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Abstract: A mathematical model for a transmission of TB-HIV/AIDS co-infection that incorporates
prevalence dependent behaviour change in the population and treatment for the infected
(and infectious) class is formulated and analyzed. The two sub-models, when each of the two diseases
are considered separately are mathematically analyzed. The theory of optimal control analysis is
applied to the full model with the objective of minimizing the aggregate cost of the infections and
the control efforts. In the numerical simulation section, various combinations of the controls are also
presented and it has been shown in this part that the optimal combination of both prevention and
treatment controls will suppress the prevalence of both HIV and TB to below 3% within 10 years.
Moreover, it is found that the treatment control is more effective than the preventive controls.

Keywords: TB-HIV co-infection; behaviour change; dynamical systems; optimal control; equilibrium;
treatment; stability; Human Immunodeficiency Virus (HIV); tuberculosis (TB)

1. Introduction

Tuberculosis (TB) is the second leading cause of death in the world next to the Human
Immunodeficiency Virus (HIV) [1], which is mainly caused by the bacteria called Mycobacterium tuberculosis
and usually acquired via air born infection from someone who has active TB. It particularly affects the
lungs (pulmonary TB) but can also affect other organs of the body such as kidney, brain, blood, bones,
glands (extra-pulmonary TB) [1–4]. Not all individuals infected by TB develop active TB. Only around
10% of those infected with Mycobacterium tuberculosis develop active TB disease and become infectious.
Whereas, around 90% of the people infected with the bacteria remain latently infected and individuals
in the latent stage do not transmit TB. However, there is a high risk of developing an active TB for
individuals whose immune system is weakened due to the presence of HIV, malnutrition or diabetes.
Infected individuals can be treated through anti-TB drugs such as Isoniazid, Rifampicin, Pyrazinamide,
Ethambutol and Streptomycin [1,3].

The global report of TB by World Health Organization (WHO) indicated that in 2015, 10.4 million
people were infected with TB and 1.8 million died due to the disease (including 0.4 million among
people with HIV) [5]. Over 95% of TB deaths occur in low and middle income countries. In the
same year, an estimated 1 million children became infected with TB and 170,000 children died of TB
(excluding children with HIV) and an estimated 49 million lives were saved through TB diagnosis and
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treatment between 2000 and 2015. More than 20% of TB cases worldwide are attributed to smoking
and people who are infected with HIV are 26 to 31 times more likely to become infected with TB [4].

The Human Immunodeficiency Virus (HIV) infects cells of immune system such as helper T cells
(specifically CD4+ T cells), macrophages, and dendritic cells. HIV compromises the human immune
system and reduces the ability of the body to fight back infections and diseases. The most advanced
stages of HIV infection is usually called Acquired Immunodeficiency Syndrome (AIDS). AIDS is one
of the leading causes of death worldwide that is affecting virtually every nation. Even if HIV/AIDS is
not permanently curable, main methods used to fight against it are preventive mechanisms (which
include: abstinence, faithfulness and protection) which mainly rely on the level of behavioral change
of the population, and providing Antiretroviral Therapy (ART) for those infected.

In 2016, an estimated 36.7 million people were living with HIV (including 1.8 million newly
infected people in the same year) and 1 million people died of AIDS related illness. Since the start of
the epidemic, an estimated 76.1 million people have been infected with HIV and 35 million people
died of AIDS related illness [6]. Individuals infected with HIV are more likely to develop TB disease
because of the deficiency in their immunity, and HIV infection is the most powerful risk factor for
progression from TB infection directly to the infectious stage [7]. In the WHO report of 2017, it is
indicated that TB remains the leading cause of death among people living with HIV, accounting for
around one in three AIDS related deaths [8]. Collaborative TB/HIV activities (including HIV testing,
ART and TB preventive measures) are crucial for the reduction of TB-HIV co-infection. Even though,
those collaborative activities can save people from dying, significant challenges are there to fully
implement them. As has been indicated in literature, ART is not being delivered to TB-HIV co-infected
patients in the majority of the countries with the largest number of TB/HIV patients; the pace of
treatment scale-up for TB/HIV patients has slowed, and only a small fraction of TB/HIV infected
individuals received TB preventive therapy [9]. As a result, the reduction of TB related deaths among
people living with HIV has slowed in recent years.

Since epidemiological and mathematical models play fundamental role in the study of the
dynamics of such diseases, various models have been used to investigate the transmission dynamics
and treatment strategy of different infectious diseases such as TB and HIV/AIDS. One of the classical
models to describe the transmission dynamics of TB was formulated in 1962 by Waaler et al. [10].
They used a particular linear function to model infection rates. In this model, the equation for the
latent and infectious classes were assumed to be uncoupled with the equation for the susceptible class.
Following this and by modifying some part of the model structure, a lot of mathematical models have
been developed and analyzed for TB (drug sensitive and drug resistant) disease transmission [10–15].
Multi-drug resistance (MDR) TB strain has also been developed in the course of time partly due to
the mismanagement in the treatment of TB patients. This includes wrong diagnosis and delayed
diagnosis, wrong or interrupted treatment, and the misuse of TB drugs [4,16]. Hence, mathematical
models (such as [11,12,15]) that include multiple strain of TB have been used to study the effect
of these new strains. A two strain model is formulated and mathematically analyzed by Castillo-
Chavez and Feng [15]. In this model, the drug resistant strain is assumed to be not treatable; latently
infected, infectious and treated individuals are assumed to be re-infected with the drug resistant strain.
However, the model did not take into account long and variable periods of latency as well as the role
of preventive education for the society. Another mathematical model to study a two strain TB infection
that include diagnosis, treatment and health education as an intervention mechanism is proposed by
Maliyani et al. [17]. In the study of this model, it is indicated that diagnosis of the MDR-TB strain has a
major impact in the eradication of drug sensitive TB and in the reduction of MDR-TB.

The role of vaccination at birth and behavior change through education in a two age group
TB model in the presence of medical treatment was investigated by Awoke T.D. and Kassa S.M. [3].
The authors used optimal control theory to propose a cost effective strategy for intervention in
reducing the burden of the drug sensitive TB in the population. Moreover, it is shown that in addition



Processes 2018, 6, 48 3 of 25

to vaccination and medical treatment, behavior change through education about the preventive
mechanisms of the disease have significant impact to reduce the burden of the disease.

Different researchers have also studied the dynamics of HIV/AIDS disease transmission (see for
example, [18–21]). Since proper HIV/AIDS medical treatment could decrease not only HIV prevalence
but also TB notification rate, different researchers have developed a two strain TB-HIV/AIDS
co-infection model and studied the dynamics of such a model (see for instance, [9,22–28]). However,
the mathematical analysis of these models remain challenging as the transmission modes are
very different.

Due to the role of optimal control theory to determine the best intervention control strategy with
minimum aggregate cost of intervention, Silva et al. [9] and Agusto et al. [27] studied TB-HIV/AIDS
co-infection model. From their optimal control simulations they came up independently with a result
that treating co-infected individuals at optimal level can decrease the prevalence of the disease in
addition to case finding and case holding strategies. However, the model in [9,27] assume that human
behaviour remains constant, and hence the contact rates of the population remain unchanged while
the disease progressed even if the size of the epidemics grows. However, it is well known that human
behaviour changes as the burden of the disease increases [29]. Moreover, preventive education and
the participation of the population in reducing their risky behaviour are well accepted public health
strategy in combating communicable diseases. Therefore, it is necessary to include in the model both
preventive mechanisms as well as treatment interventions and study the effect.

In this paper, we introduce the behaviour change function in to the TB-HIV/AIDS co-infection
model and analyze the model. We will also study the mathematical control analysis of the model
to propose an optimal control strategy for the public health planning in combating the two diseases.
The current model aims to answer specific questions about the likely impact of change of behaviour by
individuals on the burden of TB-HIV/AIDS co-infection in a hypothetical population.

The paper is organized as follows: in Section 2 we give the description of the model and analyze
the model mathematically. In Section 3, we formulate the control problem for the model and apply the
mathematical control analysis to find the necessary conditions for the optimal controls. Some numerical
simulations are shown in Section 4 to illustrate the trajectory of the subpopulation in the dynamics
when various combination of controls are applied. The paper is then concluded with some conclusive
remarks in Section 5.

2. Mathematical Model with Behavior Change and Treatment

We modified the usual TB-HIV co-infection model (for example the one in [9]) by introducing
two additional cohorts, ET which represents the section of the population that decided to use any of
the available preventive mechanisms against TB infection, and EH which represents the section of
the population that uses any of the mechanisms that prevent or reduce the risk of infection by HIV.
The population in each of these two cohorts are assumed to enjoy a reduced susceptibility against
the infection of the corresponding disease. Therefore, the total population at time t, is divided into
the following epidemiological subgroups: S(t), Susceptible individuals; ET(t), Educated individuals
about TB; LT(t), individuals infected with TB in latent stage; IT(t), TB-infected individuals who have
active TB disease and are infectious; RT(t), Successfully treated with TB; EH , Educated individuals
about HIV/AIDS ; IH(t), HIV-infected individuals with no clinical symptoms of AIDS; LTH(t),
TB-latent individuals co-infected with HIV; ITH(t), HIV-infected individuals (pre-AIDS) co-infected
with active TB disease; TH(t), HIV-infected individuals under treatment for HIV infection; AH(t),
HIV-infected individuals with AIDS clinical symptoms; AT(t), HIV-infected individuals with AIDS
symptoms and co-infected with active TB; RH(t), TB-recovered individuals with HIV-infection without
AIDS symptoms.

The total population at time t, denoted by N(t), is given by N(t) = S(t) + ET(t) + EH(t) +
LT(t) + IT(t) + RT(t) + IH(t) + LTH(t) + RH(t) + ITH(t) + TH(t) + AH(t) + AT(t). The Susceptible
population is increased by the recruitment of individuals (assumed susceptible) into the population at
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a rate Π. Susceptible individuals acquire TB infection from individuals with active TB at a variable
rate λT , which is given by,

λT(t) =
β1(IT(t) + ITH(t) + AT(t))

N(t)
, (1)

where, β1 is the effective transmission rate for TB infection. Similarly, susceptible individuals acquire
HIV infection at a variable rate λH , given by

λH(t) =
β2(IH(t) + ITH(t) + LTH(t) + RH(t) + ηcTH(t) + ηa(AH(t) + AT(t)))

N(t)
, (2)

where β2 is the effective transmission rate for HIV. The modification parameter ηa ≥ 1 accounts for the
relative infectiousness of individuals with AIDS symptoms, in comparison to those infected with HIV
with no AIDS symptoms. Individuals with AIDS symptoms are more infectious than HIV-infected
individuals (pre-AIDS) because they have a higher viral load and there is a positive correlation between
viral load and infectiousness [30]. On the other hand, ηc ≤ 1 accounts to the partial restoration of the
immune function of individuals with HIV infection that use correctly ART [31].

Only approximately 10% of infected people with Mycobacterium tuberculosis are considered to
develop active TB disease. While the rest (approximately 90%) of infected people will develop latent
TB disease [4]. Hence, if a fraction g of infected people develop latent TB, then the remaining (1− g)
proportion of infected population will develop or progress to the stage of active TB disease and suffer
from the additional disease induced death at a rate of dT . Latently infected individuals progress to the
IT class due to the presence of reactivation at a rate b or due to reinfection at a rate of k.

When the risk of the disease in the population increases, people may get more awareness about the
disease and they may apply different self-protective measures. This will affect the contact rate per unit
of time, by decreasing the incidence rate of the disease. Therefore, behavior change through awareness
creation is important in fighting against the disease. If we add an ‘educated’ compartment (ET or EH)
into the usual SIR model, it is possible to observe that individuals in educated class are exposed to
the infection with a rate smaller than other susceptible individuals. However, the recruitment rate
into educated classes vary through time corresponding to the total proportion of people affected
by the disease. This recruitment function describes the learning effect of population which can be
measured indirectly by observing behavior modification of individuals towards their exposedness
to the disease [29]. The behavior change function (e(t)) is assumed to be described as a function
of the prevalence p(t) of the disease at any time t. At the beginning of the outbreak, normally
people understand very little about the disease and the reaction could be almost none whereas at
high prevalence some susceptible individuals will change their behavior and start applying any of
the possible self protective measures to reduce the risk of any possible infection. This implies that
e(p = 0%) = 0 and e(p = 100%) = 1. Here, self-protective measures for TB and HIV may be any of the
following. Applying any of the existing protective measures against HIV infection (from abstinence
to using self-protective devices, such as condoms) similarly for TB infection, one may apply any of
the protective measures, like opening windows of public transport vehicles while in use, keeping the
rooms used by infected individuals ventilated, advising and helping a friend or a family member who
shows some symptoms of TB to be diagnosed at a health center, separating the nutritional equipments
of infectious individuals and using gloves in the case of helping them in cleaning their sputum,
and wearing appropriate masks while meeting people who are possibly infectious.

Therefore, we can describe the two behaviour change functions as

eT(pT) =
α× pn

T
pn

T∗ + pn
T

or equivalently eT(t) =
α× (IT + ITH + AT)

n

Nn pn
T∗ + (IT + ITH + AT)n
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and

eH(pH) =
α× pn

H
pn

H∗ + pn
H

or equivalently

eH(t) =
α× [IH + ITH + LTH + RH + ηcTH + ηa(AH + AT)]

n

Nn pn
H∗ + [IH + ITH + LTH + RH + ηcTH + ηa(AH + AT)]n

,

where pT∗ and pH∗ are the prevalence producing half of the maximum behavioral change value of
TB and HIV respectively; λT = β1 pT and λH = β2 pH represent the force of infection for TB and HIV

respectively with pT =
IT + ITH + AT

N
and pH =

IH + ITH + LTH + RH + ηcTH + ηa(AH + AT)

N
; n is

a hill coefficient that portrays the rate of reaction by the population and α is the saturation level of
e (which we took it to be one in this context). If we denote by αT the mean education rate at which
susceptible individuals receive a convincing message about TB to move into the educated class per
unit of time, αTeT will give us the actual recruitment rate to the cohort of TB educated class from the
susceptible class. Similarly if αH is the counterpart of αT for the HIV educated cohort, αHeH will give
us the actual recruitment rate to the cohort of HIV/AIDS educated class from the susceptible class.

However, every protective measure may not be absolutely effective due to the choice of different
measures taken by the population with varying coefficients of effectiveness. If we denote the average
effectiveness of all existing self protective measures for TB disease by γ, then 1− γ will be the average
failure of self-protective measures for TB. Hence, we assumed that individuals in the TB educated
class may be infected with TB only due to the failure of existing self-protective measures. Similarly,
if we denote the average effectiveness of all existing self protective measures about HIV/AIDS by γ1,
then 1− γ1 will represent the average failure of self-protective measures for HIV, and we assumed
that individuals in EH class get infected by HIV only due to the failure of the self-protective measures.

Educated individuals about HIV/AIDS in the EH class may be well informed about HIV/AIDS
disease transmission, symptoms and their mode of transmission but they may not have the required
information about preventive, control and treatment mechanisms of the TB disease in its full form.
Then ν proportion (ν < 1) of individuals from EH class may contract TB infection and join the latent
stage (LT). Therefore, it is assumed that individuals in the HIV/AIDS class may be infected with TB
like any of the individuals in other epidemiological classes but with a reduced rate. Similarly, those in
the ET class may also get infected with HIV, but with a reduced rate of ν1 (ν1 < 1). For simplicity of
the analysis, it is assumed that there is no intersection between the class of ET and the class of EH .

We assume that TB treated or recovered individuals RT acquire partial immunity and hence their
rate of infection is reduced by θ with θ ≤ 1. Individuals with active TB disease suffer from additional
TB-induced death rate of dT . On the other hand, since individuals who are infected by active TB, IT ,
are more susceptible to HIV infection, it is assumed that they get infected at a rate of δλH , where the
modification parameter δ ≥ 1 accounts for higher probability of individuals in class IT to become
HIV positive. HIV infected individuals with (no AIDS symptoms) progress to the AIDS class AH
at a rate of ε. HIV infected individuals with AIDS symptoms are treated for HIV at a rate of ψ and
suffer from additional AIDS-induced death rate of dA. Individuals in the class IH are also susceptible
to TB infection at a rate ρλT , where ρ ≥ 1 is a modification parameter depicting the fact that HIV
infection is a driver of TB epidemic [32]. HIV infected individuals (pre-AIDS) could be co-infected by
TB disease and are assumed to join the active stage ITH . A fraction r of ITH individuals are assumed
to receive simultaneously TB and HIV treatments at a rate of p and hence they will get cured from
TB but remain in TH . Moreover, assume that there are a fraction 1− r of ITH individuals who show
symptoms of TB but are not diagnosed for HIV. These individuals will be recruited at a rate of τ to
receive only TB treatment. Individuals in the class ITH that do not take any of the TB or HIV treatments
are assumed to progress to the class AT at a rate of ε1, and suffer from the additional TB-HIV/AIDS
induced death rate of dTA. Moreover, a fraction τ1 from the class of LTH are also assumed to recover
from TB. Individuals in the class LTH are assumed to be more likely to progress to active TB disease
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either due to reactivation at a rate of b1 or through reinfection at a rate of k1. Similarly, HIV infection
make individuals more susceptible to TB reinfection when compared to non HIV positive individuals.
The modification parameter associated to the TB reinfection rate, for individuals in the class of RH ,
is taken to be θ1 with θ1 ≥ 1. Individuals in this class are assumed to progress to class AH at a constant
rate of ω. In addition, people in the classes of LTH and RH are recruited to receive ART in the same
rate as those in IH . However, individuals in AIDS group (AH) are assumed to receive ART at a rate of
ψ and those who are co-infected with TB (AT) are also recruited at a rate of ψ1 to receive treatments for
both HIV/AIDS and TB and then progress to the TH class. The description of the parameter used in
the model is given in Table 1.

Table 1. Symbols and Description of Parameters.

Parameters Description

Π Recruitment rate
β1 tuberculosis (TB) Transmission rate
β2 Human Immunodeficiency Virus (HIV) Transmission rate
b Endogenous reactivation rate for TB
k Reinfection rate for TB infection
b1 Endogenous reactivation rate of TB for individuals pre-infected with HIV
k1 Reinfection rate of TB infection for individuals pre-infected with HIV
µ Per capita natural mortality rate
dT , dH , dTA Per capita TB, HIV, TB-HIV co-infection- induced death rates
τ TB treatment rate for IT individuals
τ1 The rate at which individuals from LTH class recover from TB
σ Rate of recruitment for IH individuals to receive HIV treatment
m Rate at which individual who are Latently infected with TB progress to IT
g The proportions of susceptible individuals who get infected with TB and move to LT
δ, ρ, θ, θ1 Modification parameters
ε The rate of progression of individuals from IH class to AH
ε1 The rate of progression of individuals from ITH class to AT
ψ Rate of recruitment of individuals in AH class for HIV Treatment
ψ1 Rate of recruitment of individuals in AT class for HIV Treatment
ξ Rate of failure to properly adhere to HIV treatment rules
ω The rate at which individuals from RH class progress to AH
γ The average effectiveness of all existing self protective measures for TB
γ1 The average effectiveness of all existing self protective measures for HIV
p Rate at which individuals in ITH class to receive treatment for both HIV and TB
αT Rate of dissemination of information about TB disease in the population
αH Rate of dissemination of information about HIV/AIDS (Acquired Immunodeficiency

Syndrome) disease in the population
r Fraction of individuals from ITH class that receive treatments for TB

With the above assumptions and description of the model variables, the TB-HIV co-infection
dynamics, whose schematic diagram is given in Figure 1, can be described by the following
deterministic system of non-linear ODE:
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Ṡ = Π− [λT + λH + µ + αTeT + αHeH ]S

ĖT = αTeTS− [(1− γ)λT + ν1λH + µ]ET

L̇T = gλTS + (1− γ)λT ET + θλT RT + νλT EH − (A1 + λH + kλT)LT

˙IT = (1− g)λTS + (b + kλT)LT − (A2 + τ + δλH)IT

ṘT = τ IT + mLT − (µ + λH + θλT)RT

˙EH = αHeHS− [νλT + (1− γ1)λH + µ]EH

˙IH = λHS + ν1λH ET + (1− γ1)λH EH + λH RT − (A3 + σ + ρλT)IH

L̇TH = λH LT + θ1λT RH − (A4 + σ + k1λT)LTH

İTH = (b1 + k1λT)LTH + ρλT IH + δλH IT − (A5 + q)ITH

ṘH = τ1LTH + qITH − (A6 + σ + θ1λT)RH

ȦH = εIH + ξTH + ωRH − (A7 + ψ + ρ1λT)AH

ṪH = σ(LTH + IH + RH) + ψAH + pITH + ψ1 AT − A8TH

ȦT = ρ1λT AH + ε1 ITH − A9 AT

(3)

where,
A1 = b + m + µ A2 = µ + dT A3 = ε + µ

A4 = τ1 + b1 + µ A5 = (1− r)p + ε1 + µ + dT A6 = ω + µ

A7 = µ + dA A8 = ξ + µ A9 = ψ1 + µ + dTA

Figure 1. Schematic diagram for TB-HIV/AIDS compartmental model that includes behavior change
and treatment.

2.1. Positivity and Boundedness of Solutions

For the TB-HIV/AIDS co-infection model system (3) to be epidemiologically meaningful, it is
important to analyze that all its state variables are non-negative at all times. In other words, solutions
of the model system (3) with non-negative initial data will remain non-negative for all time t > 0.
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Indeed, since the model (3) considers human populations, all the variables and parameters of the
model are non-negative. Then consider the following biological feasible region.

Ω = {(S, ET , LT , IT , RT , EH , IH , LTH , ITH , RH , AH , AT , TH) ∈ R13
+ : N ≤ Π

µ
}.

We establish in the following the positive invariance of Ω (i.e., all solutions in Ω remain in Ω at
all times). The rate of change of total population, which is obtained by adding all the equations in the
model system (3), is given by

dN(t)
dt

= Π− µN(t)− dT IT(t)− dT ITH(t)− dA AH(t)− dTA AT(t) (4)

It is simple to observe that for N > Π
µ , dN

dt < 0. Using the Standard Comparison Theorem [33],
it is possible to show the boundedness of N(t) as follows.

Ṅ(t) = Ṡ(t) + ĖT(t) + L̇T(t) + İT(t) + L̇TH(t) + İTH(t) + ṘT(t) + İH(t) + ṘH(t)
+ȦH(t) + ṪH(t) + ȦT(t)

Ṅ(t) = Π− µN(t)− (dT IT(t) + dT ITH(t) + dA AH(t) + dTA AT(t))
Ṅ(t) ≤ Π− µN(t).

Therefore, from this last inequality it follows that

N(t) ≤ Π
µ + e−µt(N(0)− Π

µ ), since e−µt ≤ 1, for all t ≥ 0.

Then, if N(0) ≤ Π
µ , we get N ≤ Π

µ for all t ≥ 0. That means, the model system (3) can be
considered as bieng epidemiologically and mathematically well posed [34]. Therefore, every solution
of the model system (3) with initial conditions in Ω remains there for t > 0. This result can be
summarized in the following Lemma.

Lemma 1. The region Ω is positively invariant for the model system (3) with non-negative conditions in R13
+ ,

where R13
+ represents the non-negative orthant of the 13-dimensional real space R13.

2.2. Analysis of the Sub-Models

In this section, we analyze the models for HIV only (in the absence of TB) and for TB only (in the
absence of HIV) separately to draw some conclusions.

2.2.1. TB-Only Model

The sub-model of system (3) with no HIV/AIDS disease, that is when (EH = IH = LTH = ITH =

RH = AH = AT = ATH = 0), is analyzed as follows.

Ṡ = Π− [λT + µ + αTeT ]S(t)
ĖT = αTeTS− ((1− γ)λT + µ)ET
L̇T = gλTS + (1− γ)λT ET + θλT RT − (A1 + kλT)LT
İT = (1− g)λTS + (b + kλT)LT − (A2 + τ)IT
ṘT = τ IT + mLT − (µ + θλT)RT

(5)

where, λT =
β1 IT

N
, eT =

In
T

NnPn
T∗ + In

T
and N = S + ET + LT + IT + RT .

Analogous to Lemma 1 we can prove that Ω1 = {(S, ET , LT , IT , RT) ∈ R5
+ : N ≤ Π

µ } is positively
invariant and attracting. Thus, the dynamics of TB only model will be considered in Ω1.
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2.2.2. Local Stability of Disease Free Equilibrium

The model subsystem (5) has a disease free equilibrium (DFE), obtained by setting the right hand side
of the equations in the model to zero in the absence of TB infection, is given by ET

0 = (S∗, E∗T, L∗T, I∗T, R∗T) =
(Π

µ , 0, 0, 0, 0). The local stability of ET
0 can be established using the next-generation operator method on the

system (5).

Definition 1. The basic reproduction number, basic reproduction ratio or basic reproductive rate is defined
as the average number of secondary infections that occur when one infective is introduced into a completely
susceptible host populatio [35].

We can calculate the basic reproduction ratio(number),RT
0 , using the next generation approach

proposed by van den Driesseche and Watmough [36]. According to this approach, in order to compute
the basic reproduction number, it is important to distinguish new infections from all other class
transitions in the population. The infected classes are LT and IT . We can write system (5) as:
ẋ = F (x)− V(x), V = V− − V+, where x = (S, ET , LT , IT , RT). F is the rate of appearance of new
infection in each class, V+ is the rate of transfer into each class by all other means, and V− is the rate
of transfer of the infectious individuals out of each class.

Using system of differential equations below (where the underlined terms represent the new
infections in each class),

L̇T = gλTS + (1− γ)λT ET + θλT RT − (b + µ + m + kλT)LT

İT = (1− g)λTS + (b + kλT)LT − (τ + µ + dT)IT

Ṡ = Π− λTS− µS− αTeTS
ĖT = αTeTS− (1− γ)λT ET − µET
ṘT = τ IT + mLT − (µ + θλT)RT

,

the associated matrices, F (x) for the new infection terms, and V(x) for the remaining transition terms
are respectively given by,

F (x) =


gλTS + (1− γ)λT ET + θλT RT

(1− g)λTS
0
0
0

 (6)

and V(x) =


(b + m + µ + kλT)LT

(τ + µ + dT)IT − (b + kλT)LT
(λT + µ + αTeT)S−Π

((1− γ)λT + µ)ET − αTeTS
(µ + θλT)RT − τ IT −mLT

 (7)

Evaluating the partial derivatives of (6) at ET
0 and bearing in mind that system (3) has two TB

only infected classes, namely LT and IT , we obtain

F =

(
0 gβ1
0 β1(1− g)

)
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Similarly, partial differentiation of (7) with respect to LT and IT at ET
0 gives

V =

(
b + m + µ 0
−b τ + µ + dT

)

The basic reproduction number of TB only sub-model is defined, following van den Driessche
and Watmough [36], as the spectral radius of the next generation matrix, FV−1 and it is given by:

RT
0 =

(
β1

b + m + µ

)(
b + (1− g)(m + µ)

τ + µ + dT

)
. (8)

Therefore, we have the following conclusion from [36].

Lemma 2. The disease free equilibrium (DFE) of the TB-only model system (5) is locally asymptotically stable
(LAS) ifRT

0 < 1 and unstable ifRT
0 > 1.

The threshold quantityRT
0 is the reproduction number for TB and it measures the average number

of new TB infections generated by a single TB-infected individual in a population where a certain
fraction of infected individuals are treated.

2.2.3. HIV-Only Model

The sub-model of (3) with no TB disease, that is when (ET = LT = IT = RT = LTH = ITH =

RH = AT = 0), is analyzed as follows.

Ṡ = Π− (λH + µ + αHeH)S
ĖH = αHeHS− ((1− γ)λH + µ)EH
İH = λHS + (1− γ1)λH EH − (A3 + σ)IH
ȦH = εIH + ωRH − (A7 + ψ)AH + ξTH
ṪH = σIH + ψAH − A8TH

, (9)

where, λH =
β2(IH + ηcTH + ηa AH)

N
and eH =

(IH + ηcTH + ηa AH)
n

NnPn
H + [IH + ηcTH + ηa AH ]n

N = S + EH + IH + AH + TH .

Analogous to Lemma 2, we can prove that Ω2 = {(S, EH , IH , AH , TH) ∈ R5
+ : N ≤ Π

µ
} is

positively invariant and attracting. Thus, the dynamics of HIV only model will be considered in Ω2.

2.2.4. Local Stability of Disease Free Equilibrium

The model subsystem (9) has a DFE, obtained by setting the right hand side of the equations in the
model zero and in the absence of HIV infection is given by EH

0 = (S∗, E∗H , I∗H , T∗H , A∗H) = (Π
µ , 0, 0, 0, 0).

The local stability of EH
0 can be established using the next-generation operator method on the system (9).

Using a similar procedure as in the previous subsection on the subsystem:

İH = λHS + (1− γ1)λH EH − (A3 + σ)IH

ȦH = εIH − (A7 + ψ)AH + ξTH
ṪH = σIH + ψAH − A8TH
Ṡ = Π− (λH + µ + αHeH)S
ĖH = αHeHS− ((1− γ)λH + µ)EH ,

(10)

the associated matrices, F (x) for the new infection terms, and V(x) for the remaining transition terms
are respectively given by,
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F (x) =


λHS + (1− γ1)λH EH

0
0
0
0

 (11)

and V(x) =


(A3 + σ)IH

(A7 + ψ)AH − εIH − ξTH
A8TH − σIH − ψAH

(λH + µ + αHeH)S− π

((1− γ)λH + µ)EH − αHeHS

 (12)

Evaluating the partial derivatives of (11) at EH
0 and bearing in mind that system (3) has three

HIV/AIDS only infected classes, namely IH , AH and TH , we obtain

F =

 β2 ηaβ2 ηcβ2

0 0 0
0 0 0


Similarly, partial differentiation of (12) with respect to IH , AH and TH at EH

0 gives

V =

 ε + µ + σ 0 0
−ε µ + ψ + dA −ξ

−σ −ψ ξ + µ


The basic reproduction number of HIV/AIDS only sub-model is defined, following van den

Driessche and Watmough [36], as the spectral radius of the next generation matrix, FV−1 and it is
given by:

RH
0 =

β2 [(µ + ηcσ)C4 + ξC1 + εC2]

C1 [µC4 + ξC5]
(13)

where, C1 = ηaε + σ + µ + dA, C2 = ηaµ + ηcψ, C3 = ε + σ + µ, C4 = ψ + µ + dA, and C5 = µ + dA
The basic reproduction numberRH

0 represents the expected average number of new HIV infections
produced by a single HIV-infected individual when in contact with a completely susceptible population.

2.3. Analysis of the Full Model

Consider now the full model (3), with DFE given by

E0 = (S∗, E∗T , L∗T , I∗T , R∗T , E∗H , I∗H , L∗TH , I∗TH , R∗H , A∗H , A∗T , T∗H) =
(

Π
µ

, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
)

.

Using the same procedure like in Section 2.2.1 to calculate basic reproduction number, the
associated matrices F and V can be determined as below. Here the underlined terms are new infections
in each class.
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L̇T = gλTS + (1− γ)λT ET + θλT RT + νλT EH − (A1 + λH + kλT)LT

İT = (1− g)λTS + (b + kλT)LT − (A2 + τ + δλH)IT

İH = λHS + ν1λH ET + (1− γ1)λH EH + λH RT − (A3 + σ + ρλT)IH

L̇TH = λH LT + θ1λT RH − (A4 + σ + k1λT)LTH
İTH = (b1 + k1λT)LTH + ρλT IH + δλH IT − (A5 + rτ)ITH
ṘH = τ1LTH + rτ ITH − (A6 + σ + θ1λT)RH
ȦH = εIH + ωRH − (A7 + ψ + ρ1λT)AH + ξTH
ȦT = ρ1λT AH + ε1 ITH − A9 AT
ṪH = σ(LTH + IH + RH) + (1− r)pITH + ψAH + ψ1 AT − A8TH
Ṡ = Π− [λT + λH + µ + αTeT + αHeH ]S
ĖT = αTeTS− ((1− γ)λT + ν1λH + µ)ET
ṘH = τ1LTH + rτ ITH − (A6 + σ + θ1λT)RH
ĖH = αHeHS− [νλT + (1− γ1)λH + µ]EH

(14)

The associated matrices F (x) for new infections terms, and V(x) for the remaining transition
terms are respectively given by

F (x) =



gλTS + (1− γ)λTET + θλT RT + νλTEH
(1− g)λTS

λHS + λH R + (1− γ1)λHEH + ν1λHET
0
0
0
0
0
0
0
0
0
0



(15)

V(x) =



(A1 + λH + kλT)LT
(A2 + σ + δλH)IT − (b + kλT)LT

(A3 + σ + ρλT)IH
(A4 + σ + k1λT)LTH − λH LT − θ1λT RH

(A5 + rτ)ITH − (b1 + k1λT)LTH − ρλT IH − δλH IT
(A6 + σ + θ1λT)RH − τ1LTH − rτ ITH

(A7 + ψ + ρ1λT)AH − εIH −ωRH − ξTH
A8TH − σ(LTH + IH + RH)− ψAH − (1− r)pITH − ψ1 AT

A9 ATρ1λT AH − ε1 ITH
(λT + λH + µ + αTeT + αHeH)S−Π
(ν1λH + µ + (1− γ)λT)ET − αTeTS

(µ + λH + θλT)RT − τ IT
(νλT + (1− γ1)λH + µ)EH − αHeHS



(16)

Evaluating the partial derivatives of (15) at E0 and bearing in mind that system (14) has nine
infected classes, namely LT , IT , IH , LTH , ITH , RH , AH , AT and TH , we obtain
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F =



0 gβ1 0 0 gβ1 0 0 gβ1 0
0 (1− g)β1 0 0 (1− g)β1 0 0 (1− g)β1 0
0 0 β2 β2 β2 β2 β2ηa β2ηa β2ηc

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


Similarly, partial differentiation of (16) with respect to LT , IT , IH , LTH , ITH , RH , AH , AT and TH at

E0 gives

V =



A1 0 0 0 0 0 0 0 0
−b A2 + σ 0 0 0 0 0 0 0
0 0 A3 + σ 0 0 0 −ψ 0 −ξ

0 0 0 A4 + σ 0 0 0 0 0
0 0 0 −b− k1 A5 + rτ 0 0 0 0
0 0 0 τ1 −rτ A6 + σ 0 0 0
0 0 −ε 0 0 −ω A7 + ψ 0 −ξ

0 0 −σ −σ −(1− r)p −σ −ψ −ψ1 A− 8
0 0 0 0 −ε 0 0 A9 0


Then, following van den Driessche and Watmough [36], the basic reproduction number is given

by the spectral radius of the next generation matrix. Then, the dominant eigenvalues of the matrix
FV−1 are,

RT
0 =

β1 [b + (1− g)(m + µ)]

A1(τ + µ + dT)
, and RH

0 =
β2 [(µ + ηcσ)C4 + ξC1 + εC2]

C1 [µC4 + ξC5]

where, A1 = b + m + µ, C1 = ηaε + σ + µ + dA, C2 = ηaµ + ηcψ, C3 = ε + σ + µ, C4 = ψ + µ + dA, and
C5 = µ + dA

Thus, the basic reproduction numberR0 of the model (3) is given by

R0 = max
{
RT

0 ,RH
0

}
(17)

Lemma 3. Suppose the disease transmission of the full model is given by (3). If E0 is a DFE of the model,
then E0 is locally asymptotically stable ifR0 < 1 and unstable otherwise, whereR0 is the reproduction number
defined in (17).

3. Formulation of the Control

The possible interventions for TB and HIV/AIDS co-infection can be categorized as (1) applying
preventive education and (2) treatment of infected individuals. In the following we will describe what
specific control measures can be taken corresponding to each of the two intervention categories.

1. Preventive Education

(a) Different programs have been designed so far to enlighten the population about the
risk factors of TB disease and about possible preventive mechanisms. Such preventive
mechanisms are self-protective actions, like using masks and gloves while contacting
TB infected individuals and consistently ventilating rooms and vehicles that are used
commonly by other individuals who are especially more likely to be infectious of a
TB disease.
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By applying such self-initiated protective measures an individual can reduce the risk of
contracting the disease. Let the current level of preventive education campaigns about TB
disease by various agents have convinced up to 100× (αT0 × e)% (for some 1 > αT0 > 0)
of the population to effectively participate in the self protective schemes available to
them. If more choices of self-protective measure are offered to the population and if the
awareness campaigns are intensified, more individuals may decide to choose and use at
least one of these preventive measures. This helps individuals to reduce their risk of being
infected by TB. This could be considered as an effort made by individuals and health care
campaigners to help susceptible individuals from getting infected easily by TB.

On the other hand, the same educational information can help individuals who are infected
by TB but are not taking part in any of the self-protective actions about the disease so that
they can change their risky behavior. These individuals may need to visit appropriate
health centers regularly and take the prescribed medicine properly until the end of the
specified time given from doctors. Moreover, they need to take any preventive actions
against HIV so that they will not be co-infected by HIV.

Assume that the control function u1(t) measures the rate at which additional susceptible
individuals are convinced to take part in behaviour modification about TB disease. Then,
its application in the dynamics is modelled by simply replacing the term αT in the model
system (3) by (αT0 + u1(t)). We assume that the larger the proportion of the educated class,
the lower will be the proportion of individuals in the susceptible population. Because of
practicality and economic limitations on the maximum rate of convincing individuals for
behaviour modification, we assume that αTmax > 0 to be the maximum rate such that
0 ≤ αT0 + u1(t) ≤ αTmax ≤ 1.

(b) The expansion and improvement of HIV and AIDS education around the world is
critical to preventing the spread of HIV [37]. Those convinced to apply any of the
preventive mechanisms against HIV infection, will enjoy a reduced risk of infection by
HIV. Therefore, they will be better off as compared to individuals with risky behaviour.

Moreover, it is also important to educate (or enlighten) people who are already infected
by HIV so that they take maximum possible protective action against TB as their immune
system is most likely be compromised due to the HIV infection.

Assume that the control function u2(t) measures the rate at which additional susceptible
individuals are convinced to take part in behaviour modification about HIV/AIDS disease.
Then its application in the dynamics is modelled by simply replacing the term αH in (3) by
(αH0 + u2(t)). Because of practicality and economic limitations on the maximum rate of
convincing individuals for behaviour modification, we also assume that αHmax > 0 to be
the maximum rate as indicated in [37] and 0 ≤ αH0 + u2(t) ≤ αHmax ≤ 1.

2. Treatment of infected individuals

(a) TB treatment for individuals who are infected by TB bacteria.

TB infected individuals can be treated with appropriate medicine and become
non-infectious within an average treatment period of 6 months [11]. Such treatments
not only help the infected individuals to recover from the disease, but also make them
non infectious and thereby reducing the force of infection in the dynamics of the disease.
Therefore, investing on treatments also have a positive impact on the reduction of the
burden of the disease in the society in general.

Assume that the control function u3(t) measures the rate at which additional infectious
individuals are recruited to receive TB treatment at any time t. If the current rate of TB
treatment is τ0 proportion from the total infected people, this control measure will be
introduced in the dynamics as (τ0 + u3(t)) by replacing the parameter τ. In addition,
we assumed that only an r fraction of people from the ITH classes are recruited to receive
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TB treatment while others receive both types simultaneously. Due to economic and logistic
reasons, there could be limitations on the maximum rate to be achieved. Thus, we assume
that the constant τmax ≤ 1 represents the maximum rate of recruitment for treatment of
infected individuals with 0 ≤ τ0 + u3(t) ≤ τmax ≤ 1.

(b) Treating HIV infected individual using ARV.
Similar to the case of TB, treating HIV infected individuals with ARV will reduce their
level of infectiousness by suppressing their viral load while helping them to regain their
immunity thereby get a better quality of life. This treatment may also reduce the rate of
co-infection by TB.We assume that the rate of recruiting individuals to receive ART is the
same for both IH and AH classes, and we take ψ = σ. Moreover, it is assumed in this work
that the rate of receiving treatment for both HIV and TB simultaneously is taken to be the
maximum possible (which is p) and we require no additional effort in this regard.
Let the control function u4(t) measures the rate at which additional infected individuals
with HIV virus are recruited to receive ARV at any time t. If the current rate of recruitment
is σ0 proportion from among all HIV infected individuals, then this control measure can
be introduced in the dynamics as σ0 + u4(t) in place of the parameter σ and ψ (which
are assumed to be equal). Similar to the TB case we assume that there is a limitation on
the maximum rate of treating people with ARV. Thus, we may represent the maximum
recruitment rate to be σmax ≤ 1 and therefore, we have 0 ≤ σ0 + u4(t) ≤ σmax ≤ 1.

After applying all these four control functions described above in to the model system,
the corresponding system of differential equation can be written as follows.

dS
dt = Π− [λT + λH + µ + (αT0 + u1)eT + (αH0 + u2)eH ]S
dET
dt = (αT0 + u1)eTS− [(1− γ)λT + ν1λH + µ]ET

dLT
dt = gλTS + (1− γ)λT ET + θλT RT + νλT EH − (A1 + λH + kλT)LT

dIT
dt = (1− g)λTS + (b + kλT)LT − (τ0 + u3)IT − (A2 + δλH)IT

dRT
dt = (τ0 + u3)IT + mLT − (µ + λH + θλT)RT

dEH
dt = (αH0 + u2)eHS− [νλT + (1− γ1)λH + µ]EH

dIH
dt = λHS + ν1λH ET + (1− γ1)λH EH + λH RT − (σ0 + u4)IH − (A3 + ρλT)IH

dLTH
dt = λH LT + θ1λT RH − (σ0 + u4)LTH − (A4 + k1λT)LTH

dITH
dt = (b1 + k1λT)LTH + ρλT IH + δλH IT − r(τ0 + u3)ITH − A5 ITH

dRH
dt = τ1LTH + r(τ0 + u3)ITH − (σ0 + u4)RH − (A6 + θ1λT)RH

dAH
dt = εIH + ξTH + ωRH − (σ0 + u4)AH − (A7 + ρ1λT)AH

dTH
dt = (σ0 + u4)(LTH + IH + RH + AH) + (1− r)pITH + ψ1 AT − A8TH

dAT
dt = ρ1λT AH + ε1 ITH − A9 AT

, (18)

where,
A1 = b + m + µ A2 = µ + dT A3 = ε + µ

A4 = τ1 + b1 + µ A5 = (1− r)p + ε1 + µ + dT A6 = ω + µ

A7 = µ + dA A8 = ξ + µ A9 = ψ1 + µ + dTA

For all t ∈ [0, t f ], 0 ≤ u1(t) ≤ αTmax − αT0, 0 ≤ u2(t) ≤ αHmax − αH0, 0 ≤ u3(t) ≤ τmax− τ0,
0 ≤ u4(t) ≤ σmax − σ0. The total size of population is bounded above by π

µ and bounded below by

some N0 > 0. Since the state variables are partitions of the total population, the suprimum of the
total population is also the suprimum of each of the state variables. This implies that each of the state
variables are bounded below by 0 and bounded above by the same bound with the total population.

Thus, with controlled model system (18) and given initial population size of each compartment to
be S0, E0

T , L0
T , I0

T , L0
TH , R0

T , E0
H , I0

H , I0
TH , A0

H , R0
H , A0

T and T0
H , our main goal in this work is to find or propose

the best strategy in terms of either in combination or independent efforts of preventive education and treatment
that will minimize the total number of new infections and the total number of people that die due to the two
infectious diseases (TB and HIV) in the planning period while at the same time also minimizing the total cost of
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interventions. We considered the optimal control problem with a fixed terminal time problem because
most governments cannot continue the implementation of the interventions indefinitely; rather they
may choose a program that the disease is eradicated or is driven below specified level within a set
time frame.

If we are given the initial value for the populations size of each cohort to be
S0, E0

T , L0
T , I0

T , L0
TH , R0

T , E0
H , I0

H , I0
TH , A0

H , R0
H , A0

T , T0
H and the control trajectory, i.e., the values of u(t)

over the whole time interval 0 < t < T, then we can integrate (18) to get the state trajectory,
i.e., the values of S, ET , LT , IT , LTH , RT , EH , IH , ITH , AH , RH , AT and TH , over the same time interval.
We want to choose the control trajectory so that the control and the corresponding state trajectories
minimize the objective cost function, or simply the objective function which is given by.

J(u1, u2, u3, u4) =
∫ t f

0

[
C1 IT(t) + C2 IH(t) + C3 ITH(t) + C4 AH(t) + C5 AT(t)

+D1u3(t) (IT(t) + ITH(t)) + D2u4(t) (LTH(t) + IH(t) + RH(t) + AH(t))

+
B1

2
u2

1(t) +
B2

2
u2

2(t) +
B3

2
u2

3(t) +
B4

2
u2

4(t)
]

dt,

(19)

where the constants C1, C2, C3, C4, C5, D1, D2 and Bi, i = 1, 2, 3, 4 can be considered as values
that will balance the units of measurement and also may indicate the importance of one type
of intervention over the other. C1 IT , C2 IH , C3 ITH , C4 AH and C5 AT represent the cost on the
population of actively infected individuals with TB, that of HIV infected individuals with no clinical
symptoms of AIDS, that of TB infected individuals who are also co-infected with HIV, and that of
individuals who progressed to AIDS stage respectively. Moreover, the terms D1u3(t)(IT(t) + ITH(t))
and D2u4(t)(IH(t) + LTH(t) + RH(t) + AH(t)) represent the cost of individual treatment for TB and
HIV respectively, where as B1

2 u2
1, B2

2 u2
2, D1u3(t)IT(t) +

B3
2 u2

3, D2u4(t)IH(t) +
B4
2 u2

4 represent the cost of
producing and administering educational materials about TB, about HIV, and the cost of production
and administration of treatment for TB patients, and for HIV/AIDS patients respectively. The treatment
cost may include the cost of the medical tests and diagnosis, drug cost, hospitalization cost and
the like. However, the cost of initial investment for the educational materials and pharmaceutical
drugs as well as their administrative costs are not linearly related with the number of individuals
persuaded or treated. The variables in this part are squared to amplify the effects of large variations
and to de-emphasize contributions of small variations. Since implementation of any public health
intervention has increasing costs with reaching higher fraction of the population, we took a quadratic
cost function to represent this situation. On the the other hand the unit cost of drugs used for treatment
depends linearly with the number of units applied (or number of people treated), hence we used the
linear cost to capture this fact.

So we seek to find optimal controls u∗1 , u∗2 , u∗3 , u∗4 such that

J(u∗1 , u∗2 , u∗3 , u∗4) = min
u∈U

J(u1, u2, u3, u4), (20)

where

U = {(u1(t), u2(t), u3(t), u4(t)) ∈ R4 | u1(t), u2(t), u3(t), u4(t) are Lebesgue integrable,

u1(t) ∈ [0, αTmax − αT0], u2(t) ∈ [0, αHmax − αH0], u3(t) ∈ [0, τmax − τ0], u4(t) ∈ [0, σmax − σ0]}

Existence and Characterization of Optimal Control Solution

Theorem 1 (Existence of optimal control solution). There exists an optimal control u∗1(t), u∗2(t), u∗3(t), u∗4(t)
and corresponding solutions S∗, E∗T , L∗T , I∗T , I∗H , L∗TH , R∗T , E∗H I∗TH , A∗H , R∗H , A∗T and T∗H to the state initial value
problem (18)–(20) that minimizes J(u1, u2, u3, u4) over U .
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Proof. The non trivial requirements on the set of admissible controls U and on the set of end conditions
are verified by Fleming and Rishel’s theorem.

A. The set of all solutions to system (18)–(20) with corresponding control functions in U is non-empty.
B. The state system can be written as a linear function of the control variables with coefficients

dependent on time and the state variables.
C. The integrand L in (19) from objective functional with

L(x, u, t) = C1 IT(t) + C2 IH(t) + C3 ITH(t) + C4 AH(t) + C5 AT(t) + D1u3(t) (IT(t) + ITH(t)) +
D2u4(t) (LTH(t) + IH(t) + RH(t) + AH(t)) +

B1
2 u2

1(t) +
B2
2 u2

2(t) +
B3
2 u2

3(t) +
B4
2 u2

4(t) is convex
on U , and additionally it satisfies L(x, u, t) ≥ δ1 | (u1, u2, u3, u4) |β −δ2 where δ1 > 0 and β > 1.

In order to establish condition A, we refer to Picard-Lindelöf’s theorem from [38,39]. If the
solutions to the state equations are bounded and if the state equations are continuous and
Lipschitz in the state variables, then there is a unique solution corresponding to every admissible
control U .

It is indicated that the total population is bounded below by a positive nonzero number N0

and bounded above by Π
µ as well as each of the state variables are bounded. With the bounds

established above, it follows that the state system is continuous and bounded. It is equally direct
to show the boundedness of the partial derivatives with respect to the state variables in the state
system, which establishes that the system is Lipschitz with respect to the state variables (see [40]).
This completes the proof that condition A holds.

Condition B is verified by observing the linear dependence of the state equations on controls
u1, u2, u3 and u4. Finally, to verify condition C by definition from [41,42] any constant, linear and
quadratic functions are convex. Therefore, L(x, u, t) is convex on U . To prove the bound on the L
we note that by the definition of U , we have

B4u2
4 ≤ B4 since u4 ∈ [0, 1]

B4
2

u2
4 ≤

B4
2

,
B4
2

u2
4 −

B4
2
≤ 0

L(x, u, t) = C1 IT(t) + C2 IH(t) + C3 ITH(t) + C4 AH(t) + C5 AT(t)

+ D1u3(t) (IT(t) + ITH(t)) + D2u4(t) (LTH(t) + IH(t) + RH(t) + AH(t))

+
B1
2

u2
1(t) +

B2
2

u2
2(t) +

B3
2

u2
3(t) +

B4
2

u2
4(t)

≥ B1
2

u2
1(t) +

B2
2

u2
2(t) +

B3
2

u2
3(t) +

B4
2

u2
4(t)−

B4
2

⇒ L(x, u, t) ≥ min(
B1
2

,
B2
2

,
B3
2

,
B4
2
)(u2

1 + u2
2 + u2

3 + u2
4)−

B4
2

⇒ L(x, u, t) ≥ min(
B1
2

,
B2
2

,
B3
2

,
B4
2
)|(u1, u2, u3, u4)|2 −

B4
2

Therefore, L(x, u, t) ≥ δ1|(u1, u2, u3, u4)|β − δ2; where δ1 = min((
B1
2

,
B2
2

,
B3
2

,
B4
2
), δ2 =

B4
2

& β = 2.

The necessary conditions that an optimal solution must satisfy come from Pontryagin’s maximum
principle (PMP). This principle converts (18)–(20) in to a problem of minimizing a Hamiltonian,
H, with respect to u1, u2, u3, u4 together with the state equation and the adjoint condition. Here,
the Hamiltonian is given by

H(x, u, h, t) = C1 IT(t) + C2 IH(t) + C3 ITH(t) + C4 AH(t) + C5 AT(t)

+D1u3(t) (IT(t) + ITH(t)) + D2u4(t) (LTH(t) + IH(t) + RH(t) + AH(t)) (21)

+
B1

2
u2

1(t) +
B2

2
u2

2(t) +
B3

2
u2

3(t) +
B4

2
u2

4(t),
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where, the fi’s represent the right hand side of the differential equation of the ith state variable in
system (18), x = (S, ET , LT , IT , RT , EH , IH , LTH , ITH , RH , AH , AT , TH), u = (u1, u2, u3, u4) and h =

(h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11, h12, h13).
If (u∗1 , u∗2 , u∗3 , u∗4) is an optimal control vector for the problem (which is yet to be determined),

then from Pontryagin’s Maximum Principle we have the following conditions:
Optimality Conditions:
The first conditions that we will consider from the Pontryagin’s Maximum principle is the

minimization of the Hamiltonian H with respect to the control variables, u1, u2, u3, u4. Since the cost

function is convex, if the optimal control occurs in the interior region we must have
∂H
∂ui

= 0. Therefore,

(i) for the control u1 we must have,

∂H
∂u1

= B1u1 − h1eTS + h2eTS = 0⇒ ū1 =
1
B1

(h1 − h2) eTS.

(ii) for the control u2 we must have

∂H
∂u2

= B2u2 − h1eHS + h6eHS = 0⇒ ū2 =
1
B2

(h1 − h6) eHS.

(iii) for the control u3 we must have

∂H
∂u3

= D1 IT + B3u3 − h4 IT + h5RT + h10ε1 ITH − h13ε1 ITH = 0

⇒ ū3 =
1
B3

[(h4 − D1)IT − h5RT + (h13 − h10)ε1 ITH ] .

(iv) Similarly, for the control u4 we must have

∂H
∂u4

= D2 IH + B4u4 − h7 IH − h8LTH − h10RH − h11 AH + h12(LTH + IH + RH + AH) = 0

⇒ ū4 =
1
B4

[(h7 − h12 − D2)IH + (h8 − h12)LTH + (h10 − h12)RH + (h11 − h12)AH ] .

And therefore, the optimal controls on the given bounded intervals are given by

u∗1 = min{αTmax, max{αT0, ū1}}, u∗2 = min{αHmax, max{αH0, ū2}}, (22)

u∗3 = min{τmax, max{τ0, ū3}}, u∗4 = min{σmax, max{σ0, ū4}}.

The adjoint (co-state) equations:

From the second condition of the Pontryagin’s Maximum Principle, we must have
∂H
∂xi

= −dhi
dt

at

the optimal controls for each i = 1, 2, . . . , 13.
Therefore, we need to calculate and solve the system,

ḣ1 = − ∂H
∂S

ḣ2 = − ∂H
∂ET

ḣ3 = − ∂H
∂LT

ḣ4 = − ∂H
∂IT

ḣ5 = − ∂H
∂RT

ḣ6 = − ∂H
∂EH

ḣ7 = − ∂H
∂IH

ḣ8 = − ∂H
∂LTH

ḣ9 = − ∂H
∂ITH

ḣ10 = − ∂H
∂RH

ḣ11 = − ∂H
∂AH

ḣ12 = − ∂H
∂TH

ḣ13 = − ∂H
∂AT

(23)
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together with the transversality conditions,

hi(t f ) = 0, for all i = 1, 2, . . . , 13. (24)

Solving the above two conditions together with the state equation (equation system (18)) gives us
the required optimal solution and the corresponding state variables.

4. Numerical Simulation and Results

In this section we shall carry out simulations to demonstrate the output of optimal control values
and the corresponding impacts on the dynamics of the disease by varying some of the parameter
values. In addition, we will also consider the what if analysis on the system when some of the controls
are missing and when all of the controls are being used.

We estimate the results by using fourth order Runge-Kutta method in solving the state
equation system (18), and the adjoint (or co-state) equation system (23), together with the optimality
Equation (22).

The process begins with an initial guess on the control variables. Then, the state equations are
simultaneously solved forward in time starting from the initial conditions and the adjoint equations
are solved backward in time starting from the transversality conditions (24). The control is updated
by inserting the new values of the state and adjoint vectors into its characterization (Equation (22)),
and the process is repeated until convergence occurs.

We used fixed final time t f = 10 years and the initial conditions are estimated as follows. We assumed
that more than half of the population (55%) belongs to the subgroup of susceptible class (S(0) = 16,500)
and that a big percentage about 31% is infected with TB in latent stage (i.e., LT(0) = 9249). This is
justified from the fact that “about one third of the world’s population has latent TB”, as it is indicated
from the webpage of the World Health Organization (WHO [5]). The value for the fraction of people
infected with HIV is assumed to be about 4.17% (IH(0) = 1250) based on HIV and AIDS information
from AVERT.org [8]. We also assumed that there is very little information about the disease in the
population; and hence only 0.2% is educated about TB preventions (i.e., ET(0) = 60) and only about
0.27% is educated about HIV preventions (i.e., EH(0) = 80). Other initial values of the sub-populations
are assumed for numerical purpose to be as below. RT(0) = 50, IH(0) = 1250, LTH(0) = 500,
ITH(0) = 500, TH(0) = 300, AH(0) = 250, AT(0) = 200, RH(0) = 250.

The constants in the cost functional are taken as follows: coefficients for cost of infection are
C1 = 10, C2 = 16, C3 = 20, C4 = 280, C5 = 300, coefficients for cost of individual treatment are
D1 = 2, D2 = 6, and coefficients for cost of production and administering the control efforts are
B1 = 200, B2 = 200, B3 = 400, B4 = 800. These constants can also serve as values that balance the
different measure of quantities in the sum and may also indicate the level of importance of one of the
control type over the other.

Therefore, using the parameter values from Table 2 and the above initial population data the state
system evolves according to the trajectories indicated in Figure 2.

The result of using various control mechanisms can be summarized from the graph of prevalence
(in Figure 3a,b) and the graph of the corresponding marginal cost functions (in Figure 3c). In the
simulation, we first integrated the system without any control values. The second phase is to optimize
the objective function J by using only the prevention controls (u1 and u2) and then using only the
treatment controls (u3 and u4), finally using all the controls together. As can be seen from the graph,
when all the interventions are applied simultaneously the gain in prevalence is significant in both
diseases with very less total cost as compared to other combinations. Treatment is more effective as
compared to the prevention controls. However, the combination of both preventive and treatment
controls yields in less aggregate cost, with a slight gain also in the prevalence of both diseases.
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(a) (b)

(c) (d)

Figure 2. Graphs for the trajectories for the sub-populations in (a,b) and the corresponding values for
the prevalence in (c,d), when no control efforts are applied. In this case, parameter values β1 = 1.5 and
β2 = 0.36 are used and the rest of the parameters are as in Table 2.

Table 2. Symbols and Description of Parameters.

Parameters Description Value References

Π Recruitment rate 1500 [27]
β1 TB Transmission rate Variable
β2 HIV Transmission rate Variable
b Endogenous reactivation rates for TB 0.003 [3,43]
k Reinfection rates for TB infection 0.02 [3,43]
b1 Endogenous reactivation rates of TB for individuals pre-infected with HIV 0.2 Assumed
k1 Reinfection rates of TB infection for individuals pre-infected with HIV 0.5 Assumed
µ Per capita natural rate of mortality 1/48 Assumed
dT , dH , dTA TB, HIV, both TB & HIV death rates 0.1, 0.2, 0.33 [9,15]
σ0 Baseline HIV treatment rate 0.16 Assumed
τ0 Baseline TB treatment rate 0.16 Assumed
τ1 Rate at which individuals from LTH class recover from TB infection 0.2 [9,13,15]
m Rate at which TB-Latent individuals progress to IT 0.5 [9,13,15]
g Proportion of susceptibles individuals who get infected by TB and move to LT 0.85 [3]
δ, ρ1, ρ, θ, θ1 Modification parameters 1.03, 1.17, 1.07, 0.9, 1 [9]
ηa, ηc Modification parameters 1.05, 0.08 [29]
ν, ν1 Modification parameters 0.75, 0.5 Assumed
ε The rate of progression of IH to AH 0.1 [27]
ε1 The rate of progression of ITH to AT 0.2 Assumed
ψ Treatment rate for individuals in AH 0.33 [9]
ψ1 HIV treatment rate for AT individuals 0.33 [9]
ξ Rate of failure to adhere to HIV treatments 0.08 Assumed
ω Rate at which individuals in RH progress to AH 0.1 Assumed
r fraction of individuals from ITH that receive treatment only for TB 0.33 Assumed
p Baseline rate at which individuals in ITH receive treatments for both TB & HIV 0.40 Assumed
αT0 Baseline rate of dissemination of information about TB disease 0.12 Assumed
αH0 Baseline rate of dissemination of information about HIV 0.18 [29]
γ Effectiveness of existing self-preventive measures for TB 0.93 Assumed
γ1 Effectiveness of existing self-preventive measures for HIV 0.93 [37]
pT∗ Prevalence producing half of the maximum behavioural change value for TB 0.09 [3]
pH∗ Prevalence producing half of the maximum behavioural change value for HIV 0.09 [29]
n Level of reaction of the population for diseases 2 [29]
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In the strategy where all the controls are being applied concurrently, it it is optimal to apply
all available resources to each of the control measures at the initial stage of the planning period.
However, since our objective is to minimize the total aggregate cost of the population, it is optimal
to decrease the intensity of the effort for educating people to apply all possible prevention methods
against TB after nearly 4 years. Then, after nearly 9 years the effort on HIV education and on recruiting
additional people for TB treatment can be reduced. However, giving treatment for HIV positive
individuals should continue in its full intensity until the end of the planning period (see Figure 4a.
On the other hand when either only prevention or only treatment controls are applied, one has to apply
all the corresponding control measures at their full scale in the entire planning period (see graphs (b)
and (c) in Figure 4). We observe that the result obtained when only treatment controls are applied is
similar to the result reported in [9].

(a) (b)

(c)

Figure 3. Graphs for the prevalence of (a) HIV and (b) TB and the corresponding values for the
marginal cost in (c), when various combinations of control efforts are applied. All the parameter values
are as described in the caption of Figure 2.

It can be seen from the results in the prevalence and marginal cost that it is optimal to include
the preventive educational efforts in the control strategy. Otherwise, apply treatment control with all
its full intensity could be costly for the authorities. In addition, applying the optimal control strategy
reduces the burden of the two diseases to a level that they are unrecognizable in the society within
10 years. The trajectories for all the sub-populations in course of the optimal control strategy is shown
in Figure 5.
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(a)

(b) (c)

Figure 4. Graphs for the Optimal controls (a) when all the controls are applied and (b) when only
preventive controls are applied, and (c) when only treatment controls are applied. All the parameter
values are as described in the caption of Figure 2.

(a) (b)

Figure 5. Graphs for the trajectories of the sub-populations when controls are applied. All the parameter
values are as described in the caption of Figure 2.

When all controls are applied the size of the subpopulation under infection reduce significantly.
Some of them, especially those related to TB decrease to values very close to zero. However, those
values related to HIV/AIDS only cases may still remain high as compared to the TB case counterparts.
This could be explained due to the fact that the treatment for TB makes the infected individuals recover
from infection and their effect is seen within 6 months. However, the treatment for HIV does not
make individuals fully non-infectious and the impact is seen in a longer time period. In addition,
when only preventive controls are used the impact seems negligible or non at the beginning but one
get a significant effect after a while. This could justified that preventive actions will make difference on
the general population not immediately but at a latter stage. At the beginning even the prevalence
increases slightly as there is no additional treatment regiment for those newly infected.
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5. Conclusions

In this paper, we formulated and analyzed a continuous time dynamical model for the spread
of TB-HIV/AIDS co-infection with prevalence dependent behaviour change. The behaviour change
function is assumed to follow a logistic pattern depending on the prevalence of each of the two diseases.
This made the model highly nonlinear and challenging for the mathematical analysis.

The model has been mathematically analysed both for the subsystem corresponding the cases that
each disease type is isolated and in the case when there is co-infection. In addition an optimal control
model that minimizes the aggregate cost of the infections (including production, administration and
implementation of the control efforts). The model includes both intervention categories, preventive as
well as treatment and numerical simulations are presented. In the analysis it has been indicated that
the effect of prevention as well as treating the infected ones with the available pharmaceutical means
affects significantly the optimal control strategy and its outcome.

From the simulation results it can be concluded that applying both preventive and treatment
controls at the population level yields both economic as well as epidemiologic gains. However,
one may achieve a similar epidemiologic result by applying only treatment controls if they are applied
at their full scale. The impacts of the preventive controls are observed to be long term and the cost of
implementing them is very low as compared to treatment. However, the cost of managing the infection
is too high when the rate of transmission is relatively large. Therefore, more weight should be given to
the case finding and treating strategy, but for the overall control effort to be optimal both economically
and epidemiologically, implementing both prevention and treatment controls is recommended.
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