CSCHE 2017

Modeling and Simulation of Integrated Methane Reforming and Nuclear Heat systems

Leila Hoseinzade

Dr. Thomas A. Adams II

Department of Chemical Engineering McMaster University

Oct 24-2017

Introduction

- Global pressure to reduce GHG emissions \geq
- High demand for the liquid fuels
- Biomass is a sustainable feedstock and abundant in Ontario \geq
- Advantages of nuclear heat integration: \geq
 - High efficiency
 - Zero CO₂ emissions
- Steam Methane Reforming (SMR) process is highly energy intensive \geq
- Integrated nuclear heat/SMR process requires a detailed analysis \geq

McMaster

Integrated HTGR/Steam Methane Reforming (SMR) system

Model Fitting Using Two Pilot Scale Facility Design Data

Design Specifications

o		
Specification	IVIOCK-UP facility	HTTR facility
	Таспітсу	тастису
Process gas		
conditions		
Inlet P	4.3 MPa	4.5 MPa
Inlet T	450 °C	450 °C
NG feed rate	43.2 kg/h	1296 kg/h
S/C	3.5	3.5
Outlet T	600 °C	580 °C
Helium gas		
conditions		
Inlet P	4.0 MPa	4.1 MPa
Inlet T	880 °C	880 °C
Feed rate	327.6 kg/h	8748 kg/h
Outlet T	650 °C	580 °C
Hydrogen	120 Nm³/h	4200 Nm ³ /h
product		
Heat transfer	420 kW	10 MW
duty		

Design data sources: 1. Inagaki, Y., et al. No. IAEA-TECDOC--1210. 2001. 2. Yan, XL. et al. CRC Press ,2016.

Hoseinzade & Adams

Model Fitting Using Two Pilot Scale Facility Design Data

Design Parameters

Parameter	Mock-up	HTTR
Number of tubes	1	30
Catalyst type	Ni- alumina	Ni- alumina
Tube materials	Incoloy 800H	Incoloy 800 H
Tube length	6.54 (m)	6.54 (m)
Tube thickness	1 (cm)	1 (cm)
Tube inner diameter	12.8 (cm)	12.8 (cm)
Inner tube diameter	5.72 (cm)	5.72 (cm)
Catalyst particle diameter	1.2 (cm)	1.2 (cm)
Refractory inner diameter	16.2 (cm)	86 (cm)

Design data sources: 1. Inagaki, Y., et al. No. IAEA-TECDOC--1210. 2001. 2. Yan, XL. et al. CRC Press ,2016.

Hoseinzade & Adams

Large Scale Design Results

Design specification source: Yan, XL. et al. Nuclear hydrogen production handbook. CRC Press, 2016.

Large Scale Design Results

Extra separation cost for
 FT applications is required

A Redesign for Syngas Production for FT Applications

Integrated HTGR/Mixed Reforming of Methane (MRM) system

Advantages of MRM over SMR:

- There is potential to reduce CO₂ emissions
- Proper H₂/CO ratios for FT synthesis can be achieved

```
Mixed reforming reactions:

CH_4 + H_20 \rightleftharpoons CO + 3H_2

CO + H_20 \rightleftharpoons CO_2 + H_2

CH_4 + 2H_20 \rightleftharpoons CO_2 + 4H_2

CH_4 + CO_2 \rightleftharpoons 2CO + 2H_2
```


MRM model validation using lab scale data sets at non-equilibrium condition

- Shell side model was validated for the HTGR/SMR system
- No experimental data on the HTGR/MRM exists
- Some lab scale experimental data are available for the MRM process

Average absolute error of prediction for:

- \blacktriangleright CO₂ conversion: 2%
- \blacktriangleright CH₄ conversion: 4.35%
- H_2/CO ratio: 0.183

Experimental data source: Park, N., et al. Fuel 115 (2014): 357-365

Hoseinzade & Adams

Model Validation

Parity plot for MRM model validation using lab scale data sets at equilibrium/non-equilibrium conditions

Experimental data source: Jun H. J., et al. Nat. Gas Chem. 20 (2011): 9-17.

Hoseinzade & Adams

CSCHE 2017

10

Results of the Redesign for Syngas Production

composition profiles of different component at steady state conditions

- With the given feed ratios, a H₂/CO ratio of 1.7 was achieved
- Desired syngas ratio for the FT applications can be achieved using MRM process
- Also, 27% of CO₂ is consumed and converted to valuable products

Conclusions

- A dynamic model was developed for the integrated HTGR/methane reforming system based on first principles.
- The model was validated using reported design/experimental data.
- Integrated HTGR/SMR is an efficient process for hydrogen production.
- Desired H₂/CO ratios and lower CO₂ emissions can be achieved by redesigning the HTGR/SMR system.
- A Life cycle analysis is required to determine the environmental impacts of HTGR/SMR and its redesign.
- The presented model is useful to address the challenges in the applications of integrated HTGR/MRM and HTGR/SMR systems.

Acknowledgments

- Ontario Ministry of Innovation Early Researcher Award
- McMaster Advanced Control Consortium

cMaster