
GEKKO Optimization Suite

Authors:

Logan D. R. Beal, Daniel C. Hill, R. Abraham Martin, John D. Hedengren

Date Submitted: 2018-08-28

Keywords: moving horizon estimation, Model Predictive Control, dynamic optimization, algebraic modeling language

Abstract:

This paper introduces GEKKO as an optimization suite for Python. GEKKO specializes in dynamic optimization problems for mixed-
integer, nonlinear, and differential algebraic equations (DAE) problems. By blending the approaches of typical algebraic modeling
languages (AML) and optimal control packages, GEKKO greatly facilitates the development and application of tools such as nonlinear
model predicative control (NMPC), real-time optimization (RTO), moving horizon estimation (MHE), and dynamic simulation. GEKKO is
an object-oriented Python library that offers model construction, analysis tools, and visualization of simulation and optimization. In a
single package, GEKKO provides model reduction, an object-oriented library for data reconciliation/model predictive control, and
integrated problem construction/solution/visualization. This paper introduces the GEKKO Optimization Suite, presents GEKKO’s
approach and unique place among AMLs and optimal control packages, and cites several examples of problems that are enabled by
the GEKKO library.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2018.0410
Citation (this specific file, latest version): LAPSE:2018.0410-1
Citation (this specific file, this version): LAPSE:2018.0410-1v1

DOI of Published Version: https://doi.org/10.3390/pr6080106

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)

processes

Article

GEKKO Optimization Suite

Logan D. R. Beal ID , Daniel C. Hill ID , R. Abraham Martin and John D. Hedengren * ID

Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA;
beal.logan@gmail.com (L.D.R.B.); dhill2522@gmail.com (D.C.H.); abemart@gmail.com (R.A.M.)
* Correspondence: john_hedengren@byu.edu; Tel.: +1-801-477-7341

Received: 1 July 2018; Accepted: 23 July 2018; Published: 31 July 2018
����������
�������

Abstract: This paper introduces GEKKO as an optimization suite for Python. GEKKO specializes in
dynamic optimization problems for mixed-integer, nonlinear, and differential algebraic equations
(DAE) problems. By blending the approaches of typical algebraic modeling languages (AML) and
optimal control packages, GEKKO greatly facilitates the development and application of tools such
as nonlinear model predicative control (NMPC), real-time optimization (RTO), moving horizon
estimation (MHE), and dynamic simulation. GEKKO is an object-oriented Python library that
offers model construction, analysis tools, and visualization of simulation and optimization.
In a single package, GEKKO provides model reduction, an object-oriented library for data
reconciliation/model predictive control, and integrated problem construction/solution/visualization.
This paper introduces the GEKKO Optimization Suite, presents GEKKO’s approach and unique place
among AMLs and optimal control packages, and cites several examples of problems that are enabled
by the GEKKO library.

Keywords: algebraic modeling language; dynamic optimization; model predictive control; moving
horizon estimation

1. Introduction

Computational power has increased dramatically in recent decades. In addition, there are new
architectures for specialized tasks and distributed computing for parallelization. Computational
power and architectures have expanded the capabilities of technology to new levels of automation
and intelligence with rapidly expanding artificial intelligence capabilities and computer-assisted
decision processing. These advancements in technology have been accompanied by a growth in the
types of mathematical problems that applications solve. Lately, machine learning (ML) has become
the must-have technology across all industries, largely inspired by the recent public successes of
new artificial neural network (ANN) applications. Another valuable area that is useful in a variety
of applications is dynamic optimization. Applications include chemical production planning [1],
energy storage systems [2,3], polymer grade transitions [4], integrated scheduling and control for
chemical manufacturing [5,6], cryogenic air separation [7], and dynamic process model parameter
estimation in the chemical industry [8]. With a broad and expanding pool of applications using
dynamic optimization, the need for a simple and flexible interface to pose problems is increasingly
valuable. GEKKO is not only an algebraic modeling language (AML) for posing optimization problems
in simple object-oriented equation-based models to interface with powerful built-in optimization
solvers but is also a package with the built-in ability to run model predictive control, dynamic
parameter estimation, real-time optimization, and parameter update for dynamic models on real-time
applications. The purpose of this article is to introduce the unique capabilities in GEKKO and to place
this development in context of other packages.

Processes 2018, 6, 106; doi:10.3390/pr6080106 www.mdpi.com/journal/processes

Processes 2018, 6, 106 2 of 26

2. Role of a Modeling Language

Algebraic modeling languages (AML) facilitate the interface between advanced solvers and
human users. High-end, off-the-shelf gradient-based solvers require extensive information about
the problem, including variable bounds, constraint functions and bounds, objective functions, and first
and second derivatives of the functions, all in consistent array format. AMLs simplify the process
by allowing the model to be written in a simple, intuitive format. The modeling language accepts
a model (constraints) and objective to optimize. The AML handles bindings to the solver binary,
maintains the required formatting of the solvers, and exposes the necessary functions. The necessary
function calls include constraint residuals, objective function values, and derivatives. Most modern
modeling languages leverage automatic differentiation (AD) [9] to facilitate exact gradients without
explicit derivative definition by the user.

In general, an AML is designed to solve a problem in the form of Equation (1).

min
u,x

J (x, u) (1a)

0 = f (x, u) (1b)

0 ≤ g (x, u) (1c)

The objective function in Equation (1) is minimized by adjusting the state variables x and
inputs u. The inputs u may include variables such as measured disturbances, unmeasured disturbances,
control actions, feed-forward values, and parameters that are determined by the solver to minimize
the objective function J. The state variables x may be solved with differential or algebraic equations.
Equations include equality constraints (f) and inequality constraints (g).

3. Dynamic Optimization

Dynamic optimization is a unique subset of optimization algorithms that pertain to systems with
time-based differential equations. Dynamic optimization problems extend algebraic problems of the
form in Equation (1) to include the possible addition of the differentials dx

dt in the objective function
and constraints, as shown in Equation (2).

min
u,x

J
(

dx
dt

, x, u
)

(2a)

0 = f
(

dx
dt

, x, u
)

(2b)

0 ≤ g
(

dx
dt

, x, u
)

(2c)

Differential algebraic equation (DAE) systems are solved by discretizing the differential equations
to a system of algebraic equations to achieve a numerical solution. Some modeling languages are
capable of natively handling DAEs by providing built-in discretization schemes. The DAEs are
typically solved numerically and there are a number of available discretization approaches. Historically,
these problems were first solved with a direct shooting method [10]. Direct shooting methods are
still used and are best suited for stable systems with few degrees of freedom. Direct shooting
methods eventually led to the development of multiple shooting, which provided benefits such
as parallelization and stability [11]. For very large problems with multiples degrees of freedom,
“direct transcription” (also known as “orthogonal collocation on finite elements”) is the state-of-the-art
method [12]. Some fields have developed other unique approaches, such as pseudospectral optimal
control methods [13].

Dynamic optimization problems introduce an additional set of challenges. Many of these
challenges are consistent with those of other forms of ordinary differential equation (ODE) and

Processes 2018, 6, 106 3 of 26

partial differential equation (PDE) systems; only some challenges are unique to discretization in time.
These challenges include handling stiff systems, unstable systems, numerical versus analytical solution
mismatch, scaling issues (the problems get large very quickly with increased discretization), the number
and location in the horizon of discretization points, and the optimal horizon length. Some of these
challenges, such as handling stiff systems, can be addressed with the appropriate discretization scheme.
Other challenges, such as the necessary precision of the solution and the location of discretizations of
state variables, are better handled by a knowledgeable practitioner to avoid excessive computation.

Popular practical implementations of dynamic optimization include model predictive control
(MPC) [14] (along with its nonlinear variation NMPC [15] and the economic objective alternative
EMPC [16]), moving horizon estimation (MHE) [17] and dynamic real-time optimization (DRTO) [18].
Each of these problems is a special case of Equation (2) with a specific objective function. For example,
in MPC, the objective is to minimize the difference between the controlled variable set point and model
predictions, as shown in Equation (3).

min
u,x

∥∥∥x− xsp

∥∥∥ (3)

where x is a state variable and xsp is the desired set point or target condition for that state. The objective
is typically a 1-norm, 2-norm, or squared error. EMPC modifies MPC by maximizing profit rather than
minimizing error to a set point, but uses the same dynamic process model, as shown in Equation (4).

max
u,x

Profit (4)

MHE adjusts model parameters to minimize the difference between measured variable values
(xmeas) and model predictions (x), as shown in Equation (5).

min
u,x

‖x− xmeas‖ (5)

4. Previous Work

There are many software packages and modeling languages currently available for optimization
and optimal control. This section, while not a comprehensive comparison, attempts to summarize
some of the distinguishing features of each package.

Pyomo [19] is a Python package for modeling and optimization. It supports automatic
differentiation and discretization of DAE systems using orthogonal collocation or finite-differencing.
The resulting nonlinear programming (NLP) problem can be solved using any of several dozen AMPL
Solver Library (ASL) supported solvers.

JuMP [20] is a modeling language for optimization in the Julia language. It supports solution
of linear, nonlinear, and mixed-integer problems through a variety of solvers. Automatic differentiation
is supplied, but, as of writing, JuMP does not include built-in support for differential equations.

Casadi [21] is a framework that provides a symbolic modeling language and efficient automatic
differentiation. It is not a dynamic optimization package itself, but it does provides building blocks for
solving dynamic optimization problems and interfacing with various solvers. Interfaces are available
in MATLAB, Python, and C++.

GAMS [22] is a package for large-scale linear and nonlinear modeling and optimization with
a large and established user base. It connects to a variety of commercial and open-source solvers,
and programming interfaces are available for it in Excel, MATLAB, and R. Automatic differentiation
is available.

AMPL [23] is a modeling system that integrates a modeling language, a command language,
and a scripting language. It incorporates a large and extensible solver library, as well as fast automatic
differentiation. AMPL is not designed to handle differential equations. Interfaces are available in C++,
C#, Java, MATLAB, and Python.

Processes 2018, 6, 106 4 of 26

The gPROMS package [24] is an advanced process modeling and flow-sheet environment with
optimization capabilities. An extensive materials property library is included. Dynamic optimization
is implemented through single and multiple shooting methods. The software is used through a
proprietary interface designed primarily for the process industries.

JModelica [25] is an open-source modeling and optimization package based on the Modelica
modeling language. The platform brings together a number of open-source packages, providing
ODE integration through Sundials, automatic differentiation through Casadi, and NLP solutions
through IPOPT. Dynamic systems are discretized using both local and pseudospectral collocation
methods. The platform is accessed through a Python interface.

ACADO [26] is a self-contained toolbox for optimal control. It provides a symbolic
modeling language, automatic differentiation, and optimization of differential equations through
multiple shooting using the built in QP solver. Automatic C++ code generation is available for
online predictive control applications, though support is limited to small to medium-sized problems.
Interfaces are available in MATLAB and C++.

DIDO [27] is an object-oriented MATLAB toolbox for dynamic optimization and optimal control.
Models are formulated in MATLAB using DIDO expressions, and differential equations are handled
using a pseudospectral collocation approach. At this time, automatic differentiation is not supported.

GPOPS II [28] is a MATLAB-based optimal control package. Dynamic models are discretized
using hp-adaptive collocation, and automatic differentiation is supported using the ADiGator package.
Solution of the resulting NLP problem is performed using either the IPOPT or SNOPT solvers.

PROPT [29] is an optimal control package built on top of the TOMLAB MATLAB
optimization environment. Differential equations are discretized using Gauss and Chebyshev collocation,
and solutions of the resulting NLP are found using the SNOPT solver. Derivatives are provided through
source transformation using TOMLAB’s symbolic differentiation capabilities. Automatic scaling and
integer states are also supported. Access is provided through a MATLAB interface.

PSOPT [30] is an open-source C++ package for optimal control. Dynamic systems are discretized
using both local and global pseudospectral collocation methods. Automatic differentiation is available
by means of the ADOL-C library. Solution of NLPs is performed using either IPOPT or SNOPT.

In addition to those listed above, many other software libraries are available for modeling and
optimization, including AIMMS [31], CVX [32], CVXOPT [33], YALMIP [34], PuLP [35], POAMS,
OpenOpt, NLPy, and PyIpopt.

5. GEKKO Overview

GEKKO fills the role of a typical AML, but extends its capabilities to specialize in dynamic
optimization applications. As an AML, GEKKO provides a user-friendly, object-oriented Python
interface to develop models and optimization solutions. Python is a free and open-source language
that is flexible, popular, and powerful. IEEE Spectrum ranked Python the #1 programming language
in 2017. Being a Python package allows GEKKO to easily interact with other popular scientific and
numerical packages. Further, this enables GEKKO to connect to any real system that can be accessed
through Python.

Since Python is designed for readability and ease rather than speed, the Python GEKKO model is
converted to a low-level representation in the Fortran back-end for speed in function calls. Automatic
differentiation provides the necessary gradients, accurate to machine precision, without extra work
from the user. GEKKO then interacts with the built-in open-source, commercial, and custom large-scale
solvers for linear, quadratic, nonlinear, and mixed integer programming (LP, QP, NLP, MILP, and
MINLP) in the back-end. Optimization results are loaded back to Python for easy access and further
analysis or manipulation.

Other modeling and optimization platforms focus on ultimate flexibility. While GEKKO is capable
of flexibility, it is best suited for large-scale systems of differential and algebraic equations with
continuous or mixed integer variables for dynamic optimization applications. GEKKO has a graphical

Processes 2018, 6, 106 5 of 26

user interface (GUI) and several built-in objects that support rapid prototyping and deployment of
advanced control applications for estimation and control. It is a full-featured platform with a core that
has been successfully deployed on many industrial applications.

As a Dynamic Optimization package, GEKKO accommodates DAE systems with built-in
discretization schemes and facilitates popular applications with built-in modes of operation and
tuning parameters. For differential and algebraic equation systems, both simultaneous and sequential
methods are built in to GEKKO. Modes of operation include data reconciliation, real-time optimization,
dynamic simulation, moving horizon estimation, and nonlinear predictive control. The back-end
compiles the model to an efficient low-level format and performs model reduction based on analysis
of the sparsity structure (incidence of variables in equations or objective function) of the model.

Sequential methods separate the problem in Equation (2) into the standard algebraic
optimization routine Equation (1) and a separate differential equation solver, where each problem
is solved sequentially. This method is popular in fields where the solution of differential equations
is extremely difficult. By separating the problems, the simulator can be fine-tuned, or wrapped in
a “black box”. Since the sequential approach is less reliable in unstable or ill-conditioned problems,
it is often adapted to a “multiple-shooting” approach to improve performance. One benefit of the
sequential approach is a guaranteed feasible solution of the differential equations, even if the optimizer
fails to find an optimum. Since GEKKO does not allow connecting to black box simulators or the
multiple-shooting approach, this feasibility of differential equation simulations is the main benefit of
sequential approaches.

The simultaneous approach, or direct transcription, minimizes the objective function and resolves
all constraints (including the discretized differential equations) simultaneously. Thus, if the solver
terminates without reaching optimality, it is likely that the equations are not satisfied and the dynamics
of the infeasible solution are incorrect—yielding a worthless rather than just suboptimal solution.
However, since simultaneous approaches do not waste time accurately simulating dynamics that are
thrown away in intermediary iterations, this approach tends to be faster for large problems with many
degrees of freedom [36]. A common discretization scheme for this approach, which GEKKO uses,
is orthogonal collocation on finite elements. Orthogonal collocation represents the state and control
variables with polynomials inside each finite element. This is a form of implicit Runga–Kutta methods,
and thus it inherits the benefits associated with these methods, such as stability. Simultaneous methods
require efficient large-scale NLP solvers and accurate problem information, such as exact second
derivatives, to perform well. GEKKO is designed to provide such information and take advantage
of the simultaneous approach’s benefits in sparsity and decomposition opportunities. Therefore,
the simultaneous approach is usually recommended in GEKKO.

GEKKO is an open-source Python library with an MIT license. The back-end Fortran routines are
not open-source, but are free to use for academic and commercial applications. It was developed by the
PRISM Lab at Brigham Young University and is in version 0.1 at the time of writing. Documentation
on the GEKKO Python syntax is available in the online documentation, currently hosted on Read
the Docs. The remainder of this text explores the paradigm of GEKKO and presents a few example
problems, rather than explaining syntax.

5.1. Novel Aspects

GEKKO combines the model development, solution, and graphical interface for problems
described by Equation (2). In this environment, differential equations with time derivatives are
automatically discretized and transformed to algebraic form (see Equation (6)) for solution by
large-scale and sparse solvers.

min
u,z

n

∑
i

J (zi, ui) (6a)

0 = f (zi, ui) ∀ i ∈ n (6b)

Processes 2018, 6, 106 6 of 26

0 ≤ g (zi, ui) ∀ i ∈ n (6c)

Collocation Equations (6d)

where n is the number of time points in the discretized time horizon, z =
[

dx
dt , x

]
is the combined

state vector, and the collocation equations are added to relate differential terms to the state values.
The collocation equations and derivation are detailed in [37]. GEKKO provides the following to an
NLP solver in sparse form:

• Variables with initial values and bounds
• Evaluation of equation residuals and objective function
• Jacobian (first derivatives) with gradients of the equations and objective function
• Hessian of the Lagrangian (second derivatives) with second derivatives of the equations

and objective
• Sparsity structure of first and second derivatives

Once the solution is complete, the results are loaded back into Python variables. GEKKO has
several modes of operation. The two main categories are steady-state solutions and dynamic solutions.
Both sequential and simultaneous modes are available for dynamic solutions. The core of all modes
is the nonlinear model, which does not change between selection of the different modes. Each mode
interacts with the nonlinear model to receive or provide information, depending on whether there
is a request for simulation, estimation, or control. Thus, once a GEKKO model is created, it can be
implemented in model parameter update (MPU), real-time optimization (RTO) [38], moving horizon
estimation (MHE), model predictive control (MPC), or steady-state or dynamic simulation modes by
setting a single option. The nine modes of operation are listed in Table 1.

Table 1. Modes of operation.

Non-Dynamic Simultaneous Dynamic Sequential Dynamic

Simulation Steady-state simulation
Simultaneous dynamic

simulation
Sequential dynamic

simulation

Estimation
Parameter regression,

Model parameter update
(MPU)

Moving horizon
estimation (MHE)

Sequential dynamic
estimation

Control Real-time optimization
(RTO)

Optimal control,
Nonlinear control

(MPC)

Sequential dynamic
optimization

There are several modeling language and analysis capabilities enabled with GEKKO. Some of
the most substantial advancements are automatic (structural analysis) or manual (user specified)
model reduction, and object support for a suite of commonly used modeling or optimization constructs.
The object support, in particular, allows the GEKKO modeling language to facilitate new application
areas as model libraries are developed.

5.2. Built-In Solvers

GEKKO has multiple high-end solvers pre-compiled and bundled with the executable program
instead of split out as a separate programs. The bundling allows out-of-the-box optimization,
without the need of compiling and linking solvers by the user. The integration provides efficient
communication between the solver and model that GEKKO creates as a human readable text file.
The model text file is then compiled to efficient byte code for tight integration between the solver and
the model. Interaction between the equation compiler and solver is used to monitor and modify the
equations for initialization [39], model reduction, and decomposition strategies. The efficient compiled

Processes 2018, 6, 106 7 of 26

byte-code model includes forward-mode automatic differentiation (AD) for sparse first and second
derivatives of the objective function and equations.

The popular open-source interior-point solver IPOPT [40] is the default solver. The custom
interior-point solver BPOPT and the MINLP active-set solver APOPT [41] are also included.
Additional solvers such as MINOS and SNOPT [42] are also integrated, but are only available with the
associated requisite licensing.

6. GEKKO Framework

Each GEKKO model is an object. Multiple models can be built and optimized within the same
Python script by creating multiple instances of the GEKKO model class. Each variable type is also an
object with property and tuning attributes. Model constraints are defined with Python variables and
Python equation syntax.

GEKKO has eight types of variables, four of which have extra properties. Constants, Parameters,
Variables, and Intermediates are the base types. Constants and Parameters are fixed by the user,
while Variables are calculated by the solver and Intermediates are updated with every iteration by
the modeling language. Fixed Variables (FV), Manipulated Variables (MV), State Variables (SV),
and Controlled Variables (CV) expand Parameters and Variables with extra attributes and features
to facilitate dynamic optimization problem formulation and robustness for real-time application use.
All variable declarations return references to a new object.

6.1. User-Defined Models

This section introduces the standard aspects of AMLs within the GEKKO paradigm.
Optimization problems are created as collections of variables, equations, and objectives.

6.1.1. Variable Types

The basic set of variable types includes Constants, Parameters, and Variables. Constants exist for
programing style and consistency. There is no functional difference between using a GEKKO Constant,
a Python variable, or a floating point number in equations. Parameters serve as constant values,
but unlike Constants, they can be (and usually are) arrays. Variables are calculated by the solver to
meet constraints and minimize the objective. Variables can be constrained to strict boundaries or
required to be integer values. Restricting Variables to integer form then requires the use of a specialized
solver (such as APOPT) that iterates with a branch-and-bound method to find a solution.

6.1.2. Equations

Equations are all solved together implicitly by the built-in optimizer. In dynamic modes,
equations are discretized across the whole time horizon, and all time points are solved simultaneously.
Common unary operators are available with their respective automatic differentiation routines such as
absolute value, exponentiation, logarithms, square root, trigonometric functions, hyperbolic functions,
and error functions. The GEKKO operands are used in model construction instead of Python Math
or NumPy functions. The GEKKO operands are required so that first and second derivatives are
calculated with automatic differentiation.

A differential term is expressed in an equation with x.dt(), where x is a Variable. Differential
terms can be on either the right or the left side of the equations, with equality or inequality constraints,
and in objective functions. Some software packages require index-1 or index-0 differential and
algebraic equation form for solution. There is no DAE index limit in GEKKO or need for consistent
initial conditions. Built-in discretization is only available in one dimension (time). Discretization of the
the differential equations is set by the user using the GEKKO model attribute time. The time attribute is
set as an array which defines the boundaries of the finite elements in the orthogonal collocation scheme.
The number of nodes used to calculate the internal polynomial of each finite element is set with a

Processes 2018, 6, 106 8 of 26

global option. However, these internal nodes only serve to increase solution accuracy since only the
values at the boundary time points are returned to the user.

Partial differential equations (PDEs) are allowed within the GEKKO environment through manual
discretization in space with vectorized notation. For example, Listing 1 shows the numerical solution
to the wave equation shown in Equation (7) through manual discretization in space and built-in
discretization in time. The simulation results are shown in Figure 1.

∂2u(x, t)
∂2t

= c2 ∂2u(x, t)
∂2x

(7)

Listing 1. PDE Example GEKKO Code with Manual Discretization in Space.

1 from gekko import GEKKO
2 import numpy as np
3
4 # I n i t i a l i z e model
5 m = GEKKO ()
6
7 # D i s c r e t i z a t i o n s (time and space)
8 m . time = np . linspace (0 , 1 , 1 0 0)
9 npx = 100

10 xpos = np . linspace (0 , 2 * np . pi , npx)
11 dx = xpos [1]−xpos [0]
12
13 # Define Var iab les
14 c = m . Const (value = 10)
15 u = [m . Var (value = np . cos (xpos [i])) f o r i in range (npx)]
16 v = [m . Var (value = np . sin (2 * xpos [i])) f o r i in range (npx)]
17
18 m . Equations ([u [i] . dt () ==v [i] f o r i in range (npx)])
19 # Manual d i s c r e t i z a t i o n in space (c e n t r a l d i f f e r e n c e)
20 m . Equation (v [0] . dt () ==c * * 2 * (u [1] − 2 . 0 * u [0] + u [npx−1])/dx * * 2)
21 m . Equations ([v [i+ 1] . dt () == c * * 2 * (u [i+2]−2.0*u [i+1]+u [i]) /dx * * 2 f o r i in range (npx−2)])
22 m . Equation (v [npx−1].dt () == c * * 2 * (u [npx−2] − 2 . 0 * u [npx−1] + u [0]) /dx * * 2)
23 # s e t opt ions
24 m . options . imode = 4
25 m . options . solver = 1
26 m . options . nodes = 3
27
28 m . solve ()

0 2 4 6
Space

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m
e

−0.96
−0.72
−0.48
−0.24
0.00
0.24
0.48
0.72
0.96

u

Figure 1. Results of wave equation PDE simulation.

Processes 2018, 6, 106 9 of 26

6.1.3. Objectives

All types of GEKKO quantities may be included in the objective function expression,
including Constants, Parameters, Variables, Intermediates, FVs, MVs, SVs, and CVs. In some modes,
GEKKO models automatically build objectives. MVs and CVs also contain objective function
contributions that are added or removed with configuration options. For example, in MPC mode, a CV
with a set point automatically receives an objective that minimizes error between model prediction
and the set point trajectory of a given norm. There may be multiple objective function expressions
within a single GEKKO model. This is often required to express multiple competing objectives in an
estimation or control problem. Although there are multiple objective expressions, all objectives terms
are summed into a single optimization expression to produce an optimal solution.

6.2. Special Variable Types

GEKKO features special variable types that facilitate the tuning of common industrial dynamic
optimization problems with numerically robust options that are efficient and easily accessible.
These special variable types are designed to improve model efficiency and simplify configuration for
common problem scenarios.

6.2.1. Intermediates

Most modeling languages only include standard variables and constraints, where all
algebraic constraints and their associated variables are solved implicitly through iterations of
the optimizer. GEKKO has a new class of variables termed Intermediates. Intermediates, and their
associated equations, are similar to variables except that they are defined and solved explicitly and
successively substituted at every solver function call. Intermediate values, first derivatives, and second
derivatives are substituted into other successive Intermediates or into the implicit equations. This is
done outside of the solver in order to reduce the number of algebraic variables while maintaining the
readability of the model. The intermediate equation must be an explicit equality. Each intermediate
equation is solved in order of declaration. All variable values used in the explicit equation come from
either the previous iteration or as an Intermediate declared previously.

In very large-scale problems, removing a portion of variables from the matrix math of implicit
solutions can reduce matrix size, keeping problems within the efficient bounds of hardware limitations.
This is especially the case with simultaneous dynamic optimization methods, where a set of model
equations are multiplied over all of the collocation nodes. For each variable reduced in the base
model, that variable is also eliminated from every collocation node. Intermediates are formulated
to be highly memory-efficient during function calls in the back-end with the use of sparse model
reduction. Intermediate variables essentially blend the benefits of sequential solver approaches into
simultaneous methods.

6.2.2. Fixed Variable

Fixed Variables (FV) inherit Parameters, but potentially add a degree of freedom and are always
fixed throughout the horizon (i.e., they are not discretized in dynamic modes). Estimated parameters,
measured disturbances, unmeasured disturbances, and feed-forward variables are all examples of
what would typically fit into the FV classification.

6.2.3. Manipulated Variable

Manipulated Variables (MV) inherit FVs but are discretized throughout the horizon and have
time-dependent attributes. In addition to absolute bounds, relative bounds such as movement (dmax),
upper movement (dmaxhi), and lower movement (dmaxlo) guide the selection by the optimizer.
Hard constraints on movement of the value are sometimes replaced with a move suppression factor
(dcost) to penalize movement of the MV. The move suppression factor is a soft constraint because

Processes 2018, 6, 106 10 of 26

it discourages movement with use of an objective function factor. cost is a penalty to minimize u
(or maximize u with a negative sign). The MV object is given in Equation (8) for an `1-norm objective.
The MV internal nodes for each horizon step are also calculated with supplementary equations based
on whether it is a first-order or zero-order hold.

min
∆u− ,∆u+

dcost (∆u− + ∆u+) + cost un (8a)

∆u = un − u1 (8b)

0 = dudt ∆t− ∆u (8c)

∆u+ − ∆u ≥ 0 (8d)

∆u− + ∆u ≥ 0 (8e)

dmaxlo ≤ ∆u ≤ dmaxhi (8f)

∆u−, ∆u+ ≥ 0 (8g)

where n is the number of nodes in each time interval, ∆u is the change of u, ∆u− is the negative change,
∆u+ is the positive change and dudt is the slope. The MV object equations and objective are different
for a squared error formulation as shown in Equation (9). The additional linear inequality constraints
for ∆u+ and ∆u− are not needed and the penalty on ∆u is squared as a move suppression factor that is
compatible in a trade-off with the squared controlled variable objective.

min
∆u

dcost ∆u2 + cost un (9a)

∆u = un − u1 (9b)

0 = dudt ∆t− ∆u (9c)

∆u ≤ dmax (9d)

Consistent with the vocabulary of the process control community, MVs are intended to be
the variables that are directly manipulated by controllers. The practical implementations are
often simplified, implemented by a distributed control system (DCS) and communicated to lower-level
controllers (such as proportional-integral-derivative controllers [PIDs]). Thus, the internal nodes of
MVs are calculated to reflect their eventual implementation. Rather than enabling each internal node
of an MV as a degree of freedom, if there are internal points (nodes ≥ 3) then there is an option
(mv_type) that controls whether the internal nodes are equal to the starting value as a zero-order hold
(mv_type = 0) or as a first-order linear interpolation between the beginning and end values of that
interval (mv_type = 1). The zero-order hold is common in discrete control where the MVs only change
at specified time intervals. A linear interpolation is desirable to avoid sudden increments in MV values
or when it is desirable to have a continuous profile. This helps match model predictions with actual
implementation. For additional accuracy or less-frequent MV changes, the MV_STEP_HOR option can
keep an MV fixed for a given number of consecutive finite elements. There are several other options
that configure the behavior of the MV. The MV is either determined by the user with status = 0 or the
optimizer at the step end points with status = 1.

6.2.4. State Variable

State Variables (SV) inherit Variables with a couple of extra attributes that control bounds
and measurements.

Processes 2018, 6, 106 11 of 26

6.2.5. Controlled Variable

Controlled Variables (CV) inherit SVs but potentially add an objective. The CV object depends
on the current mode of operation. In estimation problems, the CV object is constructed to reconcile
measured and model-predicted values for steady-state or dynamic data. In control modes, the CV
provides a setpoint that the optimizer will try to match with the model prediction values. CV model
predictions are determined by equations, not as user inputs or solver degrees of freedom.

The CV object is given in Equation (10) for an `1-norm objective for estimation. In this case,
parameter values (p) such as FVs or MVs with status = 1 are adjusted to minimize the difference
between model

(
ymodel

)
and measured values

(
ymeas

)
with weight wmeas. The states as well as

the parameters are simultaneously adjusted by the solver to minimize the objective and satisfy
the equations. There is a deadband with width measgap around the measured values to avoid fitting
noise and discourage unnecessary parameter movement. Unnecessary parameter movement is also
avoided by penalizing with weight wmodel the change (chi, clo) away from prior model predictions.

min
p

(wmeas ehi + wmeas elo + wmodel chi + wmodel clo) f status (10a)

ehi ≥ ymodel − ymeas −
measgap

2
(10b)

elo ≥ −ymodel + ymeas −
measgap

2
(10c)

chi ≥ ymodel − ŷmodel (10d)

clo ≥ −ymodel + ŷmodel (10e)

ehi, elo, chi, clo ≥ 0 (10f)

where f status is the feedback status that is 0 when the measurement is not used and 1 when the
measurement reconciliation is included in the overall objective (intermediate values between 0 and 1
are allowed to weight the impact of measurements). A measurement may be discarded for a variety
of reasons, including gross error detection and user specified filtering. For measurements from
real systems, it is critical that bad measurements are blocked from influencing the solution. If bad
measurements do enter, the `1-norm solution has been shown to be less sensitive to outliers, noise,
and drift [43].

The CV object is different for a squared-error formulation, as shown in Equation (11). The desired
norm is easily selected through a model option.

min
p

(
wmeas

(
ymodel − ymeas

)2
+ wmodel

(
ymodel − ŷmodel

)2
)

f status (11)

Important CV options are f status for estimation and status for control. These options determine
whether the CV objective terms contribute to the overall objective (1) or not (0).

In MPC, the CVs have several options for the adjusting the performance such as speed of reaching
a new set point, following a predetermined trajectory, maximization, minimization, or staying within a
specified deadband. The CV equations and variables are configured for fast solution by gradient-based
solvers, as shown in Equations (12)–(14). In these equations, trhi and trlo are the upper and lower
reference trajectories, respectively. The wsphi and wsplo are the weighting factors on upper or lower
errors and cost is a factor that either minimizes (−) or maximizes (+) within the set point deadband
between the set point range sphi and splo.

min
p

(
wsphi ehi + wsplo elo

)
+ cost ymodel (12a)

τ
dtrhi

dt
= trhi − sphi (12b)

Processes 2018, 6, 106 12 of 26

τ
dtrlo

dt
= trlo − splo (12c)

ehi ≥ ymodel − trhi (12d)

elo ≥ −ymodel + trhi (12e)

ehi, elo ≥ 0 (12f)

An alternative to Equation (12b–e) is to pose the reference trajectories as inequality constraints and
the error expressions as equality constraints, as shown in Equation (13). This is available in GEKKO
to best handle systems with dead-time in the model without overly aggressive MV moves to meet a
first-order trajectory.

min
p

(
wsphi ehi + wsplo elo

)
+ cost ymodel (13a)

τ
dymodel

dt
≤ −trhi + sphi (13b)

τ
dymodel

dt
≥ −trlo + splo (13c)

ehi = ymodel − trhi (13d)

elo = −ymodel + trhi (13e)

ehi, elo ≥ 0 (13f)

While the `1-norm objective is default for control, there is also a squared error formulation, as
shown in Equation (14). The squared error introduces additional quadratic terms but also eliminates
the need for slack variables ehi and elo as the objective is guided along a single trajectory (tr) to a set
point (sp) with priority weight (wsp).

min
p

wsp e2 + cost ymodel (14a)

τ
dtr
dt

= tr− sp (14b)

It is important to avoid certain optimization formulations to preserve continuous first and
second derivatives. GEKKO includes both MV and CV tuning with a wide range of options that
are commonly used in advanced control packages. There are also novel options that improve controller
and estimator responses for multi-objective optimization. One of these novel options is the ability
to specify a tier for MVs and CVs. The tier option is a multi-level optimization where different
combinations of MVs and CVs are progressively turned on. Once a certain level of MV is optimized,
it is turned off and fixed at the optimized values while the next rounds of MVs are optimized. This is
particularly useful to decouple the multivariate problem where only certain MVs should be used to
optimize certain CVs although there is a mathematical relationship between the decoupled variables.
Both MV and CV tuning can be employed to “tune” an application. A common trade-off for control is
the speed of CV response to set point changes versus excessive MV movement. GEKKO offers a full
suite of tuning options that are built into the CV object for control and estimation.

6.3. Extensions

Two additional extensions in GEKKO modeling are the use of Connections to link variables and
object types (such as process flow streams). As an object-oriented modeling environment, there is a
library of pre-built objects that individually consist of variables, equations, objective functions, or are
collections of other objects.

Processes 2018, 6, 106 13 of 26

6.3.1. Connections

All GEKKO variables (with the exception of FVs) and equations are discretized uniformly across
the model time horizon. This approach simplifies the standard formulation of popular dynamic
optimization problems. To add flexibility to this approach, GEKKO Connections allow custom
relationships between variables across time points and internal nodes. Connections are processed after
the parameters and variables are parsed but before the initialization of the values. Connections are
the merging of two variables or connecting specific nodes of a discretized variable or setting just one
unique point fixed to a given value.

6.3.2. Pre-Built Model Objects

The GEKKO modeling language encourages a disciplined approach to optimization. Part of this
disciplined approach is to pose well-formed optimization problems that have continuous first and
second derivatives for large-scale gradient-based solvers. An example is the use of the absolute
value function, which has a discontinuous derivative at x = 0. GEKKO features a number of
unique model objects that cannot be easily implemented through continuous equation restrictions.
By implementing these models in the Fortran back-end, the unique gradients can be hard-coded for
efficiency. The objects include an absolute value formulation, cubic splines, and discrete-time state
space models.

Cubic splines are appropriate in cases where data points are available without a clear or simple
mathematical relationship. When a high-fidelity simulator is too complex to be integrated into the
model directly, a set of points from the simulator can act as an approximation of the simulator’s
relationships. When the user provides a set of input and output values, the GEKKO back-end
builds a cubic spline interpolation function. Subsequent evaluation of the output variable in the
equations triggers a back-end routine to identify the associated cubic function and evaluate its value,
first derivatives, and second derivatives. The cubic spline results in smooth, continuous functions
suitable for gradient-based optimization.

6.4. Model Reduction, Sensitivity and Stability

Model reduction condenses the state vector x into a minimal realization that is required to solve
the dynamic optimization problem. There are two primary methods of model reduction that are
included with GEKKO, namely model construction (manual) and structural analysis (automatic).
Manual model reduction uses Intermediate variable types, which reduce the size and complexity of
the iterative solve through explicit solution and efficient memory management. Automatic model
reduction, on the other hand, is a pre-solve strategy that analyzes the problem structure to explicitly
solve simple equations. The equations are eliminated by direct substitution to condense the overall
problem size. Two examples of equation eliminations are expressions such as x = 2 and y = 2 x.
Both equations can be eliminated by fixing the values x = 2 and y = 4. The pre-solve analysis also
identifies infeasible constraints such as if y were defined with an upper bound of 3. The equation is
identified as violating a constraint before handing the problem to an NLP solver. Automatic model
reduction is controlled with the option reduce, which is zero by default. If reduce is set to a non-zero
integer value, it scans the model that many times to find linear equations and variables that can
be eliminated.

Sensitivity analysis is performed in one of two ways. The first method is to specify an option in
GEKKO (sensitivity) to generate a local sensitivity at the solution. This is performed by inverting the
sparse Jacobian at the solution [44]. The second method is to perform a finite difference evaluation of
the solution after the initial optimization problem is complete. This involves resolving the optimization
problem multiple times and calculating the resultant change in output with small perturbations in
the inputs. For dynamic problems, the automatic time-shift is turned off for sensitivity calculation to
prevent advancement of the initial conditions when the problem is solved repeatedly.

Processes 2018, 6, 106 14 of 26

Stability analysis is a well-known method for linear dynamic systems. A linear version of the
GEKKO model is available from the sparse Jacobian that is available when diaglevel ≥ 1. A linear
dynamic model is placed into a continuous, sparse state space form, as shown in Equation (15).

ẋ = Ax + Bu (15a)

y = Cx + Du (15b)

If the model can be placed in this form, the open-loop stability of the model is determined by
the sign of the eigenvalues of matrix A. Stability analysis can also be performed with the use of a
step response for nonlinear systems or with Lyapunov stability criteria that can be implemented as
GEKKO Equations.

6.5. Online Application Options

GEKKO has additional options that are tailored to online control and estimation applications.
These include meas, bias, and time_shi f t. The meas attribute facilitates loading in new measurements
in the appropriate place in the time horizon, based on the application type.

Gross error detection is critical for automation solutions that use data from physical sensors.
Sensors produce data that may be corrupted during collection or transmission, which can lead to
drift, noise, or outliers. For FV, MV, SV, and CV classifications, measured values are validated with
absolute validity limits and rate-of-change validity limits. If a validity limit is exceeded, there are
several configurable options such as “hold at the last good measured value” and “limit the rate of
change toward the potentially bad measured value”. Many industrial control systems also send a
measurement status (pstatus) that can signal when a measured value is bad. Bad measurements are
ignored in GEKKO and either the last measured value is used or else no measurement is used and the
application reverts to a model predicted value.

The value of bias is updated from meas and the unbiased model prediction (modelu). The bias
is added to each point in the horizon, and the controller objective function drives the biased model
(modelb) to the requested set point range. This is shown in Equation (16).

bias = meas−modelu (16a)

modelb = modelu + bias (16b)

The time_shi f t parameter shifts all values through time with each subsequent resolve.
This provides both accurate initial conditions for differential equations and efficient initialization
of all variables (including values of derivatives and internal nodes) through the horizon by leaning on
previous solutions.

6.6. Limitations

The main limitation of GEKKO is the requirement of fitting the problem within the modeling
language framework. Most notably, user-defined functions in external libraries or other such
connections to “black boxes” are not currently enabled. Logical conditions and discontinuous functions
are not allowed but can be reformulated with binary variables or Mathematical Programming with
Complementarity Constraints (MPCCs) [45] so they can be used in GEKKO. IF-THEN statements
are purposely not allowed in GEKKO to prevent discontinuities. Set-based operations such as
unions, exclusive OR, and others are also not supported. Regarding differential equations, only one
discretization scheme is available and it only applies in one dimension (time). Further discretizations
must be performed by the user.

The back-end Fortran routines are only compiled for Windows and Linux at this time. The routines
come bundled with the package for these operating systems to enable local solutions. MacOS and
ARM processors must use the remote solve options to offload their problems to the main server.

Processes 2018, 6, 106 15 of 26

Finally, it must be remembered that the actual optimization occurs in the bundled solvers. While
these solvers are state-of-the-art, they are not infallible. GEKKO back-end adjustments, such as scaling,
assist the solver, but it falls to the user to pose feasible problems and formulate them to promote
convergence. Knowledge of the solver algorithms allows users to pose better problems and get
better results.

7. Graphical User Interface

AML development history has moved from low-level models or text-based models to high-level
implementations (e.g., Pyomo, JuMP, and Casadi) to facilitate rapid development. The next phase of
accelerating the development process involves visual representation of the results. This is especially
important in online control and estimation applications so the operator can easily visualize and
track the application’s progress and intentions. In some modeling languages, simply loading the
optimization results into a scripting language for further processing and analysis can be difficult.
GEKKO includes a built-in graphical interface to facilitate visualizing results.

The GEKKO GUI uses Vue.js and Plotly to display optimization results quickly and easily. It also
tracks past results for MHE and MPC problems, allowing time-dependent solutions to be displayed
locally and in real-time as the iterative solution progresses. The GUI itself is implemented through a
Python webserver that retrieves and stores optimization results and a Vue.js client that queries the
Python webserver over HTTP. Polling between the client and webserver allows for live updating and
seamless communication between the client and the webserver. The GUI allows plots to be created and
deleted on demand, supporting individual visualization for variables on different scales. Model- and
variable-specific details are displayed in tables to the left of the plots (see Figure 2).

Figure 2. Sample GEKKO GUI screen for rapidly visualizing solutions.

8. Examples

This section presents a set of example GEKKO models in complete Python syntax to demonstrate
the syntax and available features. Solutions of each problem are also presented. Additional example
problems are shown in the back matter, with an example of an artificial neural network in Appendix A
and several dynamic optimization benchmark problems shown in Appendix B. Since the GEKKO
Fortran backend is the successor to APMonitor [37], the many applications of APMonitor are
also possible within this framework, including recent applications in combined scheduling and

Processes 2018, 6, 106 16 of 26

control [46], industrial dynamic estimation [43], drilling automation [47,48], combined design and
control [49], hybrid energy storage [50], batch distillation [51], systems biology [44], carbon capture [52],
flexible printed circuit boards [53], and steam distillation of essential oils [54].

8.1. Nonlinear Programming Optimization

First, problem 71 from the well-known Hock Schitkowski Benchmark set is included to facilitate
syntax comparison with other AMLs. The Python code for this problem using the GEKKO optimization
suite is shown in Listing 2.

min x1x4(x1 + x2 + x3) + x3

subject to x1x2x3x4 ≥ 25
x2

1 + x2
2 + x2

3 + x2
4 = 40

1 ≤ x1, x2, x3, x4 ≤ 5
x0 = (1, 5, 5, 1)

Listing 2. HS71 Example GEKKO Code.

1 from gekko import GEKKO
2 m = GEKKO () # I n i t i a l i z e gekko
3 # I n i t i a l i z e v a r i a b l e s
4 x1 = m . Var (1 , lb=1 ,ub=5)
5 x2 = m . Var (5 , lb=1 ,ub=5)
6 x3 = m . Var (5 , lb=1 ,ub=5)
7 x4 = m . Var (1 , lb=1 ,ub=5)
8 # Equations
9 m . Equation (x1 *x2 *x3 *x4>=25)

10 m . Equation (x1 **2+x2 **2+x3 **2+x4 **2==40)
11 m . Obj (x1 *x4 * (x1+x2+x3) +x3) # Ob jec t ive
12 m . options . IMODE = 3 # Steady s t a t e opt imizat ion
13 m . solve () # Solve
14 p r i n t (' Resu l t s ')
15 p r i n t (' x1 : ' + s t r (x1 . value))
16 p r i n t (' x2 : ' + s t r (x2 . value))
17 p r i n t (' x3 : ' + s t r (x3 . value))
18 p r i n t (' x4 : ' + s t r (x4 . value))

The output of this code is x1 = 1.0, x2 = 4.743, x3 = 3.82115, and x4 = 1.379408. This is the optimal
solution that is also confirmed by other solver solutions.

8.2. Closed-Loop Model Predictive Control

The following example demonstrates GEKKO’s online MPC capabilities, including measurements,
timeshifting, and MPC tuning. The MPC model is a generic first-order dynamic system, as shown in
Equation (17). There exists plant–model mismatch (different parameters from the “process_simulator”
function) and noisy measurements to more closely resemble a real system. The code is shown in
Listing 3 and the results are shown in Figure 3, including the CV measurements and set points and the
implemented MV moves.

τ
dy
dt

= −y + uK (17)

0 5 10 15 20 25

2

4

6

y

0 5 10 15 20 25
time

0

5

10

u

Figure 3. Results of an online MPC example.

Processes 2018, 6, 106 17 of 26

Listing 3. Closed-Loop MPC GEKKO Code.

1 from gekko import GEKKO
2 import numpy as np
3 import matplotlib . pyplot as plt
4
5 #%% MPC Model
6 c = GEKKO ()
7 c . time = np . linspace (0 , 5 , 1 1) # horizon to 5 with d i s c r e t i z a t i o n of 0 . 5
8
9 # Parameters

10 u = c . MV (lb=−10,ub=10) # input
11 K = c . Param (value=1) # gain
12 tau = c . Param (value=10) # time constant
13 # Var iab les
14 y = c . CV (1)
15 # Equations
16 c . Equation (tau * y . dt () == −y + u * K)
17 # Options
18 c . options . IMODE = 6 #MPC
19 c . options . CV_TYPE = 1 # l 1 norm
20 c . options . NODES = 3
21
22 y . STATUS = 1 # wri te MPC o b j e c t i v e
23 y . FSTATUS = 1 # r e c e i v e measurements
24 y . SPHI = 3 . 1
25 y . SPLO = 2 . 9
26
27 u . STATUS = 1 # enable opt imizat ion of MV
28 u . FSTATUS = 0 #no feedback
29 u . DCOST = 0 . 0 5 # discourage unnecessary movement
30
31 #%% Time loop
32 cycles = 50
33 time = np . linspace (0 , cycles * . 5 , cycles)
34 y_meas = np . empty (cycles)
35 u_cont = np . empty (cycles)
36
37 f o r i in range (cycles) :
38 # process
39 y_meas [i] = process_simulator (u . NEWVAL)
40
41 # c o n t r o l l e r
42 i f i == 2 4 : ##change s e t point h a l f way through
43 y . SPHI = 6 . 1
44 y . SPLO = 5 . 9
45 y . MEAS = y_meas [i]
46 c . solve (disp=False)
47 u_cont [i] = u . NEWVAL
48
49 #%% P l o t r e s u l t s
50 plt . figure ()
51 plt . subplot (2 , 1 , 1)
52 plt . plot (time , y_meas)
53 plt . ylabel (' y ')
54 plt . subplot (2 , 1 , 2)
55 plt . plot (time , u_cont)
56 plt . ylabel (' u ')
57 plt . xlabel (' time ')

8.3. Combined Scheduling and Control

The final example demonstrates an approach to combining the scheduling and control optimization
of a continuous, multi-product chemical reactor. Details regarding the model and objectives of this
problem are available in [46]. This problem demonstrates GEKKO’s ability to efficiently solve large-scale
problems, the ease of using the built-in discretization for differential equations, the applicability
of special variables and their built-in tuning to various problems, and the flexibility provided by
connections and custom objective functions. The code is shown in Listing 4 and the optimized horizons
of the process concentrations and temperatures are shown in Figure 4.

Processes 2018, 6, 106 18 of 26

Listing 4. Combined Scheduling and Control Example GEKKO Code.

1 from gekko import GEKKO
2 import numpy as np
3
4 tf = 4 8 . # horizon length , hours
5 dis = 200 # number of points in time d i s c r e t i z a t i o n
6 o = np . ones (dis)
7
8 # Define products
9 num_prod = 3

10 pCas = [0 . 3 5 , 0 . 1 2 , 0 . 2 5]
11 pdemands = [1 9 2 0 , 2880 , 2880]
12 prices = [2 . 4 , 2 . 7 , 2 . 1]
13 tol = . 0 0 5
14
15 energy_cost = 50 #USD/MWh
16 energy_price = energy_cost * tf/dis
17
18 #%% I n i t i a l i z e model
19 m = GEKKO ()
20 m . time = np . linspace (0 , tf , dis)
21
22 #%% CSTR Control Model
23 #MVs
24 Q_cool = m . MV (value=3 , lb=0 , ub=10) # kJ/s
25 q = m . MV (value=120 , lb=100 , ub=120) #m^3/s
26 # Constants
27 V = m . Param (value=400) #m^3
28 rho = m . Param (value=1000) #kg/m^3
29 Cp = m . Param (value=0.000000239) # kJ/m^3K
30 mdelH = m . Param (value = 0 . 0 5) # kJ/mol
31 ER = m . Param (value=8750) #K
32 k0 = m . Param (value = 1 . 8 * 1 0 * * 1 0) #1/s
33 UA = m . Param (value = 0 . 0 5) # kJ/sK
34 Ca0 = m . Param (value=1) #mol/m^3
35 T0 = m . Param (value=350) #K
36 rho_cool = m . Param (value=1000) #kg/m^3
37 Cp_cool = m . Param (value=0.000000239) # kJ/m^3K
38 V_jacket = m . Param (value=20) #m^3
39 q_cool = m . Param (value=200) #m^3/s
40 # Var iab les
41 Ca = m . Var (value = . 3 6 , ub=1 , lb=0) #mol/m^3
42 T = m . Var (value=378 , lb=250 , ub=500) #K
43 Tc_in = m . Var (value=o *215 , lb=30 , ub=500) #K
44 Tc = m . Var (value=o *280 , lb=200 , ub=500) #K
45 # I n i t i a l i z e v a r i a b l e s
46 Ca . value = np . linspace (0 . 3 5 , 0 . 1 2 , dis)
47 T . value = np . linspace (3 6 0 , 3 7 0 , dis)
48
49 # Equations
50 m . Equation (V * Ca . dt () == q * (Ca0−Ca)−V * (k0 *m . exp(−ER/T) *Ca))
51 m . Equation (rho *Cp *V * T . dt () == q *rho *Cp * (T0−T) + V * mdelH * (k0 *m . exp(−ER/T) *Ca) + UA * (Tc−T))
52 m . Equation (Tc . dt () == q_cool/V_jacket * (Tc_in−Tc) + UA/(V_jacket *rho *Cp) * (T−Tc))
53 m . Equation (Q_cool == −rho_cool * Cp_cool * q_cool * (Tc_in−Tc))
54 m . Equation (Q_cool <= 4)
55
56 #%% Scheduling Model
57 # scheduling v a r i a b l e s
58 prod = [m . Var (value=0 ,lb=0 ,ub=1) f o r i in range (num_prod)] # ins tantaneous production
59 amt = [m . Var (value=0) f o r i in range (num_prod)] # cumulative production
60 final_amt = [m . FV () f o r _ in range (num_prod)] # t o t a l production
61 f o r i in range (num_prod) :
62 final_amt [i] . STATUS = 1 # c a l c u l a t e d values
63 m . Connection (final_amt [i] , amt [i] , pos2= ' end ')
64
65 m . Equations ([amt [i] . dt () == prod [i] * q f o r i in range (num_prod)])
66 m . Equations ([final_amt [i] <= pdemands [i] f o r i in range (num_prod)]) #maximum demand of each product
67
68 #%% Linking Function − Product to Concentrat ion
69 m . Equations ([prod [i] * 1 0 0 * ((Ca − pCas [i]) * * 2 − tol * * 2) <= 0 f o r i in range (num_prod)])
70
71 #%% Custom Objec t ive

Processes 2018, 6, 106 19 of 26

Listing 4. Cont.

72 m . Obj(−sum(q * (prod [p]) * prices [p] f o r p in range (num_prod)) /(tf))
73
74 #%% Options
75 # Global opt ions
76 m . options . IMODE = 6
77 m . options . NODES = 2
78 m . options . MV_TYPE = 0
79 m . options . MV_DCOST_SLOPE = 0
80 #MV tuning
81 Q_cool . STATUS = 1
82 Q_cool . DMAX = 0 . 3 6
83 Q_cool . DCOST = 0 .003
84 Q_cool . COST = energy_price/tf
85 q . STATUS=1
86 q . DCOST = 0 .0001
87
88 #%% Solve
89 m . solve (GUI=True)

0 10 20 30 40
360

370

380

T

0 10 20 30 40
time

0.2

0.3

Ca

Figure 4. Combined scheduling and control problem results.

9. Conclusions

GEKKO is presented as a fully-featured AML in Python for LP, QP, NLP, MILP, and MINLP
applications. Features such as AD and automatic ODE discretization using orthogonal collocation on
finite elements and bundled large-scale solvers make GEKKO efficient for large problems. Further,
GEKKO’s specialization in dynamic optimization problems is explored. Special variable types,
built-in tuning, pre-built objects, result visualization, and model-reduction techniques are addressed
to highlight the unique strengths of GEKKO. A few examples are presented in Python GEKKO
syntax for comparison to other packages and to demonstrate the simplicity of GEKKO, the flexibility
of GEKKO-created models, and the ease of accessing the built-in special variables types and
tuning options.

Author Contributions: L.D.R.B. developed the Python code; D.C.H. developed the GUI; J.D.H. developed the
Fortran backend; and R.A.M. provided assistance in all roles. All authors contributed in writing the paper.

Funding: This research was funded by National Science Foundation grant number 1547110.

Acknowledgments: Contributions made by Damon Peterson and Nathaniel Gates are gratefully acknowledged.

Conflicts of Interest: The authors are the principle developers of GEKKO, an open-source Python package.
The Fortran backend belongs to Advanced Process Solutions, LLC which is associated with J.D.H. The founding
sponsors had no role in the development of GEKKO; in the writing of the manuscript, and in the decision to
publish the results.

Processes 2018, 6, 106 20 of 26

Abbreviations

The following abbreviations are used in this manuscript:

AML Algebraic Modeling Language
DAE Differential and Algebraic Equations
NMPC Nonlinear Model Predictive Control
RTO Real-Time Optimization
MHE Moving Horizon Estimation
ML Machine Learning
ANN Artificial Neural Networks
AD Automatic (or Algorithmic) Differentiation
ODE Ordinary Differential Equations
PDE Partial Differential Equations
MPC Model Predictive Control
EMPC Economic Model Predictive Control
DRTO Dynamic Real-Time Optimization
ASL AMPL Solver Library
LP Linear Programming
QP Quadratic Programming
NLP Non-Linear Programming
MILP Mixed-Integer Linear Programming
MINLP Mixed-Integer Non-Linear Programming
MPU Model Parameter Update
FV Fixed Variable
MV Manipulated Variable
SV State Variable
CV Controlled Variable
DCS Distributed Control System
GUI Graphical User Interface
MPCC Mathematical Programming with Complementarity Constraints

Appendix A. Machine Learning with Artificial Neural Network

Machine learning has several areas of application, including regression and classification.
This example problem is a simple case study that demonstrates GEKKO’s ability to create an artificial
neural network, solved with a gradient based optimizer (IPOPT). In this case, the function y = sin(x)
is used to generate 20 equally spaced sample points between 0 and 2 π. These data are used to train
the neural network with one input, a linear layer with two nodes, a nonlinear layer of three nodes
with hyperbolic tangent activation functions, a linear layer with two nodes, and one output node.
An overview of the neural network is shown in Figure A1, with a sample GEKKO implementation in
Listing A1 and results in Figure A2.

Listing A1. ANN Sample GEKKO Code.

1 from gekko import GEKKO
2 import numpy as np
3 import matplotlib . pyplot as plt
4
5 # generate t r a i n i n g data
6 x = np . linspace (0 . 0 , 2 * np . pi , 2 0)
7 y = np . sin (x)
8
9 # neural network s t r u c t u r e

10 n1 = 2 # hidden l a y e r 1 (l i n e a r)
11 n2 = 3 # hidden l a y e r 2 (nonl inear)
12 n3 = 2 # hidden l a y e r 3 (l i n e a r)
13
14 # I n i t i a l i z e gekko

Processes 2018, 6, 106 21 of 26

Listing A1. Cont.

15 m = GEKKO ()
16
17 # input (s)
18 m . inpt = m . Param (x)
19
20 # l a y e r 1
21 m . w1 = m . Array (m . FV , (1 , n1) , value=1)
22 m . l1 = [m . Intermediate (m . w1 [0 , i] * m . inpt) f o r i in range (n1)]
23
24 # l a y e r 2
25 m . w2a = m . Array (m . FV , (n1 , n2) , value=1)
26 m . w2b = m . Array (m . FV , (n1 , n2) , value = 0 . 5)
27 m . l2 = [m . Intermediate (sum ([m . tanh (m . w2a [j , i]+m . w2b [j , i] * m . l1 [j]) \
28 f o r j in range (n1)])) f o r i in range (n2)]
29
30 # l a y e r 3
31 m . w3 = m . Array (m . FV , (n2 , n3) , value=1)
32 m . l3 = [m . Intermediate (sum ([m . w3 [j , i] * m . l2 [j] f o r j in range (n2)])) f o r i in range (n3)]
33
34 # output (s)
35 m . outpt = m . CV (y)
36 m . Equation (m . outpt==sum ([m . l3 [i] f o r i in range (n3)]))
37
38 # f l a t t e n matr ices
39 m . w1 = m . w1 . flatten ()
40 m . w2a = m . w2a . flatten ()
41 m . w2b = m . w2b . flatten ()
42 m . w3 = m . w3 . flatten ()
43
44 # F i t parameter weights
45 m . outpt . FSTATUS = 1
46 f o r i in range (len (m . w1)) :
47 m . w1 [i] . STATUS=1
48 f o r i in range (len (m . w2a)) :
49 m . w2a [i] . STATUS=1
50 m . w2b [i] . STATUS=1
51 f o r i in range (len (m . w3)) :
52 m . w3 [i] . STATUS=1
53 m . options . IMODE = 2
54 m . options . EV_TYPE = 2
55 m . solve (disp=False)
56
57 # Test sample points
58 f o r i in range (len (m . w1)) :
59 m . w1 [i] . STATUS=0
60 f o r i in range (len (m . w2a)) :
61 m . w2a [i] . STATUS=0
62 m . w2b [i] . STATUS=0
63 f o r i in range (len (m . w3)) :
64 m . w3 [i] . STATUS=0
65
66 m . inpt . value=np . linspace (−2*np . pi , 4 * np . pi , 1 0 0)
67 m . options . IMODE = 2
68 m . solve (disp=False)
69
70 # P l o t
71 plt . figure ()
72 plt . plot (x , y , ' bo ' , label= ' data ')
73 plt . plot (m . inpt . value , m . outpt . value , ' r− ' , label= 'ANN f i t ')
74 plt . ylabel (' Output (y) ')
75 plt . xlabel (' Input (x) ')
76 plt . legend ()

Processes 2018, 6, 106 22 of 26

Input (u)

Node 1

Node 2

Node 1

Node 2

Linear Hidden
Layer

Input
Nonlinear
Activation
Function

Output (y)

Output

Node 3

Node 1

Node 2

Linear Hidden
Layer

Figure A1. Neural network structure.

−5 0 5 10
Input (x)

−7.5

−5.0

−2.5

0.0

2.5

5.0

Ou
tp
ut
 (y

)

data
ANN fit

Figure A2. Artificial neural network approximates y = sin(x) function.

Appendix B. Dynamic Optimization Example Problems

The following three problems are examples of GEKKO used in solving classic dynamic
optimization problems that are frequently used as benchmarks. The first example problem is a basic
problem with a single differential equation, integral objective function, and specified initial condition,
as shown in Listing A2. The second example problem is an example of a dynamic optimization problem
that uses an economic objective function, similar to EMPC but without the iterative refinement as
time progresses, as shown in Listing A3. The third example is a dynamic optimization problem that
minimizes final time with fixed endpoint conditions, as shown in Listing A4.

Processes 2018, 6, 106 23 of 26

Original Form
minu

1
2

∫ 2
0 x2

1(t) dt
subject to
dx1
dt = u

x1(0) = 1
−1 ≤ u(t) ≤ 1
Equivalent Form for GEKKO

minu x2

(
t f

)
subject to
dx1
dt = u

dx2
dt = 1

2 x2
1(t)

x1(0) = 1
x2(0) = 0
t f = 2
−1 ≤ u(t) ≤ 1

Listing A2. Luus Problem: Integral Objective.

1 import numpy as np
2 import matplotlib . pyplot as plt
3 from gekko import GEKKO
4 m = GEKKO () # i n i t i a l i z e gekko
5 nt = 101
6 m . time = np . linspace (0 , 2 , nt)
7 # Var iab les
8 x1 = m . Var (value=1)
9 x2 = m . Var (value=0)

10 u = m . Var (value=0 ,lb=−1,ub=1)
11 p = np . zeros (nt) # mark f i n a l time point
12 p [−1] = 1 . 0
13 final = m . Param (value=p)
14 # Equations
15 m . Equation (x1 . dt () ==u)
16 m . Equation (x2 . dt () ==0.5*x1 * * 2)
17 m . Obj (x2 * final) # Ob jec t ive funct ion
18 m . options . IMODE = 6 # optimal c o n t r o l mode
19 m . solve () # solve
20 plt . figure (1) # p l o t r e s u l t s
21 plt . plot (m . time , x1 . value , ' k− ' , label=r ' x1 ')
22 plt . plot (m . time , x2 . value , ' b− ' , label=r ' x2 ')
23 plt . plot (m . time , u . value , ' r−− ' , label=r ' u ')
24 plt . legend (loc= ' bes t ')
25 plt . xlabel (' Time ')
26 plt . ylabel (' Value ')
27 plt . show ()

Original Form

maxu(t)
∫ 10

0

(
E− c

x

)
u Umax dt

subject to
dx
dt = r x(t)

(
1− x(t)

k

)
− u Umax

x(0) = 70
0 ≤ u(t) ≤ 1
E = 1, c = 17.5, r = 0.71
k = 80.5, Umax = 20
Equivalent Form for GEKKO

minu(t)−J
(

t f

)
subject to
dx
dt = r x(t)

(
1− x(t)

k

)
− u Umax

dJ
dt =

(
E− c

x

)
u Umax

x(0) = 70
J(0) = 0
0 ≤ u(t) ≤ 1
t f = 10, E = 1, c = 17.5
r = 0.71, k = 80.5, Umax = 20

Listing A3. Commercial Fishing Dynamic Optimization.

1 from gekko import GEKKO
2 import numpy as np
3 import matplotlib . pyplot as plt
4 # c r e a t e GEKKO model
5 m = GEKKO ()
6 # time points
7 n=501
8 m . time = np . linspace (0 , 1 0 , n)
9 # cons tants

10 E , c , r , k , U_max = 1 , 1 7 . 5 , 0 . 7 1 , 8 0 . 5 , 2 0
11 # f i s h i n g r a t e
12 u = m . MV (value=1 ,lb=0 ,ub=1)
13 u . STATUS = 1
14 u . DCOST = 0
15 x = m . Var (value=70) # f i s h population
16 # f i s h population balance
17 m . Equation (x . dt () == r *x*(1−x/k)−u * U_max)
18 J = m . Var (value=0) # o b j e c t i v e (p r o f i t)
19 Jf = m . FV () # f i n a l o b j e c t i v e
20 Jf . STATUS = 1
21 m . Connection (Jf , J , pos2= ' end ')
22 m . Equation (J . dt () == (E−c/x) *u * U_max)
23 m . Obj(−Jf) # maximize p r o f i t
24 m . options . IMODE = 6 # optimal c o n t r o l
25 m . options . NODES = 3 # c o l l o c a t i o n nodes
26 m . options . SOLVER = 3 # s o l v e r (IPOPT)
27 m . solve () # Solve
28 p r i n t (' Optimal P r o f i t : ' + s t r (Jf . value [0]))
29 plt . figure (1) # p l o t r e s u l t s
30 plt . subplot (2 , 1 , 1)
31 plt . plot (m . time , J . value , ' r−− ' , label= ' p r o f i t ')
32 plt . plot (m . time , x . value , ' b− ' , label= ' f i s h ')
33 plt . legend ()
34 plt . subplot (2 , 1 , 2)
35 plt . plot (m . time , u . value , ' k.− ' , label= ' r a t e ')
36 plt . xlabel (' Time (yr) ')
37 plt . legend ()
38 plt . show ()

Processes 2018, 6, 106 24 of 26

Original Form
minu(t) t f
subject to
dx1
dt = u

dx2
dt = cos

(
x1(t)

)
dx3
dt = sin

(
x1(t)

)
x(0) = [π/2, 4, 0]
x2

(
t f

)
= 0

x3

(
t f

)
= 0

−2 ≤ u(t) ≤ 2
Equivalent Form for GEKKO
minu(t),t f

t f
subject to
dx1
dt = t f u

dx2
dt = t f cos

(
x1(t)

)
dx3
dt = t f sin

(
x1(t)

)
x(0) = [π/2, 4, 0]
x2

(
t f

)
= 0

x3

(
t f

)
= 0

−2 ≤ u(t) ≤ 2

Listing A4. Jennings Problem: Minimize Final Time.

1 import numpy as np
2 from gekko import GEKKO
3 import matplotlib . pyplot as plt
4 m = GEKKO () # i n i t i a l i z e GEKKO
5 nt = 501
6 m . time = np . linspace (0 , 1 , nt)
7 # Var iab les
8 x1 = m . Var (value=np . pi/ 2 . 0)
9 x2 = m . Var (value = 4 . 0)

10 x3 = m . Var (value = 0 . 0)
11 p = np . zeros (nt) # f i n a l time = 1
12 p [−1] = 1 . 0
13 final = m . Param (value=p)
14 # optimize f i n a l time
15 tf = m . FV (value = 1 . 0 , lb= 0 . 1 , ub= 1 0 0 . 0)
16 tf . STATUS = 1
17 # c o n t r o l changes every time period
18 u = m . MV (value=0 ,lb=−2,ub=2)
19 u . STATUS = 1
20 m . Equation (x1 . dt () ==u *tf)
21 m . Equation (x2 . dt () ==m . cos (x1) *tf)
22 m . Equation (x3 . dt () ==m . sin (x1) *tf)
23 m . Equation (x2 *final<=0)
24 m . Equation (x3 *final<=0)
25 m . Obj (tf)
26 m . options . IMODE = 6
27 m . solve ()
28 p r i n t (' F i n a l Time : ' + s t r (tf . value [0]))
29 tm = np . linspace (0 , tf . value [0] , nt)
30 plt . figure (1)
31 plt . plot (tm , x1 . value , ' k− ' , label=r ' x1 ')
32 plt . plot (tm , x2 . value , ' b− ' , label=r ' x2 ')
33 plt . plot (tm , x3 . value , ' g−− ' , label=r ' x3 ')
34 plt . plot (tm , u . value , ' r−− ' , label=r ' u ')
35 plt . legend (loc= ' bes t ')
36 plt . xlabel (' Time ')
37 plt . show ()

References

1. Nyström, R.H.; Franke, R.; Harjunkoski, I.; Kroll, A. Production campaign planning including grade
transition sequencing and dynamic optimization. Comput. Chem. Eng. 2005, 29, 2163–2179. [CrossRef]

2. Touretzky, C.R.; Baldea, M. Integrating scheduling and control for economic MPC of buildings with energy
storage. J. Process Control 2014, 24, 1292–1300. [CrossRef]

3. Powell, K.M.; Cole, W.J.; Ekarika, U.F.; Edgar, T.F. Dynamic optimization of a campus cooling system with
thermal storage. In Proceedings of the 2013 European Control Conference (ECC), Zurich, Switzerland,
17–19 July 2013; pp. 4077–4082.

4. Pontes, K.V.; Wolf, I.J.; Embiruçu, M.; Marquardt, W. Dynamic Real-Time Optimization of Industrial
Polymerization Processes with Fast Dynamics. Ind. Eng. Chem. Res. 2015, 54, 11881–11893. [CrossRef]

5. Zhuge, J.; Ierapetritou, M.G. Integration of Scheduling and Control with Closed Loop Implementation.
Ind. Eng. Chem. Res. 2012, 51, 8550–8565. [CrossRef]

6. Beal, L.D.; Park, J.; Petersen, D.; Warnick, S.; Hedengren, J.D. Combined model predictive control and
scheduling with dominant time constant compensation. Comput. Chem. Eng. 2017, 104, 271–282. [CrossRef]

7. Huang, R.; Zavala, V.M.; Biegler, L.T. Advanced step nonlinear model predictive control for air
separation units. J. Process Control 2009, 19, 678–685. [CrossRef]

8. Zavala, V.M.; Biegler, L.T. Optimization-based strategies for the operation of low-density polyethylene
tubular reactors: Moving horizon estimation. Comput. Chem. Eng. 2009, 33, 379–390. [CrossRef]

9. Rall, L.B. Automatic Differentiation: Techniques and Applications; Lecture Notes in Computer Science; Springer:
Berlin, Germany, 1981; Volume 120.

10. Cervantes, A.; Biegler, L.T. Optimization Strategies for Dynamic Systems. In Encyclopedia of Optimization;
Floudas, C., Pardalos, P., Eds.; Kluwer Academic Publishers: Plymouth, MA, USA, 1999.

Processes 2018, 6, 106 25 of 26

11. Bock, H.; Plitt, K. A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems*.
In Proceedings of the 9th IFAC World Congress: A Bridge Between Control Science and Technology,
Budapest, Hungary, 2–6 July 1984; Volume 17, pp. 1603–1608.

12. Lorenz, T. Biegler. Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes; Siam:
Philadelphia, PA, USA, 2010.

13. Ross, I.M.; Karpenko, M. A review of pseudospectral optimal control: From theory to flight. Ann. Rev. Control
2012, 36, 182–197. [CrossRef]

14. Qin, S.J.; Badgwell, T.A. A survey of industrial model predictive control technology. Control Eng. Pract. 2003,
11, 733–764. [CrossRef]

15. Findeisen, R.; Allgöwer, F.; Biegler, L. Assessment and Future Directions of Nonlinear Model Predictive Control;
Springer: Berlin, Germany, 2007; Volume 358, p. 642.

16. Ellis, M.; Durand, H.; Christofides, P.D. A tutorial review of economic model predictive control methods.
J. Proc. Control 2014, 24, 1156–1178. [CrossRef]

17. Ji, L.; Rawlings, J.B. Application of MHE to large-scale nonlinear processes with delayed lab measurements.
Comput. Chem. Eng. 2015, 80, 63–72. [CrossRef]

18. Würth, L.; Rawlings, J.B.; Marquardt, W. Economic dynamic real-time optimization and nonlinear model
predictive control on infinite horizons. Symp. Adv. Control 2009, 42, 219–224. [CrossRef]

19. Hart, W.E.; Laird, C.; Watson, J.P.; Woodruff, D.L. Pyomo–Optimization Modeling in Python; Springer
International Publishing: Cham, Switerland, 2012; Volume 67.

20. Dunning, I.; Huchette, J.; Lubin, M. JuMP: A modeling language for mathematical optimization. SIAM Rev.
2017, 59, 295–320. [CrossRef]

21. Andersson, J.; Åkesson, J.; Diehl, M. CasADi: A symbolic package for automatic differentiation and optimal
control. In Recent Advances in Algorithmic Differentiation; Springer: Berlin, Germany, 2012; pp. 297–307.

22. Bisschop, J.; Meeraus, A. On the development of a general algebraic modeling system in a strategic planning
environment. In Applications; Springer: Berlin, Germany, 1982; pp. 1–29.

23. Fourer, R.; Gay, D.; Kernighan, B. AMPL; A Modeling Language for Mathematical Programming; Boyd &
Fraser Pub. Co.: Danvers, MA, USA, 1993.

24. Barton, P.I.; Pantelides, C. gPROMS-A combined discrete/continuous modelling environment for chemical
processing systems. Simul. Ser. 1993, 25, 25–25.

25. Åkesson, J.; Årzén, K.E.; Gäfvert, M.; Bergdahl, T.; Tummescheit, H. Modeling and optimization with
Optimica and JModelica. org—Languages and tools for solving large-scale dynamic optimization problems.
Comput. Chem. Eng. 2010, 34, 1737–1749. [CrossRef]

26. Houska, B.; Ferreau, H.J.; Diehl, M. ACADO toolkit—An open-source framework for automatic control and
dynamic optimization. Opt. Control Appl. Meth. 2011, 32, 298–312. [CrossRef]

27. Ross, I.M. User’s Manual for DIDO: A MATLAB Application Package for Solving Optimal Control Problems;
Tomlab Optimization: Vasteras, Sweden, 2004; p. 65.

28. Patterson, M.A.; Rao, A.V. GPOPS-II: A MATLAB software for solving multiple-phase optimal control
problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming.
ACM Trans. Math. Softw. 2014, 41. [CrossRef]

29. Rutquist, P.E.; Edvall, M.M. Propt-Matlab Optimal Control Software; Tomlab Optimization Inc.: Pullman, WA,
USA, 2010; p. 260.

30. Becerra, V.M. Solving complex optimal control problems at no cost with PSOPT. In Proceedings of the 2010
IEEE International Symposium on Computer-Aided Control System Design (CACSD), Yokohama, Japan,
8–10 September 2010; pp. 1391–1396.

31. Bisschop, J. AIMMS—Optimization Modeling; Paragon Decision Technology: Kirkland, WA, USA, 2006.
32. Grant, M.; Boyd, S. Graph implementations for nonsmooth convex programs. In Recent Advances in Learning

and Control; Blondel, V.; Boyd, S.; Kimura, H., Eds.; Lecture Notes in Control and Information Sciences,
Springer: Berlin, Germany, 2008; pp. 95–110.

33. Andersen, M.; Dahl, J.; Liu, Z.; Vandenberghe, L. Interior-point methods for large-scale cone programming.
Optim. Mach. Learn. 2011, 5583, 55–83.

34. Löfberg, J. YALMIP: A Toolbox for Modeling and Optimization in MATLAB. In Proceedings of the
CACSD Conference, Taipei, Taiwan, 2–4 September 2004.

Processes 2018, 6, 106 26 of 26

35. Mitchell, S.; Consulting, S.M.; Dunning, I. PuLP: A Linear Programming Toolkit for Python; The University of
Auckland: Auckland, New Zealand, 2011.

36. Biegler, L.T. An overview of simultaneous strategies for dynamic optimization. Chem. Eng. Proc. Proc. Intensif.
2007, 46, 1043–1053. [CrossRef]

37. Hedengren, J.D.; Shishavan, R.A.; Powell, K.M.; Edgar, T.F. Nonlinear modeling, estimation and predictive
control in APMonitor. Comput. Chem. Eng. 2014, 70, 133–148. [CrossRef]

38. De Souza, G.; Odloak, D.; Zanin, A.C. Real time optimization (RTO) with model predictive control (MPC).
Comput. Chem. Eng. 2010, 34, 1999–2006. [CrossRef]

39. Safdarnejad, S.M.; Hedengren, J.D.; Lewis, N.R.; Haseltine, E.L. Initialization strategies for optimization of
dynamic systems. Comput. Chem. Eng. 2015, 78, 39–50. [CrossRef]

40. Waechter, A.; Biegler, L.T. On the Implementation of a Primal-Dual Interior Point Filter Line Search Algorithm
for Large-Scale Nonlinear Programming. Math. Program. 2006, 106, 25–57. [CrossRef]

41. Hedengren, J.; Mojica, J.; Cole, W.; Edgar, T. APOPT: MINLP Solver for Differential and Algebraic
Systems with Benchmark Testing. In Proceedings of the INFORMS National Meeting, Phoenix, AZ, USA,
14–17 October 2012.

42. Gill, P.E.; Murray, W.; Saunders, M.A. SNOPT: An SQP algorithm for large-scale constrained optimization.
SIAM Rev. 2005, 47, 99–131. [CrossRef]

43. Hedengren, J.D.; Eaton, A.N. Overview of Estimation Methods for Industrial Dynamic Systems. Optim. Eng.
2017, 18, 155–178. [CrossRef]

44. Lewis, N.R.; Hedengren, J.D.; Haseltine, E.L. Hybrid Dynamic Optimization Methods for Systems Biology
with Efficient Sensitivities. Processes 2015, 3, 701–729. [CrossRef]

45. Powell, K.M.; Eaton, A.N.; Hedengren, J.D.; Edgar, T.F. A Continuous Formulation for Logical Decisions in
Differential Algebraic Systems using Mathematical Programs with Complementarity Constraints. Processes
2016, 4, 7. [CrossRef]

46. Beal, L.D.; Petersen, D.; Grimsman, D.; Warnick, S.; Hedengren, J.D. Integrated scheduling and control in
discrete-time with dynamic parameters and constraints. Comput. Chem. Eng. 2018, 115, 361–376. [CrossRef]

47. Eaton, A.N.; Beal, L.D.; Thorpe, S.D.; Hubbell, C.B.; Hedengren, J.D.; Nybø, R.; Aghito, M. Real time model
identification using multi-fidelity models in managed pressure drilling. Comput. Chem. Eng. 2017, 97, 76–84.
[CrossRef]

48. Park, J.; Webber, T.; Shishavan, R.A.; Hedengren, J.D.; others. Improved Bottomhole Pressure Control with
Wired Drillpipe and Physics-Based Models. In Proceedings of the SPE/IADC Drilling Conference and
Exhibition, Society of Petroleum Engineers, The Hague, The Netherlands, 14–16 March 2017.

49. Mojica, J.L.; Petersen, D.; Hansen, B.; Powell, K.M.; Hedengren, J.D. Optimal combined long-term facility
design and short-term operational strategy for CHP capacity investments. Energy 2017, 118, 97–115.
[CrossRef]

50. Safdarnejad, S.M.; Hedengren, J.D.; Baxter, L.L. Dynamic optimization of a hybrid system of energy-storing
cryogenic carbon capture and a baseline power generation unit. Appl. Energy 2016, 172, 66–79. [CrossRef]

51. Safdarnejad, S.M.; Gallacher, J.R.; Hedengren, J.D. Dynamic parameter estimation and optimization for
batch distillation. Comput. Chem. Eng. 2016, 86, 18–32. [CrossRef]

52. Safdarnejad, S.M.; Hedengren, J.D.; Baxter, L.L. Plant-level dynamic optimization of Cryogenic Carbon
Capture with conventional and renewable power sources. Appl. Energy 2015, 149, 354–366. [CrossRef]

53. DeFigueiredo, B.; Zimmerman, T.; Russell, B.; Howell, L.L. Regional Stiffness Reduction Using Lamina
Emergent Torsional Joints for Flexible Printed Circuit Board Design. J. Electron. Packag. 2018. [CrossRef]

54. Valderrama, F.; Ruiz, F. An optimal control approach to steam distillation of essential oils from
aromatic plants. Comput. Chem. Eng. 2018, 117, 25–31. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

