, as indicated in Equation (30).

∆SOCbat =
∆SOCuc × Euc × η

SOCuc.max ×Ubat ×Qrate
(30)

in which, ∆SOCbat is the SOC that the battery compensates for the ultra-capacitor. ∆SOCuc is the
difference value of final SOC to initial SOC. Euc is the total energy of the ultra-capacitor. η presents the
efficiency of the DC/DC converter and Ubat denotes the voltage of the battery.
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The simulation results of the two controllers are listed in Table 6. The equivalent SOC of battery
SOCbat.equa can be calculated by Equation (31). Figure 13 illustrates the battery SOC and the life loss of
the battery is displayed in Figure 14.

SOCbat.equa = SOCbat + ∆SOCbat (31)

Figure 13. Battery state of charge (SOC). ELM: ELM-based controller.

Figure 14. Life loss of the battery.

Table 6. Simulation results of two control strategies.

Controller SOCbat SOCuc SOCbat.equa Life Loss/%

Rule based 0.6775 0.9497 0.6777 0.02779
ELM 0.6884 0.3773 0.6861 0.02598

Through the SOCbat.equa comparison of the two controllers, it is not hard to discover that the
ELM-based controller possesses a more superior economy and reduces the electricity consumption by
3.78% compared to RBC. Besides, the battery life loss of the ELM-based controller decreases by 6.51%
in comparison with RBC.

Owing to the fact that there are too many time points under the comprehensive driving cycle,
a part of the whole cycle is selected for analysis. Table 7 lists the using times and average power of
the battery in the two controllers. The battery output power of 2300–2800 s is picked out, as depicted
in Figure 15. For the RBC, the circumstance that the battery charges the ultra-capacitor by means of
low power frequently happens, which decreases the system efficiency. What is more, the frequent
employment of the battery contributes to extra life loss of the battery. In contrast, the battery operating
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in the ELM-based controller reduces the number of times the battery is used by about 26.23% in
comparison with RBC. Owing to the poor power constraint for the battery in the ELM-based controller,
the excessive output power of the battery happens occasionally, which is not good for the battery life.
However, compared to the RBC, the lower number of times that it is used and the occasional high
output power of the battery mean that the ELM-based controller reduces the average power of the
battery by about 4.79%.

Figure 15. Output power of the battery.

Table 7. Results of the battery in the rule-based controller (RBC) and extreme learning machine (ELM).

Use of Battery RBC ELM

Battery using times 48,585 35,842
Average power of battery/kW 4.514 4.298

5. Conclusions

In this paper, TCO of HESS considering the replacement cost of the battery and electricity fee
is proposed and an optimal methodology integrating the parameters and control strategy for PEV
with HESS is investigated. On the basis of the TCO and the optimal method, the evaluation of the
application value of HESS is carried out under various driving cycles. Then, in order to enhance the
poor adaptability of traditional controllers to different driving cycles, the ELM-based controller is put
forward. Additionally, to guarantee the accuracy and improve the learning efficiency of the ELM model,
this paper utilizes the method which combines correlation analysis and MIV to obtain characteristic
variables of the ELM model. Moreover, a comparative simulation between the ELM-based controller
and RBC is conducted. In conclusion, the following important points are achieved.

(1) Compared to the PEV with BESS, the PEV with HESS is more applicable to urban and suburban
conditions, but possesses no obvious advantage under other conditions.

(2) The comparative results indicate that the ELM-based controller proposed in this paper possesses
a superior economic performance compared to the optimized RBC under a comprehensive
driving cycle.

In future work, the traffic information, such as the traffic condition and the road grade, will be
considered in the controller.
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