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Abstract: Dissolved gas analysis (DGA) is widely used to detect the incipient fault of power
transformers. However, the accuracy is greatly limited by selection of DGA features and performance
of fault diagnostic model. This paper proposed a fault diagnostic method integrating feature selection
and diagnostic model optimization. Firstly, this paper set up three feature sets with eight basic DGA
gases, 28 DGA gas ratios and 36 hybrid DGA features, respectively. Then, to eliminate the interference
of weak-relevant and irrelevant features, the genetic-algorithm-SVM-feature-screen (GA-SVM-FS)
model was built to screen out the optimal hybrid DGA features subset (OHFS) from three feature sets.
Next, using the OHFS as the input, the support vector machine (SVM) multi-classifier optimized by
ISGOSVM (SVM classifier optimized by improved social group optimization) was built to diagnose
fault types of transformers. Finally, the performance of OHFS and ISGOSVM diagnostic model was
tested and compared with traditional DGA features and diagnostic models, respectively. The results
show that the OHFS screened out is comprised of 14 features, including 12 gas ratios and two
gases. The accuracy of OHFS is 3–30% higher than traditional DGA features, and the accuracy of
ISGOSVM can increase by 3% to 14% compared with the SGOSVM (SVM classifier optimized by
social group optimization), GASVM (SVM classifier optimized by genetic algorithm optimization),
PSOSVM (SVM classifier optimized by particle swarm optimization), and SVM diagnostic models.
The proposed approach integrating the OHFS with ISGOSVM achieves the highest accuracy of fault
diagnose (92.86%).

Keywords: power transformers; fault diagnosis; dissolved gases; improved social group optimization

1. Introduction

The oil-immersed power transformer is one of the core equipment of the power grid which
bears the important task of voltage conversion and power transmission. A fault of the transformers
may lead to not only a large-scale power supply interruption, but also countless economic, social,
and personal losses, which will cause large carbon emissions [1]. Therefore, incipient fault diagnosis
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is gaining attention [2–4], by the utilities to ensure continuous operation and minimizing the
operational risks. At present, the “Online diagnosis” and “Offline diagnosis” are the two most
popular fault diagnosis methods for power transformers. The “Online diagnosis” consists of dissolved
gas analysis (DGA) [5], oil temperature diagnosis [6], acoustic emission method [7] and partial
discharge measurements [8], etc. The “offline diagnosis” includes the DGA [9], insulation experiment
(IE) [10–13], pressboard characteristic analysis (PCA) [14], frequency response analysis (FRA) [15–17],
transfer function technique (TFT) [18–20], etc.

DGA is widely used to detect the incipient fault of power transformers. However, the feature
selection is still a headache as the input of fault diagnosis of transformers. It is unclear that which
gases (or gas ratios) are most effective features and which gases (or gas ratios) are weak-relevant
and irrelevant features for fault types of transformers, and there is no unified standard for
feature selection. Recently, many DGA features criterions are proposed, such as Doernenberg [21],
Rogers [22], Improved Rogers [22], and IEC (International Electrotechnical Commission) 60599 [23].
Some researchers [24–29] have pointed out that some feature gases or ratios of feature gases are
insensitive to transformer faults. Using these insensitive features will reduce the accuracy of fault
diagnosis. Therefore, to investigate whether DGA gases or DGA gas ratios or hybrid DGA features
are most relevant to fault types of transformers, we set up three DGA feature sets with dissolved
gases, dissolved gas ratios and hybrid DGA features (i.e., dissolved gases and gas ratios), respectively.
To eliminate the interference of these weak-relevant and irrelevant DGA features, we screened out the
most effective features from these three DGA feature sets with genetic algorithm and support vector
machine (SVM), and use these features screened out as the input of fault diagnosis model to improve
the fault diagnosis accuracy.

Up to now, most researches on fault diagnosis of transformers rely more on expert individuals’
experience rather than mathematical model, which can reduce maintenance efficiency and increase
many uncertainties of diagnosis. Hence, it is necessary to establish complex nonlinear relationships
between the dissolved gas concentration and transformer faults with some artificial intelligent
technologies. AI (Artificial Intelligence) technologies have been widely applied in recent years due
to the advantages of continuous learning and timely updating [30–40]. The AI technologies such as
clustering analysis [22], fuzzy logic approach [31], neural network algorithm [32–34], and SVM [35,36]
have shed lights on transformer fault diagnosis. However, the AI technologies all have their limitations.
The clustering analysis can only divide the fault samples into several different subclasses, and it cannot
diagnose the type of fault. The reasoning rules and fuzzy membership functions of the fuzzy logic
approach overly depend on the experience of the researchers [11]. In addition, the neural network
algorithm is easy to trap in “local optimum” and “overfit” [35]. Compared with these methods, the SVM
is a popular machine learning approach based on statistic theory and structural risk minimization.
It can overcome the problems of “local optimum”, dimensionality, and “overfit”. Besides, SVM has
a good performance in dealing with “small samples”. However, the parameters (penalty factor C
and kernel parameters g) of SVM need to be optimized by optimization algorithm to obtain better
classification performance [36]. The social group optimization (SGO) proposed in 2015 has been
tested and compared with other optimization algorithms, the result shows that it performs better in
computation costs and obtaining global optimal solutions for many functions [37]. However, there are
still exist some drawbacks during the its iterative process. To further improve the performance of
global optimization, an improved SGO (ISGO) is proposed in this paper.

The rest of the present paper is organized as follows. In Section 2, we presented three types of
feature sets and built the genetic-algorithm-SVM-feature-screen (GA-SVM-FS) model to screen out
the optimal feature subset among them. In Section 3, the improved social group optimization was
proposed and applied to optimize the parameters of SVM multi-classifier. In Section 4, the performance
of OHFS (optimal hybrid DGA features subset) and ISGOSVM (SVM classifier optimized by improved
social group optimization) diagnostic model was tested and compared with traditional DGA features
and diagnostic models. In Section 5, results and discussion are given.
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2. Screen Out the Optimal Feature Subset among Three Types of Feature Set

2.1. Three Types of Feature Sets

The features formed by dissolved gasses were used as the input of diagnosis model. Up to now,
the widely used feature sets can be divided into two categories: dissolved gases formed feature set
and dissolved gas ratios formed feature set, which are listed in Table 1.

Table 1. The widely used feature sets.

Feature Sets Content

DGA gases Total [21] H2, CH4, C2H2, C2H4, C2H6, CO, CO2
Common [21] H2, CH4, C2H2, C2H4, C2H6

DGA gas ratios

Doernenberg [21] CH4/H2, C2H2/C2H4, C2H2/CH4, C2H6/C2H2
Roger [22] C2H6/CH4, C2H2/C2H4, CH4/H2, C2H4/C2H6

IEC 60599 [23] C2H2/C2H4, CH4/H2, C2H4/C2H6
CIGRE gas ratio [38] C2H2/C2H6, H2/CH4, C2H4/C2H6, C2H2/H2, CO/CO2

Note: DGA: dissolved gas analysis; IEC: International Electrotechnical Commission.

The above listed DGA sets all rely more on expert individuals’ experience rather than rigorous
calculation of mathematical models. Therefore, it is still unclear that whether DGA gases or DGA gas
ratios or hybrid DGA features (DGA gases and gas ratios) is most relevant to the fault types of power
transformer. As shown in the Figure 1, we defined three types of feature sets to compare the relevance
of three make sure the most relevant feature set and screen out the most effective features. The inner
ring in Figure 1 depicts the feature set (FS1), including eight basic dissolved gases (The TH is the sum
of CH4, C2H2, C2H4 and C2H6, which is related to faults of transformers [22]). The middle ring in
Figure 1 illustrates second feature set (FS2), including 28 DGA gas ratios. The outer ring in Figure 1
represents the third feature set (FS3), which consist of 36 hybrid DGA features (eight basic dissolved
DGA gases and 26 DGA gas ratios).

Figure 1. Three types of feature sets.
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2.2. Process of Optimization Selection

Based on three feature sets defined, we build a “genetic-algorithm-SVM-feature-screen”
(GA-SVM-FS) model to screen out the optimal feature subset of each feature set. The flowchart
of GA-SVM-FS model is depicted in Figure 2, the process of feature screen consists of three major steps.

Figure 2. Flowchart of genetic-algorithm-SVM-feature-screen (GA-SVM-FS) based on genetic algorithm
and support vector machine (SVM).

(a) Data preprocessing

Three types of feature sets need to be calculated based on basic fault samples collected from IEC
TC (Technical Committee of International Electrotechnical Commission) 10 database which is a public
sample database related to power transformer faults. Then using these three feature sets as the input
of GA-SVM-FS, respectively.
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(b) Gene encoding

Genetic algorithm is widely in many fields. As shown in Figure 3, each chromosome is comprised
of three genes, which use the binary codes represent the C, g, and DGA features, respectively. The length
of binary coding of “Gene 1” or “Gene 2” is determined by its numerical boundaries, which are both
set to 10. By converting the binary code to decimal, the values of C and g can be obtained. The length
of “Gene 3” is the number of DGA features, which are equal to 8, 28, and 36 to represent three feature
sets, respectively. In “Gene 3”, the bit which is 0, represents the corresponding DGA feature is not
selected, otherwise it is selected.

Figure 3. Gene encoding of three types of chromosomes.

(c) Building the support vector machine (SVM) multi-classifier for fault classification

Standard SVM is a binary classifier, which need to be expanded to multi-classifiers to classify the
multi-types of faults of power transformers with the one-against-one (OAO) encoding strategy [39].
The nonlinear classification model can be calculated as follows [40]:

Φmin(ω, ξ) =
1
2
‖ω‖2 + C

l

∑
i=1

ξi (1)

in which the C is the penalty factor. ω is the normal of hyperplane which can divided the samples
into different groups. The hyperplane can be represented as ωx + b = 0. The ξi is the relaxation factor
which represents error of classification of training samples.

In addition, the radial basis function (RBF) is adopted as the kernel function of SVM
multi-classifier [40,41], which can be expressed as follows:

K(x, y) = exp(−|x− y|2/2g2) (2)

where the g is the kernel parameter. The K(x, y) is the decision function of SVM multi-classifier.
The performance of classification of SVM multi-classifier is deeply influenced by the values of C

and g. To improve the SVM multi-classifier, C and g needs to be optimized by a optimization algorithm.

(d) Gene decoding and calculating the fitness of chromosome

As shown in Figure 4, by converting the binary code of “Gene 1” and “Gene 2” into decimal data,
we can obtain the values of C and g which are used to build the SVM multi-classifier. The feature
subset can be selected by choosing the features whose bit in “Gene 3” are “1”. We used the feature
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subset as the input of SVM multi-classifier to calculate the fitness of chromosome. Here, we used the
accuracy of k-fold cross-classification (k-CV) of transformer fault training samples as the individual
fitness function, which can be calculated as follows:

Fitness = f (Gene1, Gene2, Gene3) = −1
k

k

∑
i=1

(li
T/li) (3)

where, li is the number of samples in the ith verification set; liT is the correct classified number in the
verification set; and k is the number of cross validation and is set as 5.

Figure 4. Gene decoding and calculating the fitness of chromosome. DGA: dissolved gas analysis.

(e) Genetic operatations

As shown in Figure 2, the genetic operations consist of selection, crossover, and mutation.
In order to accelerate the convergence of algorithm, the best chromosomes (According to Equation (3),
the smaller the fitness is, the better the chromosome is) of the older generation will be reserved and
incorporated into the child generation.

(f) Output the results

As shown in Figure 2, when the iterations reach the pre-determined maximum number of
generations, the GA-SVM-FS model will end and output the best chromosome which own best (lowest)
fitness. Based on the binary code of “Gene 3” in best chromosome, the DGA features whose bits are
equal to “1” can be selected to form the best feature subset in this optimization.

2.3. Screening Results

Based on the 118 fault samples in IEC TC 10 database, each type of feature set was optimized
100 times. We screened out the top four feature combinations for each type feature. As shown in Table 2,
Three types of feature sets (FS1–FS3) were represented by green, blue, and brown color, respectively.
The grey shaded areas represent corresponding features are not included in the feature set. The checks
filled with color represent the features were selected, and all selected features in a column constitute a
feature subset. We used different shades of color to distinguish different feature subsets screened out
from same feature set. The FSSi-j represented the jth feature subset screened out from FSi. The average
accuracies of 12 feature subsets are shown in Figure 5.
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Table 2. Optimization results of three types of feature sets.
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Figure 5. Fitness of 12 feature subsets screened out from three feature sets.

As shown in Figure 5, the average testing accuracy of feature subsets selected from FS2 and FS3 are
20–30% higher than that of FS1, and the performance of feature subsets selected from FS3 is generally
the best. The FSS3-1 obtains the highest average accuracy of 84.82%, which and it is defined as the
optimal hybrid feature subset (OHFS). This indicates that using the hybrid feature subset including
DGA gases and gas ratios as the input is better than only using DGA gases or gas ratios. The OHFS
was comprised of CH4/H2, CH4/C2H4, CH4/C2H6, CH4/CO2, H2/C2H2, H2/CO, H2/CO2, H2/TH,
C2H2/CO, C2H2/TH, C2H4/TH, C2H6/TH, C2H2, and C2H6.

3. Support Vector Machine (SVM) Multi-Classifier Optimized by Improved Social Group
Optimization for a Fault Diagnosis Model of a Power Transformer

3.1. Improved Social Group Optimization

Social group optimization (SGO) was proposed in 2015 [37], which is inspired by humans being
great imitators and followers during the process of solving complex problems, and that team solving
skills can be more effective than individual skill. In this algorithm, each person represents a candidate
solution, and the solving ability refers to the “fitness”. The person with best fitness is called the
“team leader”, which can improve the solving skills of other members in the team by teaching them
relevant experience and knowledge.

The standard SGO is mainly comprised of two steps, “Improving phase” and “Acquiring phase”.
In the “Improvement phase”, the skill level of each person in the team is enhanced by the

“team leader”. The enhanced process can be expressed as follows:

Li
new(j) = λ ∗ Li

old(j) + µ ∗
(

gi
best(j)− Li

old(j)
)

(4)

where λ is a random number (0 < λ < 1), and µ is the self-introspection coefficient (µ–U(0, 1)).
The Lnew(i,j) will be accepted if its fitness is better than Lold(i,j).

In the “acquiring phase”, the skill level of each person is simultaneously influenced by the
“team leader” and a random other person in the team. If the other persons have more knowledge than
him or her, then he or she will acquire new knowledge. The person with the most knowledge makes
the highest impact on the others. The “acquiring phase” is described as follows:

if f
(

Li
old

)
< f(Lr

old)

Li
new(j) = Li

old(j) + µ1 ∗
(

Li
old(j)− Li

old(j)
)
+ µ2 ∗

(
gi

best(j)− Lr
old(j)

)
else
Li

new(j) = Li
old(j) + µ1 ∗

(
Li

old(j)− Li
old(j)

)
+ µ2 ∗

(
gi

best(j)− Lr
old(j)

)
end

(5)
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However, in the standard SGO, since the persons (candidate solutions) are only sorted into one
team, each person can only acquire knowledge from the one team leader in this group, which may
cause the algorithm to fall into local optima. Furthermore, the weakest person in each generation is not
improved, which is not conducive to explore more potentials. Hence, to improve the performance of
the SGO, an improved SGO (ISGO) is proposed in this study. Figure 6 depicts the procedure of ISGO,
in which the following two steps (steps in red dashed boxes) have been added oton the standard SGO.

Figure 6. Flowchart of the improved social group optimization (ISGO).

(a) Dividing all persons into different groups

By adding this step between the steps “Identify the best solution as well as gbest in a population”
and “Improvement Phase”, all persons are divided into different teams, so that the person’s knowledge
level can be propagated by many leaders of other teams, which can help to overstep the local optimum.

(b) Elimination phase

This step is added before the last step: “Is the termination criteria satisfied?”. In this step,
the weakest persons of each teams in every generation will be dismissed and substituted by new
persons. Therefore, the searching range of the parameters can be enlarged, and the algorithm will be
more likely to find the best solutions.

As shown as in Figure 6, the iteration will not terminate until the maximum generation number is
achieved, and the optimal solution can be obtained.
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3.2. Fault Diagnosis Model Based on Improved Social Group Optimization (ISGOSVM)

In fault diagnosis model, the ISGO was applied for obtaining the best C and g of the SVM
multi-classifier. Figure 7 depicts the flowchart of fault diagnosis for power transformer. The major
steps were concluded as follows:

Step 1: The data on fault samples (including the concentration of dissolved gases and
corresponding fault types) of power transformers were collected and sorted into “Training set” and
“testing set” randomly.

Step 2: The training set was used to construct the SVM multi-classifier model, and the testing set
was used to calculate the individual fitness.

Step 3: The parameters was optimized based on the ISGO and cross-classification (ISGO-CV).
The ISGO is applied to obtain the optimal parameters (C, g) of the SVM multi-classifier. The accuracy
of cross-classification (CV) of transformer fault training samples was adopted as the individual fitness
function. The iteration will not stop until the termination condition is met.

Step 4: Based on the optimal parameters (C, g), the optimal SVM multi-classifier model can be built,
and the corresponding classification accuracy of fault types could be obtained, too. Here, to effectively
represent the accuracy of the testing set, the Leave-One-Out Method was adopted. Figure 8 illustrates
the schematic of “leave-one-out” method.

As shown in Figure 8, for a testing set with N fault samples, the samples are divided N times
by the Leave-One-Out Met (LOOM). Each time, one sample was retained for testing, and the others
were training samples to train the SVM. The SVM parameters are optimized by GA (genetic algorithm)
and diagnosed by the test sample. To obtain the fault diagnosis accuracy of the transformer based
on the LOOM, the first sample to the Nth is selected in turn, and the number of samples which were
diagnosed correctly in the Nth division were counted. Then the accuracy was used to evaluate the
fault diagnosis performance of the six preferred characteristic quantities.
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Figure 8. Schematic of “leave-one-out” method.

4. Case Study and Analysis

To obtain more fault types for modeling, 118 DGA fault samples collected in IEC TC 10 were
divided into five classes by actual conditions, such as low energy arc (class 1), high energy arc
(class 2), thermal fault of low and medium temperature (class 3), thermal fault of high temperature
(class 4), and normal condition (class 5). The OHFS was chosen as the input of the fault diagnosis,
the ISGOSVM model described in Section 3 was applied to fault diagnosis of transformers. The accuracy
of the ISGOSVM was tested and compared with SGOSVM (SVM classifier optimized by social group
optimization) and some conventional diagnostic models such as GASVM (SVM classifier optimized by
genetic algorithm optimization), PSOSVM (SVM classifier optimized by particle swarm optimization),
and SVM methods.

In this study, the ranges of parameters (C and g) are [0, 200] and [0, 70], respectively.
The parameters of ISGO were set as follows: the maximum number of iterations was 100, and the
number of persons in each team and the number of teams are set as 30 and 3, respectively.
Figure 9 shows the average fitness and best fitness of the five methods.

As shown in Figure 9, the best fitnesses of the five methods are −68.92 (SVM), −83.47(PSOSVM),
−84.49 (GASVM), −86.72 (SGOSVM), and −87.89 (ISGOSVM). The ISGO achieved the best
performance in optimizing parameters.

Figure 9. Cont.
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Figure 9. Average fitness and best fitness of five methods. (a–e) represent the SVM, PSOSVM (SVM
classifier optimized by particle swarm optimization), GASVM (SVM classifier optimized by genetic
algorithm optimization), SGOSVM (SVM classifier optimized by social group optimization) and the
ISGOSVM (SVM classifier optimized by improved social group optimization), respectively.

As shown in Figure 10, to investigate the influence of parameters (C and g) exert on diagnostic
accuracy and compare the performances of different optimization algorithms, we set up a set of
samples set which contains 126,000 (600 × 210 = 126,000) sample points in the search scope of C and g
and depict them in a cartesian coordinate system in the plane. Each point (C, g) in samples set was
tested as the input of a SVM multi-classifier.
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Figure 10. Samples set containing 126,000 sample points set up in the search scope of C and g.

Figure 11 illustrates the relationship between C, g, and diagnostic accuracy with a Cartesian
coordinate system in three dimensions, in which the X-axis, Y-axis, and Z-axis represent C, g and
diagnostic accuracy, respectively. The larger the value of Z-axis, the higher the accuracy is
(i.e., the deeper the red (blue) color is, the higher (lower) the accuracy of diagnosis is). From Figure 11
we can tell that the values of SVM parameters can significantly influence the accuracy of fault diagnosis.
For example, the accuracy can be very low when (C, g) is near the origin (0, 0), but very high when
(C, g) near the origin (10, 9). In addition, there were no specific laws can be summed up between SVM
parameters and diagnostic accuracy, though there might be a general trend of “step up and then down”
along the diagonal line from the origin. Therefore, the optimization for SVM parameters is necessary
to obtain a better performance of classification of faults. Such an irregular distribution is a great test of
the optimization performance of the algorithm.

Figure 11. Testing accuracies for 126,000 sample points.
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To compare the performances of five optimization algorithms, we applied them to optimize SVM
parameters based on same DGA features and same fault samples, respectively. The testing accuracy
and coordinate of parameters searched by five algorithms are shown in Figure 10. From (a), (c), (e), (g)
and (i) in Figure 12, we can find that ISGOSVM gained the highest accuracy of fault diagnosis, in which
only two out of 28 testing samples were misdiagnosed, the testing accuracy is 92.86%, followed by
ISGOSVM (89.29%), GASVM (89.29%), PSOSVM (85.71%), and SVM (78.57%) methods. From (b), (d),
(f) (h) and (j) in Figure 12, we can tell that the parameters optimized by ISGO located in the optimal
area (the area is filled the deepest red color), while that which was optimized by the other four methods
were located as inferior areas.

Figure 12. Cont.
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Figure 12. Fault diagnose results and the spatial distribution of optimal solution using different
methods. (a,c,e,g,i) are the diagnostic results of 30 test samples which using ISGO (improved social
group optimization), SGO (social group optimization), GA (genetic algorithm), PSO (particle swarm
optimization), and non-optimized, respectively. (b,d,f,h,j) show the spatial distribution of optimal
solution searched out by ISGO, SGO, GA, PSO, and non-optimized. X, Y, and Z represent the c, g,
and accuracy (%), respectively.

5. Conclusions

To address the limitations in the DGA feature selection and SVM parameter optimization, a hybrid
fault diagnosis model combining the feature screening with the ISGO-optimized SVM multi-classifier
is built in the paper. The major conclusions in this paper are listed as follows:

(1) We use the dissolved gases, dissolved gas ratios, and hybrid DGA features to construct three
types of DGA feature sets, respectively. The GA-SVM-FS model was built to screen out the optimal
feature subset from each feature set according to fitness. Twelve feature subsets are screened out and
we choose the best one as the OHFS, which including CH4/H2, CH4/C2H4, CH4/C2H6, CH4/CO2,
H2/C2H2, H2/CO, H2/CO2, H2/TH, C2H2/CO, C2H2/TH, C2H4/TH, C2H6/TH, C2H2, and C2H6.
The result shows that the accuracy based on the OHFS is 3–30% higher than DGA gases, or gas ratios
formed feature sets.

(2) The improved SGO (ISGO) is proposed and used to build a ISGOSVM fault diagnosis model
in this paper, and its performance in optimizing parameters is tested and compared with SGO, GA and
PSO. The result show that ISGO can produce better solutions than other algorithms, and the diagnosis
accuracy of ISGOSVM is 3%–14% higher than that of the other four methods.

(3) The ISGOSVM classifier model integrated the OHFS can obtain the highest testing accuracy
(92.86%), which can confirm the effectiveness of the proposed method.
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According to results of the case study, the proposed methods can be applied to the operation
and maintenance of power transformers. Firstly, the information of relevant gas concentration can be
obtained from on-line monitoring system of dissolved gas in oil. Then, the OHFS can be calculated
and input to the ISGOSVM fault diagnostic model. Finally, the maintenance personnel can monitor
the operation status and fault type of the transformer in real time, which can help to detect, diagnose,
and overhaul faults in time. We believe that applying the proposed methods to fault diagnosis of
transformers can prolong the service life of the equipment and reduce the cost of maintenance.
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Nomenclature

DGA dissolved gas analysis
SVM support vector machine
SGO social group optimization algorithm
ISGO improved social group optimization algorithm
SGOSVM SVM classifier optimized by social group optimization
ISGOSVM SVM classifier optimized by improved social group optimization
GASVM SVM classifier optimized by genetic algorithm optimization
PSOSVM SVM classifier optimized by particle swarm optimization

FS1–FS3

three feature sets: the basic dissolved gas formed feature set (FS1, including 8
dissolved gases), dissolved gas ratio formed feature set (FS2, including 28 DGA
gas ratios) and the hybrid DGA feature set (FS3, 28+8 hybrid features)

GA-SVM-FS
optimization model to screen out optimal feature subset based on genetic
algorithm and svm classifier based on genetic algorithm and SVM classifier

FSSi-j the jth feature subset screened out from ith feature set
OHFS optimal hybrid DGA features subset
c penalty factor
g kernel parameter of RBF
RBF the kernel function of SVM classifier
λ a random number (0 < λ < 1)
µ self-introspection coefficient (µ–U(0, 1))
gbest the best person in a team
li the number of samples in the ith verification set
liT the correct classified number in the verification set
Lold the position of person before and after updating
Lnew the position of person before and after updating
LOOM the Leave-One-Out Method
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