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Abstract: The goal-oriented control policies of cybernetic models have been used to predict metabolic
phenomena such as the behavior of gene knockout strains, complex substrate uptake patterns, and
dynamic metabolic flux distributions. Cybernetic theory builds on the principle that metabolic
regulation is driven towards attaining goals that correspond to an organism’s survival or displaying
a specific phenotype in response to a stimulus. Here, we have modeled the prostaglandin (PG)
metabolism in mouse bone marrow derived macrophage (BMDM) cells stimulated by Kdo2-Lipid A
(KLA) and adenosine triphosphate (ATP), using cybernetic control variables. Prostaglandins are a
well characterized set of inflammatory lipids derived from arachidonic acid. The transcriptomic and
lipidomic data for prostaglandin biosynthesis and conversion were obtained from the LIPID MAPS
database. The model parameters were estimated using a two-step hybrid optimization approach.
A genetic algorithm was used to determine the population of near optimal parameter values, and a
generalized constrained non-linear optimization employing a gradient search method was used to
further refine the parameters. We validated our model by predicting an independent data set, the
prostaglandin response of KLA primed ATP stimulated BMDM cells. We show that the cybernetic
model captures the complex regulation of PG metabolism and provides a reliable description of
PG formation.

Keywords: lipids; prostaglandin metabolism; omics data; cybernetic modeling; optimization;
metabolic objective functions

1. Introduction

Engineering methodologies are critical for a quantitative understanding of the physiological
mechanisms in normal and disease states. Systems biology relies upon the use of models to organize
biological knowledge and make predictions of complex processes. A variety of multi-omic data and
mathematical approaches are available for modeling with varying (simple to complex) degrees of
resolution [1,2]. One approach, cybernetic modeling, has been used for over three decades to predict
a variety of metabolic phenomena [3,4]. Cybernetic modeling of metabolism, at its core, embodies a
framework of ordinary differential equations for kinetic modeling, which describes the time-dependent
evolution of metabolite concentrations, enzyme concentrations, and cellular growth. In cells, these
changes in concentrations, both inside and outside of the cell, are governed by the directed actions of
complex biological processes.
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The cybernetic modeling framework distinguishes itself from traditional kinetic modeling by
indirectly accounting for the unknown regulatory processes in the cell. These regulations are a
cooperative cascade of molecular mechanisms that enhance cellular function, such as growth or
survival. In the absence of high resolution knowledge of all cellular signaling and metabolic events,
cybernetic regulation offers a significant advantage and modulates the level of key enzymes through
the introduction of cybernetic variables for induction (ui) and activation (vi). Cybernetic models
of metabolism were first formulated to describe the growth behavior of cells in multi-substrate
environments. These models build on the assumption that the synthesis and activity of the enzymatic
machinery are regulated to maximize a return on investment (ROI), such as, biomass, carbon uptake,
etc. [5–7]. For example, in the classic scenario of diauxic growth, E. coli regulates its transport enzymes
and prioritizes the utilization of the substitutable substrates based on an optimal growth rate [5].
While cybernetic models have focused on bacterial systems in the past, we presently adapt this
framework to model the dynamic behavior of prostaglandin (PG) formation as an inflammatory
response of bone marrow derived macrophages (BMDM) in a mammalian system [7–10].

Inflammation is an active defense mechanism of multicellular organisms in response to
various harmful stressors. The primary role of inflammation is to counter the effects of these
stressors and to initiate cell and tissue repair. Multiple factors in the immune system respond
to inflammation; for example, macrophages are a type of white blood cell of the immune system
designed to target substances that lack surface proteins associated with healthy body cells [11].
Upon infection, macrophage cells are activated via induced metabolic changes associated with
lipids [12,13]. Consequently, we focus our study on a sub-category of fatty acyls known to
contribute to inflammation, the eicosanoids. Eicosanoids are derived from arachidonic acid (AA), a
20-carbon fatty acid and are further classified into prostaglandins, thromboxanes, leukotrienes, and
other oxidized products [14]. PGs have been found to mediate pain, fever, and other symptoms
associated with inflammation [15]. PGs are synthesized from AA via the enzyme Prostaglandin G/H
synthase (EC 1.14.99.1; cyclooxygenase (COX)), which has been targeted for treating inflammation,
musculoskeletal pain, and other conditions. COX inhibitors are common and found in daily-use drugs
such as aspirin and ibuprofen [16].

Lipid biosynthesis often requires the active transport and the chemical transformation of several
intermediates. Lipid biosynthesis is further regulated at the corresponding enzyme synthesis levels
starting from enzyme transcription through RNA processing, translation, and posttranslational
modifications. We previously developed an approach to model the flux of AA and its downstream
metabolites and applied it to the data from the murine macrophage-like (RAW 264.7) cells [17].
We also extended this model to bone marrow derived macrophages (BMDM) primed with the
lipopolysaccharide (LPS) analogue KDO2-Lipid A (KLA) and activated with a purinergic P2X7 receptor
agonist adenosine triphosphate (ATP) [18]. Despite their ability to effectively predict the metabolite
levels, these models either do not incorporate biological regulatory mechanisms or only account for
simple regulation, such as at the gene expression level [17–20]. Given that biological processes are
regulated at many other stages, such as posttranslational protein modification and interaction with a
protein or substrate molecule, we have used the cybernetic modeling framework to account for such
regulations in the modeling of lipid metabolism in this work.

The work presented here serves to provide a predictive kinetic model incorporating cellular
regulatory mechanisms for eicosanoid metabolism, and signaling using the cybernetic framework,
with inflammation as the system objective. While there is no single entity that represents the totality
of inflammation by itself, the cytokine tumor necrosis factor alpha (TNFα) is well-known for its
role in the generation of systemic inflammation and is a product of the response of macrophages to
ATP and LPS [21,22]. We hypothesize that PG metabolism is regulated to maximize inflammation,
characterized by the amount of TNFα generated by the system. Using the lipid pathways derived from
the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database and the time-course data
from LIPID MAPS, our cybernetic approach to model the macrophage system provides a quantitative
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model of eicosanoid metabolism initiated with changes in the levels of AA (input) and resulting in the
inflammatory outcome represented by TNFα [23–27]. The present study is an exemplar that highlights
the potential for cybernetic approaches.

2. Materials and Methods

To describe the time-dependent formation of PGs, a kinetic model is generated. This description
approximates the conversion of AA into an intermediate product, prostaglandin H2 (PGH2), and its
subsequent conversion into downstream products, prostaglandin D2 (PGD2), prostaglandin E2 (PGE2),
and prostaglandin F2α (PGF2α). In this simple network of PG formation, the main focus is on how the
PGH2 conversion into the three downstream PG products is regulated, which may represent a central
decision point in the lipid metabolic system in the macrophage inflammatory response (Figure 1a).
The behavior of this network is modeled in three separate conditions, a control, a treatment with
ATP, and a combined treatment of ATP and KLA. Measurements were made at 0, 0.25, 0.5, 1, 2, 4, 8,
and 20 h after ATP stimulation (Figure 1b). The data for all these conditions was taken from LIPID
MAPS [28–31]. Details of the experimental procedure can be obtained from the LIPID MAPS website
(protocol available at: www.lipidmaps.org/protocols/PP0000004702.pdf).
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Figure 1. (a) The arachidonic acid metabolic pathway map for the breakdown of arachidonic acid
into respective prostaglandin products via prostaglandin H2 (PGH2) is shown: (rectangles) enzymes,
(ellipses) lipid metabolites, (shaded) measured metabolites, (arrows) enzymatic and non-enzymatic
reactions; (b) bone marrow derived macrophages (BMDM) were pretreated with or without KLA for
4 h and then stimulated with or without ATP. The media and cells were collected for lipidomic, tumor
necrosis factor alpha (TNFα) and transcriptomic analysis at 0, 0.25, 0.5, 1, 2, 4, 8, and 20 h after ATP
stimulation; (c) depiction of the simplified system network used for kinetic modeling illustrates PGH2

as a control point and e1, e2, and e3 as cybernetic enzymes regulated via cybernetic variables for the
regulation of PGD2, PGE2, and PGF2α fluxes.

2.1. Development of the Kinetic Model

The structure of the kinetics for this reaction network is arranged into two segments (Figure 1c).
The first describes the conversion of AA into PGH2 using simple linear kinetics. The kinetics of this
reaction is modeled as three separate mechanisms, including a basal rate of synthesis, generation due
to ATP stimulation, and KLA priming of cells.

rAA→PGH2 = kPGH2 [AA](1 + kATP[ATP] + kKLA[KLA])
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To capture the effect of ATP, the treatments to the culture are modeled as a piecewise function,
f (t). This piecewise function ramps up to a maximum value of 1 at 0.5 h (ks = 2 h−1) and decreases
exponentially (kd = 17.2 h−1) following the initial half hour of the experiment. For the KLA treatment
case, the same f (t) was used with a 4 h adjustment to account for the 4 h priming of KLA prior to the
ATP stimulation.

f (t) =

{
kst i f t ≤ 0.5

e−kd(t−0.5) i f t > 0.5

The primary difference in this function from previous work is in the second term, which
includes exponential decay instead of a linear function to describe desensitization of cells to a given
stimulus [32].

2.2. The Cybernetic Framework

The other segment of this model employs the cybernetic framework to capture the regulation
between the different metabolic options [32]. In the cybernetic framework, there are two descriptions
of the reaction kinetics. The first is the raw, enzyme-dependent rate of reaction, which we termed the
kinetic rate of reaction, rkin. This kinetic rate includes an enzyme quantity, ei, which represents the
amount of enzyme devoted to the conversion of PGH2 to a PG product.

rkin
PGH2→PGi

= eikPGi [PGH2]

The second description uses the cybernetic approach, which assumes a certain metabolic
objective, namely, the optimal production of PG derivatives leading to maximum TNFα production.
The framework views each pathway as a metabolic option to achieve such an objective and describes
metabolic regulation in terms of their optimal combinations. Flux through the ith pathway is modeled
as regulated by the control of the enzyme level and its activity, that is:

rreg
PGH2→PGi

= virkin
PGH2→PGi

where vi is the cybernetic variable controlling enzyme activity. The resulting ordinary differential
equations (ODEs) for each metabolite incorporated into the model (Figure 1c) can be written as a
combination of regulated rates, rreg, and degradation, where γ is the degradation rate constant, of the
metabolites, as follows:

d[PGH2]

dt
= rAA→PGH2 −∑

i=1
rreg

PGH2→PGi
− γPGH2 [PGH2]

d[PGi]

dt
= rreg

PGH2→PGi
− γPGi [PGi]

The enzyme level, ei, is governed by the following dynamic equations:

rkin
ei

= kei [PGH2]

rreg
ei = uirkin

ei

dePGi

dt
= α + rreg

ei − βePGi

where ui is the second cybernetic variable regulating the induction of the enzyme synthesis. The three
terms on the right-hand side denote constitutive rate, α, and inducible rate of enzyme synthesis
modulated by the cybernetic variable, ui, and the decrease of the enzyme levels by degradation, where
β is the degradation rate constant. The cybernetic control variables, ui and vi, are computed from the
Matching and Proportional laws, respectively, as follows:
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ui =
ρi

∑k ρk

vi =
ρi

maxk(ρk)

where the ROI, ρi, is defined by the flux through a particular pathway and is determined based on the
designated system goal or objective [33].

2.3. Defining the Cybernetic Goal or Objective

PGs are well-characterized for their roles in the inflammatory response. Thus, in this paper,
we focus on the regulation of PG synthesis as a function of TNFα, a marker of inflammation, for the
selection of the model’s objective function. To quantify the relationship between the PGs and TNFα,
a simple, linear model of TNFα level is developed as a function of PGi levels using their time-series
data, as follows:

[TNFα] = ∑
i

ci[PGi]

We can also approximate the time derivative of TNFα concentration as a linear combination of
time derivatives of PGi concentrations over the time course. Additionally, due to the difference in
magnitude of the different PGi levels, a scaling was used to determine the contribution of each PGi
pathway leading to TNFα production. Thus, we define the weights, wi, as follows:

wi =
ci[PGi]

∑j cj[PGj]

where wi is the weight associated with the PGi branch leading to TNFα production (wi values of
0.2114, 0.2201, and 0.5685 for i = 1, 2, and 3 correspond to PGE2, PGF2α, and PGD2, respectively).
Weights were obtained from ci and [PGi], the average concentration of PGi across time, via regression
of PGi and TNFα data (Matlab® function ‘fmincon’, using the interior-point algorithm) using eight
time points across ATP stimulated and control conditions; ci does not change with time. Of the three
pathways modeled, there is a varying degree of inflammation that results from the generation of each
PGi as described by the objective function. In this particular system, the ROI for each pathway is
assumed to be the amount of TNFα that each unregulated pathway can yield at each instant in time,
which is described by ρi.

ρi = wirkin
PGH2→PGi

2.4. Estimation of the Kinetic Rate Parameters and Uncertainty Analysis

The model was parameterized using data from two of the three conditions, the control and the
ATP treatment cases. Data was available for the AA, PGE2, PGF2α, and PGD2 metabolites as an
eight-point time series over a 20 h time window. PGH2 is an unstable intermediate metabolite we
could not measure experimentally; in our model, we constrained the maximum concentration of PGH2

to be ~10 pmol/µg DNA based on the total amount of PGs produced. The magnitudes of the different
metabolites varied from 0.001 to 10 pmol/µg of DNA. To fit the model to the data, a least squared fit
error was computed from the scaled profiles of the lipid, with respect to its maximum value, to ensure
that the varying magnitude of each PG’s level did not skew the parameters towards the sole fit of the
PGs with higher magnitudes. The overall objective function for fitting the data was to minimize the
fit-error between the experimental and the predicted metabolite concentrations [17], as follows:

min
K,Xo

(
nsp

∑
i=1

(
ni

∑
j=1

(
yi,j,exp − yi,j,pred(K, X0)

)2
))
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where K is the set of parameters or rate constants; X0 is the set of initial conditions of the enzyme
concentrations; ni is the number of time-points, 21, interpolated from 0 to 20 h (indexed as j) in
order to provide equal weightage to later time points in the model fit; and nsp is the total number
of species (indexed as i). The ODEs in the model were solved using ode15s for the stiff systems
in MATLAB (version 9.4.0.813654, R2018a, Natick, MA, USA). The parameters (Table A1) were
optimized using a two-step hybrid optimization procedure that started with a genetic algorithm
seeded with random initial parameter values and evolved up to 100 generations in order to determine
near optimal parameter values (Matlab® function ‘ga’). The results from the application of the
genetic algorithm-based optimization were then further refined using a generalized constrained
non-linear optimization employing a gradient search method (Matlab® function ‘fmincon’, using the
interior-point algorithm).

The quality of our model fit was assessed by comparing the variance for the fitted data to the
variance in the experimental (replicate) data (treatment and control data combined) using the F-test,
as follows [18]:

F =

SSE f it
(2×nt)
SSEexp

(2×nt×(nr−1))

F =

(
∑nt

j=1

(
Ytrt

j −Xtrt
j

)2
+∑nt

j=1

(
Yctrl

j −Xctrl
j

)2
)

(2×nt)(
∑nt

j=1 ∑nr
i=1

(
Xtrt

ij −Xtrt
j

)2
+∑nt

j=1 ∑nr
i=1

(
Xctrl

ij −Xctrl
j

)2
)

(2×nt×(nr−1))

where Xj, Xj, and Yj denote the experimental data, mean experimental data, and simulated (fitted)
data at time point j, respectively; nr is the number of replicates (nr = 3, indexed as i); nt is
the number of experimental time points (nt = 8, indexed as j); and trt and ctrl are treatment
and control groups, respectively. The degrees of freedom for determining the F distribution are
df 1 = (2× nt) and df2 = (2× nt× (nr− 1)). F statistic values smaller than F0.95(16, 32) = 1.97 indicate
statistically equal variance in simulated (fitted) and experimental data; whereas, F values smaller than
F0.05(16, 32) = 0.4580 indicate the fit-error is statistically smaller than the experimental error.

3. Results

3.1. Development of the Kinetic Model for the COX Pathway

Our cybernetic model describes the conversion of AA into the intermediate product, PGH2, and
its subsequent conversion into downstream prostaglandin products, PGE2, PGF2α, and PGD2. In this
simple network of PG formation, the primary intent is on the regulation of PGH2 conversion into the
three downstream PG products. To address the latter, cybernetic regulation (implementation of ui and
vi variables) was used at this branch point. The model for the COX pathway was described by 7 ODEs
and 18 kinetic parameters (Table A1) in total; these 18 rate constants were estimated using a hybrid
optimization approach (Materials and Methods). Using the optimized parameters, the eicosanoid
profiles for the control and ATP stimulated cases were simulated (Figure 2). For most time points, the
difference between the simulated and experimental data in both the treatment and control conditions
fell within the standard error of the mean. The goodness of fit for the model was further examined by
performing the F-test, indicating that the fit-error was less than the experimental measurement error
(Table 1).
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Figure 2. The computational simulation of the eicosanoid profile is generated using the cybernetic
model in ATP stimulated BMDM. The mean experimental data (circles) with associated standard error
of the mean (SEM) from three replicate experiments (n = 3) for the ATP stimulated (green) and control
(red) cases are taken from the mass spectrometry measurements of lipids. The simulation results are
shown for the treatment and control cases (solid green and red curves, respectively).

Table 1. Goodness of fit, F-test, for simulated/optimized (adenosine triphosphate (ATP) stimulated
data) and predicted (Kdo2-Lipid A (KLA) primed and ATP stimulated) cases. F values smaller
than F0.05(16, 32) = 0.4580 indicate that the fit-error is statistically smaller than the experimental
error; whereas the F values smaller than F0.95(16, 32) = 1.97 indicate that the fit-error is statistically
comparable to the experimental error. PGD2—prostaglandin D2; PGE2—prostaglandin E2;
PGF2α—prostaglandin F2α.

Metabolite Model Fit to ATP Data Model Fit to KLA and ATP Data

PGE2 0.0312 0.2421
PGF2α 0.0470 0.0342
PGD2 0.2636 0.1192

The eicosanoid model robustness was evaluated by performing a parametric sensitivity analysis.
Each parameter was varied individually by ± two-fold of the original optimized value and the
maximum difference in the treatment and control case concentrations of each metabolite was plotted.
The slopes of each metabolite sensitivity curve were calculated to evaluate the sensitivity for each
parameter at the optimized value of that parameter. A heat map of the slopes was then generated
(Figure 3). Small to moderate sensitivities in most of the parameters were observed. As expected,
very little or no variation in the degradation parameters for PGD2, PGE2, and PGF2α or in the KLA
parameter is seen in response to metabolite changes. This is especially relevant to note given that
the data set in which the parameter set was optimized for simulation was not treated with KLA and,
consequently, would not have a dependence on this parameter. Based on these results, our model of
eicosanoid metabolism is shown to be robust with respect to parametric perturbations.
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1 
 

 
Figure 3. The slope of the sensitivity curves of the arachidonic acid (AA) metabolism are shown
as a heat map. For example, the changes in the parameter associated with a conversion of AA into
prostaglandin H2 (PGH2) resulted in an increase in all of the metabolites; whereas, changes in the
degradation of PGH2 resulted in a decrease in all of the metabolites. This is expected, given that PGH2

is in the upper part of the network, so the changes associated with these parameters will result in an
impact on all of the corresponding downstream metabolites.

3.2. Prediction of the Eicosanoid Profile in KLA Primed ATP Stimulated Macrophages

To test the validity of the above obtained parameters, we used the parameter values to predict
the new data set, the eicosanoid profile in KLA primed ATP stimulated BMDM cells. When the
profiles were predicted with the optimized parameter values, the model prediction did not fit the
experimental data well. We allowed up to 30% variability in the originally optimized parameter
values for the re-estimation of parameters in the KLA primed ATP stimulated case. The range of 30%
variability was chosen based on previous work by our group in determining the uncertainty of the
calculated parameters in the ATP stimulated model [18]. The prediction with the relaxed bounds on
the parameters yields a good fit to the experimental data (Figure 4 and see the results of F-test in
Table 1). This prediction of an independent experimental dataset (KLA primed and ATP stimulated
case), which was not used to fit the ATP stimulation data, further validated the model and parameter
values. The mathematical model reflects the AA metabolic network dynamics in BMDM cells.
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Figure 4. The computational prediction of the eicosanoid profile is generated using the cybernetic
model in KLA primed and ATP stimulated BMDM. The mean experimental data (circles) with
associated standard error of the mean (SEM) from three replicate experiments (n = 3) for KLA primed
ATP-treated (magenta) and control (red) cases are taken from the mass spectrometry measurements of
the lipids. The prediction results are shown for the treatment and control cases (solid magenta and red
curves, respectively).

Table 2. Enzymes were identified from the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database and other selected resources for each pathway downstream of prostaglandin H2 (PGH2)
in prostaglandin synthesis. There is not a specific enzyme associated with the regulation of PGH2

into PGF2α.

Entrez ID Pathway Gene Symbol Name

64292 PGH2 → PGE2 Ptges prostaglandin E synthase
54486 PGH2 → PGD2 Hpgds/Ptgds2 hematopoietic prostaglandin D2 synthase

3.3. Understanding the Role of Regulation in the Cybernetic Variables

In order to validate the cybernetic control mechanism that drives the modulation of the reaction
rates in the model, the scaled gene expression data (representative of the enzymes synthesized) were
compared to the scaled versions of the predicted enzyme levels. The qualitative trends among both the
gene expression data and the predicted enzyme levels are expected to be similar [34]. Simply stated,
if the gene expression level of the enzyme for one of the pathway branches is increasing over a certain
time period, the cybernetic variable for the enzyme synthesis control and, therefore, the predicted
enzyme levels should also be increasing.

For comparative purposes, we first identified the genes related to the respective branch in the
eicosanoid metabolic pathways. These genes were selected using the KEGG database (Table 2) [24,27].
For two of the three branches in the pathway modeled, there are genes associated with enzymes for
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the catalysis of those pathways in the network. However, the PGF2α branch is a non-enzymatically
regulated process and does not have an associated gene for comparison with the corresponding
cybernetic variable.

Gene expression data inform the relative levels of the enzymes present. To validate the cybernetic
approach, we qualitatively compare the gene expression measurements with the corresponding
cybernetic enzyme levels. Given that the gene expression data is represented as a fold change with
respect to the control case, we have also taken fold changes of the enzyme levels from the cybernetic
model in the treatment cases with respect to their corresponding value in the control cases. Both the
gene expression and cybernetic enzyme level data were normalized by their corresponding maximum
values (ei/ei,max) to visualize a clear comparison of the dynamic trends. These comparisons are made
for both the ATP and the combined KLA primed ATP stimulated treatment conditions. Overall, the
scaled predicted enzyme profiles in solid green (ATP stimulated case) and magenta (KLA primed
ATP stimulated case) match the general behavior of their corresponding genes, identified in Table 2,
which are denoted by dashed black lines (Figure 5). There are some discrepancies such as in the Ptges
profile for KLA primed and ATP stimulated BMDM, as well as, the Hpgds profile for ATP stimulated
BMDM. This could be attributed to the different types of data used in the comparison plot of the
cybernetic variables, which represent the modeled proteomic levels of the enzymes with the available
transcriptomic data.
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Figure 5. The behavior of the scaled cybernetic model enzyme level simulations (green in ATP
stimulated case and magenta in KLA primed, followed by ATP stimulated case) generally match the
trends of the scaled gene expression values (black dashed lines) for Ptges and Hpgds/Ptgds2 pathways
in (left) ATP and (right) combined KLA primed ATP stimulated treatments.

4. Discussion

The cybernetic approach differs substantially from other modeling methods. For traditional
kinetic modeling, detailed metabolic regulatory mechanisms are necessary [35,36]; however, the
cybernetic approach models these regulatory actions as a collective process with an optimal system
objective. Cybernetic enzymes and variables are used to describe a succinct mode of regulation
related to the organism’s goal. Cybernetic models have been useful in not only describing complex
substrate uptake patterns [7] but have also yielded successful predictions of intracellular fluxes [37],
gene-knockout behaviors [38], and multiplicity of steady states in chemostats [39]. While we show
that cybernetic modeling predicts complex cellular phenomena, we also validate the assumption that
the cybernetic control mechanisms mimic cellular regulation [34]. The cybernetic variables for enzyme
synthesis and activity, ui and vi, are compared with experimental data representative of the regulatory
mechanisms in cells. We show that the scaled predicted enzyme profiles generally match the behavior
of their corresponding genes identified from literature (Section 3.3). These predicted enzyme levels are
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calculated from metabolomics data based on the assumption that the enzymes for different pathways
are regulated in such a way as to optimize the objective function—in this case, the formation of TNFα.
The predicted enzyme levels, as informed by the ei control variables, are independent of the gene
expression data. Qualitatively comparing the behavior of the dynamic gene expression profiles with
the predicted enzyme levels further validates our cybernetic model (Figure 5) and serves to validate
the idea that modeling macrophage cells from a goal-oriented perspective is useful.

The objective function used in the model, maximizing the rate of TNFα formation, is a
central postulate of the cybernetic model presented here. While TNFα is well characterized as a
signaling molecule generated in the macrophage response of LPS binding to the TLR4 receptor, other
inflammatory cytokines, such as the interleukins (ILs) like IL-1, IL-6, and IL-12, can also be used
to describe the goal of the system [40]. Control goals related to other functions of PGs, besides
inflammation, are also of interest; however, given that the response of the macrophages to ATP and
KLA is an inflammatory one, the objective function centered around TNFα is most relevant within
the context of the system and conditions studied in this paper. To generate the cybernetic model, it is
necessary to first make an assumption of the control goal. This assumption was further tested on the
basis of whether or not the model is capable of making predictions of data beyond what the model is
trained on. The fact that the model, with the TNFα objective function, is able to make predictions of
the KLA primed and ATP stimulated treatment case, as well as of the gene expression trends, validates
the use of TNFα as a control assumption central to the model.

The statistical analysis of multi-omics data coupled with the development of mathematical models
aid in the unraveling of complex biological systems. We used a two-step, hybrid optimization approach
in our study to estimate the rate constants of the AA metabolic network in BMDM using time-course
lipidomic data. All of the kinetic parameters in our model were estimated through a nonlinear
optimization approach based on the experimental data. Therefore, this study, using a multi-omics,
data-driven, systems biology approach, is useful for understanding in vitro eicosanoid metabolism.
Our model showed a good fit to the experimental data as seen from the goodness of fit performed by
the F-test (Table 1), which suggests that the model captured the key characteristics of the lipid metabolic
network in the BMDM cells. After fitting the parameters to two conditions (i.e., the control and ATP
treatment conditions), the model provided the fits, which are shown in Figure 2. Effectively, this
model is reliable as it is also evident that the model correctly explains the evolution of the metabolite
concentrations for the different conditions involved in the fit. In the control condition, we see a
relatively low rate of prostaglandin formation as we would expect. The ATP treatment case shows a
good agreement with all of the prostaglandin products generated, and the kinetics of the model are
cross-validated using an additional treatment condition, KLA primed ATP stimulated BMDM cells
(Figures 2 and 3).

We then compared the effective rate constants associated with the enzymes of Hpgds/Ptgds2
(EC 5.3.99.2) and Ptges (EC 5.3.99.3) and their corresponding values reported in the literature to
confirm the reliability of our optimized parameter values [41–47]. In order to compare the enzyme
activities obtained from concentrations in the LIPID MAPS experimental data and literature values
of enzyme-enriched protein, we used appropriate conversion factors, as discussed in Kihara et al.,
2014 [18]. In summary, the calculated values from our simulation of the eicosanoid metabolism for
Ptgds2 activity and Ptges were within the expected range of the values reported in the literature.
The reported flux of PGD2 in macrophages is not detectable and is determined to be less than
1 nmol/min/mg of total protein, which is consistent with our model value, 1 × 10−5 nmol/min/mg
of total protein [46]. For the flux of PGE2, the reported literature value of 0.4 pmol/min/mg of
the total protein is of the same order as our computed value, 0.1 pmol/min/mg of protein [43].
Our computed values are consistent with those reported in the literature and further validate our
computational model.

In conclusion, we have developed a quantitative model of the eicosanoid metabolic pathway
by using cybernetic regulation in primary macrophages under control (basal) and ATP stimulated
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conditions. Additionally, we have been successful in predicting the metabolite levels of the eicosanoid
profiles and capturing the relative changes in gene expression of relevant enzymes under a set
of conditions different from that used for calculating the model rate constants. In particular,
we successfully predicted the eicosanoid profiles for the KLA primed ATP stimulated case. We have
demonstrated the use of the cybernetic approach to model the regulation of mammalian lipid
metabolism. The cybernetic model provides a robust description of metabolite formation and can be
used to predict perturbations to metabolism. Our computational model assists in understanding the
complexity of eicosanoid metabolism and in examining complex regulatory phenomena.
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Appendix A

Table A1. Reaction parameters were estimated for the eicosanoid metabolism model. The simulated
and predicted columns refer to the parameters optimized for ATP stimulated BMDM cells and KLA
primed ATP stimulated BMDM cells, respectively. The predicted parameters were further optimized
from the simulated parameters within 30% variability.

PARAMETER SIMULATED PREDICTED
KPGH2 0.0022 0.0016
KPGE2 0.0044 0.0031

KPGF2α 0.0326 0.0339
KPGD2 0.0533 0.0585
γPGE2 0.0062 0.0044

γPGF2α 0.0205 0.0197
γPGD2 0.1275 0.0893
KKLA 17.3923 0.0001
KATP 11.9112 8.3379

KE,PGE2 8.0801 10.4215
KE,PGF2α 0.2078 0.1478
KE,PGD2 0.2243 0.157
γPGH2 0.2603 0.3384

α 0.2244 0.2918
β 0.7757 1.0082

E0,PGE2 0.3974 0.5094
E0,PGF2α 0.0133 0.0105
E0,PGD2 0.2601 0.3379
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