ESCAPE 28

Combining Biomass, Natural Gas, Carbonless Heat to produce liquid fuels

Leila Hoseinzade

Dr. Thomas A. Adams II

Department of Chemical Engineering McMaster University

June 12 - 2018

Introduction

- Global pressure to reduce greenhouse gas emissions
- Energy security
- Generally high oil prices
- Abundant biomass resources in Ontario province of Canada
- Strong nuclear capabilities and resources in Ontario province of Canada

Integrated HTGR/Steam Methane Reforming (SMR) system

Hoseinzade & Adams

Model Fitting Using Two Pilot Scale Facility Design Data

Design data sources: 1. Inagaki, Y., et al. No. IAEA-TECDOC--1210. 2001. 2. Yan, XL. et al. CRC Press ,2016.

Hoseinzade & Adams

ESCAPE 28

Model Fitting Using Two Pilot Scale Facility Design Data

Parameter	Mock-up	HTTR
Number of tubes	1	30
Catalyst type	Ni-alumina	Ni- alumina
Tube materials	Incoloy 800H	Incoloy 800 H
Tube length	6.54 (m)	6.54 (m)
Tube thickness	1 (cm)	1 (cm)
Tube inner diameter	12.8 (cm)	12.8 (cm)
Inner tube diameter	5.72 (cm)	5.72 (cm)
Catalyst particle diameter	1.2 (cm)	1.2 (cm)
Refractory inner diameter	16.2 (cm)	86 (cm)

Design Parameters

Design data sources: 1. Inagaki, Y., et al. No. IAEA-TECDOC--1210. 2001. 2. Yan, XL. et al. CRC Press ,2016.

Hoseinzade & Adams

ESCAPE 28

5

Large Scale Design Results

Shell, tube and inner tube temperature and methane conversion profiles at steady state condition S **Direction of flow** 1200 Shell side Temperature (K) Ν 1000 Outer tube Τu Cooling duty: Inner tube Τu 72.9 MW Direction of flow 800 Τu CH_4 conversion: Τu 73% 600 Pr 12 14 2 10 6 8 0 4 Axial position along reactor length (m) 100 CH₄ Conversion (%) 50 H 0 Feed rate 0 2 8 10 12 14 4 6 Axial position along reactor length (m)

Design Specification		
pecification	Large scale design	
umber of tubes	199	
ube outer diameter	12 (cm)	
ube thickness	1 (cm)	
ube length	14 (m)	
ube materials	Incoloy 617	
rocess gas conditions		
Inlet P	5.6 MPa	
Inlet T	347 °C	
Feed rate	34.8 kg/s	
S/C	4	
elium gas conditions		
Inlet P	4.987 MPa	
Inlet T	950 °C	

Design specification source: Yan, XL. et al. Nuclear hydrogen production handbook. CRC Press, 2016.

50.3 kg/s

Large Scale Design Results

- High steam to carbon ratio in the feed is required for higher methane conversion
- It causes high H₂/CO ratios in the product
- The desired H₂/CO ratio for Fischer-Tropsch (FT) applications is 2
- Can obtain the desired H₂/CO ratio by:
 - Using mixed reforming process
 - Mixing H₂ rich syngas with biomass gasification-derived syngas

H₂ and CO composition profiles at steady state conditions

Biomass, Gas, Nuclear To Liquid (BGNTL) processes

- Natural gas reforming is integrated with nuclear heat
- Biomass is gasified to produce H₂ lean syngas
- Gasification heat is used to generate steam
- Syngas from two routes mixed to obtain desired H₂/CO ratio
- Off-gas is sent to power generation section

Biomass, Gas, Nuclear To Liquid (BGNTL) processes

- Natural gas reforming is integrated with nuclear heat \geq
- Biomass is gasified to produce H₂ lean syngas \succ
- \succ Gasification heat is used to generate steam
- \succ Syngas from two routes mixed to obtain desired H_2/CO ratio

II. BGNTL/FT process

Off-gas is sent to power generation section \succ

-Master

Biomass, Gas, To Liquid (BGTL) processes

- Biomass gasification is integrated with natural gas reforming
- \blacktriangleright WGS unit is used to upgrade syngas to desired H₂/CO ratio for the downstream process
- Off-gas is sent to power generation section

WGS: Water gas shift

Biomass, Gas, To Liquid (BGTL) processes

- Biomass gasification is integrated with natural gas reforming
- \blacktriangleright WGS unit is used to upgrade syngas to desired H₂/CO ratio for the downstream process
- Off-gas is sent to power generation section

Efficiency of BGTL and BGNTL processes

- Biomass, gas and nuclear heat integration leads higher efficiency
- DME production is more efficient than diesel and gasoline production
- Energy efficiency of 54% can be achieved due to nuclear heat integration

- Nuclear integrated process is highly profitable if it is used for DME production
- Minimum selling price of DME is 0.910 CAD/kg without CCS and 1.16 CAD/kg when CCS is enabled (current price 1.3 CAD/kg)
- 57% lower GHG emissions comparing to a traditional coalto-DME plant in the non-CCS case
- 25% lower GHG emissions comparing to a traditional NG-to-DME plant in the non-CCS case

Net negative GHG emissions when CCS is enabled

Conclusions

- A dynamic model was developed for the integrated nuclear heat and steam methane reforming system based on first principles.
- > The model was validated using reported data in the literature.
- Integrated nuclear heat and steam methane reforming system is efficient for hydrogen rich syngas production.
- > Integrated nuclear heat and natural gas reforming process was combined with biomass gasification to reach the desired H_2/CO ratio for downstream processes.
- The biomass, gas, nuclear heat to liquids process was shown to be highly efficient, profitable and environmentally friendly specifically if it is used for DME production.

Acknowledgments

- Ontario Ministry of Innovation Early Researcher Award
- McMaster Advanced Control Consortium