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Abstract: A novel formulation for combined scheduling and control of multi-product, continuous
chemical processes is introduced in which nonlinear model predictive control (NMPC) and noncyclic
continuous-time scheduling are efficiently combined. A decomposition into nonlinear programming
(NLP) dynamic optimization problems and mixed-integer linear programming (MILP) problems,
without iterative alternation, allows for computationally light solution. An iterative method
is introduced to determine the number of production slots for a noncyclic schedule during
a prediction horizon. A filter method is introduced to reduce the number of MILP problems required.
The formulation’s closed-loop performance with both process disturbances and updated market
conditions is demonstrated through multiple scenarios on a benchmark continuously stirred tank
reactor (CSTR) application with fluctuations in market demand and price for multiple products.
Economic performance surpasses cyclic scheduling in all scenarios presented. Computational
performance is sufficiently light to enable online operation in a dual-loop feedback structure.

Keywords: scheduling; model predictive control; dynamic market; process disturbances; nonlinear

1. Introduction

Production scheduling and advanced control are terms which describe efforts to optimize chemical
manufacturing operations. Production scheduling seeks to optimally pair production resources with
production demands to maximize operational profit. Advanced controls seek to optimally control
a chemical process to observe environmental and safety constraints and to drive operations to the most
economical conditions. Model predictive advanced controls use process models to make predictions
into a future horizon based on possible control moves to determine the optimal sequence of control
moves to meet an objective, such as reaching an operational set point. In a multi-product continuous
chemical process, steady-state operational set points or desired operational conditions over a future
time horizon are determined by the production schedule, determining at which times, in what amounts,
and in which sequence certain products should be produced.

As scheduling and advanced control are closely interrelated, both seeking to optimize chemical
manufacturing efficiency over future time horizons, their integration has been the subject of significant
recent investigation. Multiple review articles have been published on the integration of scheduling
and control [1–4]. As schedules are informed of process dynamics as dictated by control structure and
process nonlinearities, schedules produced become more aligned with actual process operations and
schedule efficacy improves [5]. Conversely, when scheduling and advanced control are separated,
coordination of closed-loop responses to process disturbances is lost, unrealistic set points may be
passed from scheduling to advanced controls, and advanced control may seek to drive the process
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to sub-optimal operating conditions due to a lack of communication [3,5,6]. In the presence of
a process disturbance, for example, advanced controls may attempt to return to a set point determined
prior to the disturbance, whereas a recalculation of the schedule from the measured disturbed state,
with knowledge of process dynamics and controller behavior, may show a different schedule and set
point to be most economical [5,7].

One setback to the integration of scheduling and control is computational difficulty. Advanced
controls, particularly model predictive controls, utilize dynamic process models in dynamic
optimization problems, forming linear programming (LP) or nonlinear programming (NLP)
optimization problems depending on the type of model used. Scheduling involves discrete or binary
decisions, such as assigning particular products to production at given times. This gives rise to
mixed-integer programming problems for scheduling. When scheduling and control are combined,
the computational burden of mixed-integer programming is combined with the LP or NLP dynamic
optimization problems. Additionally, dynamic optimization control problems are not required to be
solved only once, as in an iteration of advanced online control, but for each grade transition during
a production schedule. The integrated scheduling and control (ISC) problem has been shown to be
computationally difficult, and much research has been invested in decomposition and reduction of
computational burden for the problem [8–12].

Reduction of the computational burden of integrated scheduling and control is especially
important for enabling online implementations. It has been shown repeatedly in simulation that
closed-loop online implementations of integrated scheduling and control are critical to recalculating
optimal scheduling and control when faced with process disturbances [5,7]. Additionally, it has been
demonstrated that online closed-loop integrated scheduling and control is vital to optimally responding to
variable market conditions, including demand fluctuations and price fluctuations [5,13,14]. As mentioned
in review articles on integrated scheduling and control, a key motivator for integration is the reduced
time-scale at which market conditions fluctuate [1,2]. A reduced time-scale for market fluctuations
implies that the time-scale at which the economically optimal schedule and associated optimal control
profile fluctuates is likewise reduced. Thus, online recalculation to respond to market condition
updates is critical to integrated scheduling and control, and computational burden reduction to enable
such implementation is a salient topic for researchers.

Online responsiveness to volatile market conditions can improve process economics by updating
or changing the existing schedule [5]. The majority of integrated scheduling and control formulations
have used cyclic schedules [7–11,15–22]. However, it has been suggested that a dynamic cyclic schedule
may improve process economics [23]. Beal et al. suggest that a dynamic cyclic schedule can increase the
flexibility of scheduling beyond the rigidity of a cyclic product grade wheel. A dynamic cyclic schedule
can dynamically change the sequence and duration of production of products on the grade wheel
based on process disturbances, sudden surges in demand for specific products, or time-dependent
constraints such as operator availability for equipment handling. Economic benefit from dynamic
cyclic scheduling has been demonstrated in previous work [5,7]. Recent developments in integrated
scheduling and control with discrete representations of time do away with the idea of a cyclic schedule
as the schedule is determined as a sum total of the binary production variables at each discrete point
in time during a prediction horizon [24]. In these works, the number of products manufactured,
the selection of manufactured products, sequence, and timing are all solved simultaneously with
process dynamic models, resulting in a computationally heavy formulation. Evidence of benefits from
noncyclic scheduling has also been demonstrated in other fields, such as cluster-tool robot scheduling
for semiconductor fabrication [25–30].

This work explores fully noncyclic scheduling integrated with advanced process control.
A continuous representation of time is utilized for the scheduling model, and nonlinear model
predictive control (NMPC) is utilized for advanced process control. A decomposition is utilized
to break the problem into NLP problems and mixed-integer linear programming (MILP) problems
without the need for alternating iterations. Further decomposition into problems calculated offline
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from information known a priori with results stored in memory and problems solved online further
reduce the computational burden of integrated scheduling and control, making the problem feasible
for online, closed-loop implementation. Noncyclic scheduling is implemented through an iterative
method, which iterates through potential numbers of products to produce during a future horizon.
The integrated scheduling and control algorithm selects the number of products to manufacture,
which products to manufacture, the production sequence, production timing and amounts, as well
as the grade transitions between each product. This allows greater flexibility than cyclic scheduling
for responding to variable product demands and prices.

2. Literature Review

Extensive prior research has been conducted on integrated scheduling and control,
including several literature review articles [1–4,31,32]. Mahadevan et al. incorporate control
level considerations such as grade transition costs in production scheduling [33]. Grossman and
Flores-Tlacuahuac investigate simultaneous cyclic scheduling and process control for continuously
stirred tank reactors (CSTR), polymer manufacturing processes, and for parallel continuous chemical
processes [16,17,34]. A mixed-integer dynamic optimization (MIDO) approach has been used to
solve the simultaneous continuous-time scheduling and optimal control problem with orthogonal
collocation on finite elements. The large MIDO problem is initialized with dynamic optimization
grade transition problem solutions [17]. Chatzidoukas et al. study solving the simultaneous dynamic
optimization optimal grade transitions and scheduling problem for fluidized-bed reactors (FBR) via
a MIDO approach with orthogonal collocation on finite elements [35]. They also study simultaneous
selection of closed-loop controllers and selection of controller parameters with the scheduling
problem for polymerization processes [36,37]. Terrazas-Moreno and Flores-Tlacuahuac also investigate
simultaneous cyclic scheduling and control of continuous chemical processes, and study a langrangean
heuristic method for reduction of computational burden [15,18]. Baldea et al. and Du et al. demonstrate
reduction of computational burden of the integrated problem by using reduced order, or scale-bridging
models (SBM), in scheduling [8,21]. Scale-bridging models encapsulate the core information about
process dynamics in a low-order model for integrated solution with scheduling [8,9,21]. Nie et al.
study the short-term scheduling and dynamic optimization of multi-unit chemical processes using
a state equipment network (SEN) and mixed-logic dynamic optimization (MLDO), solved by a Big
M reformulation and orthogonal collocation into an MINLP problem [38]. Nie et al. also study
combined scheduling and control of parallel reactors using a resource task network (RTN) coupled
with dynamic models [39]. The solution is achieved by iteration between MILP and NLP subproblems
and Benders’ decomposition. Gutierrez-Limon et al. develop a multi-objective optimization approach
for simultaneous scheduling and control of continuous chemical processes [40]. Benefit is demonstrated
from using multi-objective approaches with Pareto fronts rather than combining economic and dynamic
performance objectives into a single objective function. Gutierrez-Limon and Flores-Tlacuahuac also
investigate simultaneous planning, scheduling, and control for continuous chemical processes using
a large MINLP problem and NMPC [41]. Prata et al. study the use of outer approximation methods for
the solution of integrated scheduling and control problems [42].

Zhuge and Ierapetritou investigate closed-loop implementation of integrated scheduling and
control. The benefit of integrated scheduling and control responsive to process disturbances in
continuous chemical processes is demonstrated [7]. Further work by Zhuge and Ierapetritou
investigates various methodologies for the reduction of computational burden for integrated
scheduling and control to enable feasible online implementation. Application of multi-parametric
model predictive control (mp-MPC) to shift the solution of optimal control dynamic optimization
problems offline while using only an explicit control solution with minimal computational requirements
is studied [22]. The explicit control solution from mp-MPC is integrated with scheduling to reduce the
computational requirements of the online problem. A simplified piece-wise affine (PWA) model to
represent process dynamics for the scheduling level, rather than a first-principles process model,
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and fast model predictive control (fast MPC) at the control level are implemented, resulting in
a significant reduction of computational burden. Additionally, a decomposition approach is presented
based on optimality analysis showing that production sequence and transition times are independent
of product demands [20]. The transition stages, a smaller-scale mixed-integer nonlinear programming
(MINLP) problem, are solved separately from the production stages, a smaller-scale NLP problem,
as opposed to solving an integrated large-scale MINLP problem. No need for iterative alternation is
necessary between the two smaller scale problems.

Chu and You also investigate closed-loop implementations of integrated scheduling and control.
They investigate solutions through mixed-integer fractional programming (MINFP) with a fast,
global optimization algorithm in a simultaneous controller selection and scheduling problem for online
implementation [10,11]. They also investigate multi-objective optimization, including decomposition
into an offline solution of the Pareto frontier and an online MINLP problem simultaneously selecting
a batch scheduling recipe and optimal control [43]. Chu and You also investigate two-stage
stochastic programming to confront uncertainty in integrated scheduling and control problems;
however, the problem is computationally difficult [44]. Reduction of computational difficulty via
nested Benders’ decomposition is investigated. They also investigate a decomposition into a master
scheduling problem (MILP) and a primal problem containing multiple separable dynamic optimization
(or control) problems [45]. The primal and master problems are solved together via iterative alternation
until convergence to an acceptable error is achieved. Nystrom et al. also examine the use of iterations
between master MILP problems and primal NLP problems until convergence to an acceptable error is
achieved for the solution of integrated scheduling and control problems [46,47]. Chu and You also
investigate integration of planning, scheduling, and control in a large MIDO problem discretized
into a MINLP problem by orthogonal collocation on finite elements. They use surrogate models to
effectively reduce the computational burden for the large problem. A decomposition into a leading
scheduling problem and following dynamic optimization problems based on Stakelberg game theory
is also investigated [48].

Rossi has recently demonstrated a decomposition of integrated scheduling and control for batch
processes [49]. The schedule is calculated offline but is updated in real time by updates from an online
optimal control problem. Bauer et al. has recently suggested that key performance indicators (KPI) are
already implemented in industry as the integrating factor between scheduling and control. Scheduling
and control for economic model predictive control (EMPC) of buildings with energy storage has been
investigated [50].

Integration of design, scheduling, and control has also been investigated. Terrazas-Moreno
and Flores-Tlacuahuac examine combined design, scheduling, and control with dynamic process
models nearly a decade ago [51]. Koller et al. present an optimization framework for integrated
scheduling, control, and design of multi-product processes with uncertainty. Worst-case scenarios
are examined in the algorithm to design a process feasible under all worst-case scenarios [52].
Grade transitions and scheduling are incorporated via flexible finite elements and dynamic process
models. Patil et al. study combined design, scheduling, and control for continuous processes [53].
They study worst-case scenarios through frequency response analysis and apply their formulation to
a high impact polystyrene (HIPS) polymerization process.

Moving horizon implementations of closed-loop integrated scheduling and control have been
studied by various researchers. Chu and You use a moving future horizon for online recalculation
of integrated scheduling and control for batch processes in the presence of disturbances such as
unit breakdowns and system disruptions and a dual feedback structure to reduce the frequency of
integrated problem solution [12]. Pattison et al. investigate using a scale-bridging model (SBM) in
a closed-loop moving horizon implementation of integrated scheduling and control for an industrial
air separation unit (ASU), demonstrating effective response to planned maintenance, unplanned
maintenance, and random failure scenarios [14]. A heuristic reactive strategy for integrated planning,
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scheduling, and control for multi-product continuous chemical processes has been developed and
applied in scenarios with market updates with fluctuating product demands [54].

3. Problem Formulation

This work investigates integration of scheduling and control with noncyclic scheduling and
NMPC. The algorithm is allowed to select the number of products to manufacture during a prediction
horizon, which products to manufacture, the production sequence, production durations, and optimal
control moves. The mathematical formulation is presented in this section.

3.1. Decomposition

An objective of this work is feasibility for closed-loop online implementation. To accomplish
this objective, the problem is decomposed into an MILP programming problem and multiple
separable NLP dynamic optimization, or optimal control, problems without the need for alternating
iterations. This formulation builds on previous work that demonstrates the separability of the
integrated scheduling and control problem into subproblems without the need for iterations [20]
and builds on previous work which demonstrates the separation into MILP and dynamic optimization
problems [10,46,47]. This formulation also builds on previous work that demonstrates benefits from
shifting separable computational burden into offline portions of the integrated problem [11,19,22,55].

The main decomposition employed in this work is a decomposition into an MILP problem
that determines the production sequence and production amounts for each manufactured product,
and a group of separable dynamic optimization NLP problems for optimal control during grade
transitions. The formulation for the MILP problem is as follows:

max
ωi ,zi,s ,ts

i ,t f
i ∀i,s

J =
n

∑
i=1

Πiωi −
n

∑
i=1

cstorage,iωi

m

∑
s=1

zi,s(TM − t f
s )−Wτ

m

∑
s=1

τs,

s.t. Equations (2)–(8),

(1)

where TM is the makespan, n is the number of products, m is the number of slots (constrained to equal
the number of products such that m = n), zi,s is the binary variable that governs the assignment of
product i to a particular slot s, ts

s is the start time of the slot s, t f
s is the end time of slot s, Πi is the per

unit price of product i, Wτ is an optional weight on grade transition minimization, τs is the transition
time within slot s, cstorage,i is the per unit cost of storage for product i, and ωi represents the amount of
product i manufactured,

ωi =
m

∑
s=1

∫ t f
s

ts
s+τs

zi,sq dt. (2)

Products are assigned to each slot using a set of binary variables, zi,s ∈
{

0, 1
}

that assign a product
i to be produced in a given slot s. Constraints of the following form are added:

n

∑
i=1

zi,s = 1 ∀s, (3)

which limit the assignment of production within each slot, ensuring that one and only one product is
assigned to each slot, and

m

∑
s=1

zi,s ≤ 1 ∀i, (4)

which constrains the production of products. This constraint, unlike traditional continuous-time
scheduling formulations, does not require each product to be produced once and only once during the
schedule, but allows the optimization to select the number of products to produce during the horizon
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for scheduling provided each slot has a production assignment (Equation (3)). Not every available
product must be produced during each schedule.

The values of the vector τs are determined by the optimization variables zi,s. τs represents the
transition time between the product made in slot s − 1 and product made in slot s. Thus, the value of
τs is determined by the optimal values of zj,s−1 and zk,s which determine which products are assigned
to slots s− 1 and s. For zj,s−1 and zk,x, τs would be equal to the calculated grade transition time from
product j to product k. The possible values for τs are the grade transition times calculated via NLP
optimal grade transition problems (Equation (9)). The time points must satisfy the precedence relations:

t f
s > ts

s + τs ∀s > 1, (5)

ts
s = t f

s−1 ∀s 6= 1, (6)

t f
m = TM, (7)

which require that a time slot be longer than the corresponding transition time, impose the coincidence
of the end time of one time slot with the start time of the subsequent time slot, and define the
relationship between the end time of the last time slot (t f

n) and the total makespan or horizon
duration (TM).

The makespan is fixed to an arbitrary horizon for scheduling. Demand constraints restrict
production from exceeding the maximum demand (δi) for a given product, as follows:

ωi ≤ δi ∀i. (8)

The continuous-time scheduling optimization (or MILP problem) requires transition times
between steady-state products (τi′i) as well as transition times from the current state to each steady-state
product if initial state is not at steady-state product conditions (τ0′i). These grade transitions comprise
the separable dynamic optimization problems or NLP portion of the overall problem decomposition.

Grade transition profiles are optimized using the following objective:

min
u

J = (x− xsp)
TWsp(x− xsp) + ∆uTW∆u + uTWu,

s.t. nonlinear process model,

x(t0) = x0,

(9)

where Wsp is the weight on the set point for meeting target product steady-state, W∆u is the weight
on restricting manipulated variable movement, Wu is the cost for the manipulated variables, u is
the vector of manipulated variables, xsp is the target product steady-state, and x0 is the start process
state from which the transition time is being estimated. The transition time is taken as the time at
which and after which |x− xsp| < ε, where ε is a tolerance for meeting product steady-state operating
conditions. This formulation harnesses knowledge of nonlinear process dynamics in the system model
to find an optimal trajectory and minimum time required to transition from an initial concentration to
a desired concentration. The usage of NMPC for grade transitions in the integrated problem effectively
captures the actual behavior of the controller used in the process, as the transition times are estimated
by a simulation of actual controller implementation on a first-principles nonlinear model of the process.

Because product steady-state operating conditions can be known a priori, all grade transition times
between production steady-state operating conditions can be calculated offline and stored in memory
in a grade transition time table: τss. The online portion of the NLP subproblem is comprised only of
the calculation of τθ , the transition duration and corresponding optimal control profile from current
measured state (xθ) and each steady-state operating condition, or, in other words, the vector of possible
transitions for the first slot (s = 0). For example, consider the case of three products as described in
Table 1. As product steady-state conditions are known a priori as shown in Table 1, the transition times
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between product steady-states can be calculated through NLP problems (Equation (9)) and stored in
a grade transition time table prior to operation (Table 2). However, before operation, process state
measurements (xθ) cannot be known. For example, if in the three product case described in Table
1 a process disturbance was measured at xθ = 0.19 mol/L during online operation, for an optimal
rescheduling beginning from current state xθ to be calculated, transition durations from xθ to each
operating steady-state would need to be estimated online by solving n separable NLP optimal grade
transition problems, where n is the number of steady-state products considered. The results of these
online optimal transition problems would be the vector τθ (Table 3). These transitions would be the
possible values for τs for the first slot (s = 0) in Equation (1) for the MILP rescheduling problem.

Table 1. Product specifications.

Product CA (mol/L)

1 0.10
2 0.30
3 0.50

Table 2. Transition time table (τss) *.

Start End Product

Product 1 2 3

1 0.00 0.71 1.20
2 0.45 0.00 0.71
3 0.94 1.57 0.00

* Transition times in hours.

Table 3. Initial transitions (τθ).

Product τθ (h)

1 0.31
2 0.43
3 0.96

With τss and τθ grade transition information, the MILP problem is equipped to optimally select
the production sequence and amounts for the prediction horizon based on product demands, prices,
transition durations, raw material cost, storage cost, and other economic parameters. Even when
a process disturbance is encountered and measured, the schedule can be optimally recalculated
from the measured disturbance, xθ , via the incorporation of transitions from xθ to each production
steady-state condition (τθ).
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Figure 1. Diagram describing the integrated noncyclic scheduling and optimal control problem.
For variable descriptions, see Table 4.

3.2. Iterative Method

The cyclic continuous-time scheduling formulation is sub-optimal if the number of products on the
wheel exceeds the optimal number of products to produce in a prediction horizon. The number of slots
in the MILP problem is constrained to be equal to the number of products, causing the optimization
to always create n production slots and n transitions even in cases in which <n slots would be
most economical in the considered horizon for scheduling and control. To allow greater flexibility,
an iterative method is introduced which leverages the computational lightness of the separated MILP
subproblem. The number of slots in the continuous-time schedule is selected iteratively based on
improvement to the objective function (profit), beginning from one slot, or only one product to
produce during the horizon (Figure 1). The iterations begin from one slot (α = 1) due to the nature of
grade transitions. Reducing the number of production slots reduces the number of necessary grade
transitions, and reduces the corresponding amount of waste material produced. All grade transition
NLP subproblems are calculated prior to slot iterations as grade transition information is independent
of the number of production slots. This iterative method enables a noncyclic approach to combined
scheduling and control and enables response to market fluctuations in product maximum demand
and product price.
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A heuristic demand filter is introduced to further reduce computational burden (Figure 1).
The filter checks for any combination of α products with summed demand sufficient to fill the
prediction horizon for scheduling and control. This effectively filters each possible α for sufficient
demand before the MILP problem is executed. In calculating the minimum summed demand which
must be met for the given iteration for the MILP problem to be executed, the filter accounts for
transition times calculated by NLP dynamic optimization problems both offline (all τi,i stored in τss)
and online (all τ0 stored in τθ). The demand must be sufficient to fill the production potential of the
prediction horizon, which equates to (q · TM − τα), where τα is the summed grade transition durations.
To ensure each α which has potential for sufficient demand is tested in the MILP problem, the demand
filter overestimates for transition times. In the case of underestimation of total transition times (τα),
the demand required to fill production during the prediction horizon (q · TM− τα) will be overestimated.
In a such case, a combination δC which would have had enough demand may inaccurately be deemed
insufficient. Since often the optimal number of slots will be the smallest number of slots with sufficient
demand (because the number of grade transitions and the corresponding amount of off-specification
production increases with the number of slots), it is pertinent to not underestimate the durations of
grade transitions. To eliminate such underestimation, the maximum transitions are used for estimations
of the total transition time during the prediction horizon (τα).

Table 4. Variable descriptions.

Variable Description

α Current number of slots
τss Matrix of grade transition durations between production steady-states
xθ Measured process state
τθ Vector of grade transition durations from xθ to each product steady-state
p Vector of production steady-states known a priori

TM Prediction horizon duration or makespan
q Process flow rate (m3/h)
τα Estimation of total grade transition during a prediction horizon for α production slots
δ Vector of maximum demands (δi) for products

δC Any combination of α product demands
n Number of possible products
Π Vector of product selling prices
s Vector of product storage costs (m3/h)

Eα Estimated profit from optimized schedule for α production slots
ωα Vector of manufactured amount per product (m3) in optimized schedule with α slots

4. Case Study Application

In this section, the performance of the iterative noncyclic integrated scheduling and control
formulation in this work is demonstrated. The test scenarios and computational, economic,
and closed-loop performance results of the algorithm are presented.

4.1. Process Model

This section presents the CSTR problem used to highlight the value of the formulation introduced
in this work. The CSTR model is a general test problem that is widely applicable in various industries
from petrochemicals to food processing. The model shown in Equations (10) and (11) is an example
of an exothermic, first-order reaction of A ⇒ B where the reaction rate is defined by an Arrhenius
expression and the reactor temperature is controlled by a cooling jacket:

dCA
dt

=
q
V
(CA0 − CA)− k0e−EA/RTCA, (10)

dT
dt

=
q
V
(Tf − T)− 1

ρCp
k0e

−EA
RT CA∆Hr −

UA
VρCp

(T − Tc). (11)
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In these equations, CA is the concentration of reactant A, CA0 is the feed concentration, q is the
inlet and outlet volumetric flowrate, V is the tank volume (q/V signifies the residence time), EA is the
reaction activation energy, R is the universal gas constant, UA is an overall heat transfer coefficient
times the tank surface area, ρ is the fluid density, Cp is the fluid heat capacity, k0 is the rate constant,
Tf is the temperature of the feed stream, CA0 is the inlet concentration of reactant A, ∆Hr is the heat of
reaction, T is the temperature of reactor and Tc is the temperature of cooling jacket. The parameters for
the CSTR in this work are detailed in Table 5.

Table 5. Reactor parameter values.

Parameter Value

V 100 m3

EA/R 8750 K
UA

VρCp
2.09 s−1

k0 7.2 × 1010 s−1

Tf 350 K
CA0 1 mol/L
∆Hr
ρCp

−209 K m3/mol
q 100 m3/h

A single CSTR can make multiple products by varying the concentrations of A and B in the
outlet stream, which can be done by manipulating the cooling jacket temperature Tc. The cooling
jacket temperature is bounded by 200 K ≤ Tc ≤ 500 K and a constraint on movement is added as
∆Tc ≤ 2 K/min.

4.2. Scenarios

Five illustrative scenarios are presented to demonstrate the abilities of the noncyclic scheduling
and control algorithm presented in this work, with one additional scenario introduced in Section 5
to illustrate an aspect of the iterative algorithm. The first two scenarios demonstrate the flexibility
afforded by the noncyclic formulation in selecting the number of production slots and the products
for production during a prediction horizon. The last three scenarios demonstrate the closed-loop
performance of this formulation with process disturbances and market fluctuations. It is noted
that the closed-loop performance of this formulation is also demonstrated in another work [5];
however, closed-loop selection of variable production slots is not demonstrated in another work.
Additionally, analysis of computational time and comparison to a cyclic scheduling formulation are
not analyzed in the companion work. All scenarios in this work use a 48 h prediction horizon, a raw
material cost of $20/m3, and a flat storage cost of $0.10/m3/hr for all products. Slot times are given by
the solutions returned by the optimization (ω∗, z∗, α∗).

The first scenario as shown in Table 6 is formulated to demonstrate the flexibility of the
noncyclic scheduling and control formulation. Seven products, all with large demands, are available.
The noncyclic schedule is predicted to be able to select the optimal number of production slots and
produce the most profitable products in the optimal production sequence rather than producing
all available products in a cyclic grade wheel. The starting concentration for Scenario 1 is
CA = 0.10 mol/L, the steady-state concentration for Product 1.

The second scenario contains comparatively less demand per available product and is expected
to produce a larger number of products than in Scenario 1. The starting concentration for Scenario is
CA = 0.10 mol/L, the steady-state concentration for Product 1. The third scenario is formulated with
the same product demands and prices as in Scenario 2 (Table 7) but with an initial concentration of
0.22 mol/L, the steady-state concentration for Product 3. However, a process disturbance is introduced
2 h into the closed-loop simulation. The disturbance triggers a recalculation of the integrated problem.



Processes 2017, 5, 83 11 of 22

The disturbance lasts for a duration of 1 h and the concentration rises by 0.15 mol/L. Such a disturbance
could occur as a result of random equipment failure.

Table 6. Scenario 1: Product specifications.

Product CA (mol/L) Max Demand (m3) Price ($/m3)

1 0.10 2000 24
2 0.15 2000 29
3 0.22 2000 26
4 0.28 2000 23
5 0.34 2000 21
6 0.44 2000 21
7 0.50 2000 20

Table 7. Scenario 2: Product specifications.

Product CA (mol/L) Max Demand (m3) Price ($/m3)

1 0.10 1000 23
2 0.15 900 22
3 0.22 1200 29
4 0.28 860 26
5 0.34 800 25
6 0.44 1100 23
7 0.50 1400 21

The fourth scenario uses the same product specifications as Scenarios 2–3 with an initial
concentration of 0.34 mol/L, but introduces a market disturbance. The updated market conditions
become available 4 h into closed-loop simulations, triggering a recalculation of the scheduling and
control problem. The market update includes surges in demand for Products 3–4 of 800 m3 and 600 m3,
respectively.

The last scenario utilizes the product specifications of Scenario 1 with an initial concentration of
0.10 mol/L, but introduces market fluctuations for product prices. The updated market conditions
become available 8 h into closed-loop simulations. The new prices are reflected in Table 8.

Table 8. Scenario 5: Updated market prices.

Product CA (mol/L) Updated Price ($/m3)

1 0.10 22
2 0.15 25
3 0.22 29
4 0.28 28
5 0.34 23
6 0.44 21
7 0.50 21

5. Results

The results of implementation of the scenarios and case study in Section 4 are presented in this
section. Each problem is formulated in the Pyomo framework for modeling and optimization [56,57].
Nonlinear programming dynamic optimization problems are solved using orthogonal collocation
on finite elements with Legrendre polynomials and Gauss–Radau roots [56–58]. The nonlinear
programming dynamic optimization problems use a discretization scheme with a granularity of 1 finite
element per 0.02 h of simulation time, or 50 finite elements per simulation hour with one collocation
node between each finite element and are solved with the APOPT solver [59]. MILP problems are
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solved using the open-source COUENNE solver [60]. For each scenario, the results for closed-loop
combined noncyclic scheduling and advanced control are compared to results for open-loop combined
cyclic scheduling and advanced control.

5.1. Scenario 1

Scenario 1 illustrates the advantages of the flexibility of the noncyclic scheduling and control
formulation. As shown in Table 6, the market demands are large for each of the seven available
products. Both the cyclic and noncyclic combined scheduling and control algorithms select the most
optimal production sequence, minimizing off-specification production by selecting the sequence with
minimal overall transition time. However, the cyclic scheduling and control algorithm is constrained
to produce each of the products on the cyclic grade wheel during the specified horizon despite the
reality that only the three most profitable products should be produced. The cyclic constraint results in
unnecessary transitions and off-specification production, as shown in Tables 9 and 10. Each product
is inserted into the schedule even though none of the less profitable products will be produced
during its turn on the cycle in order to make room for production of the most profitable products.
The unnecessary transitions lead to a large decrease in profit compared to the noncyclic approach.
As shown in Table 11, the noncyclic scheduling and control algorithm checks each possible number
of production slots, and selects the optimal number. This minimizes unnecessary transitions and
maximizes profit during the horizon considered. This scenario demonstrates the flexibility of the
noncyclic combined scheduling and control approach.

Table 9. Production schedule: Scenario 1.

Formulation
Selected Production Sequence and Slot Start Times (h)

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7

Cyclic, Traditional P1 (0) P2 (2.88) P3 (23.6) P4 (44.4) P5 (45.1) P7 (45.9) P6 (47.2)
Noncyclic, Iterative P1 (0) P2 (6.52) P3 (27.2) - - - -

Table 10. Economic results: Scenario 1.

Formulation Profit ($) Off-Spec (m3)
Manufactured Amount per Product (m3)

1 2 3 4 5 6 7

Cyclic, Traditional 9,984 512 288 2000 2000 0 0 0 0
Noncyclic, Iterative 18,588 148 652 2000 2000 0 0 0 0

Table 11. Alpha iterations: Scenario 1 (MILP:mixed-integer linear programming; NLP: nonlinear programming).

α MILP NLP

pre-iteration - X(7 Problems)

1 DF -
2 DF -
3 X -
4 X -
5 X -
6 X -
7 X -

DF: Demand Filter.

The computational requirements for the combined scheduling and control problems for Scenario
1 are outlined in Table 12. As expected, the NLP problems for both cyclic and noncyclic problems
are comparable, totaling around 5 s. Due to the unique problem decomposition, the computational
burden of noncyclic scheduling and control is only felt in the number of MILP iterations. The increase
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in the number of MILP iterations significantly raises the computational burden of the scheduling and
control problem from the cyclic to the noncyclic method. However, the computational burden for both
methods is reasonable for online implementation in dual-feedback loops such as those discussed in
Section 2 in which an integrated scheduling and control solution is only calculated with low frequency,
allowing a fast control loop to regulate the process in the absence of significant market or process
disturbances and during the computation time of the integrated problem.

Table 12. Computational results: Scenario 1.

Formulation Total Time (s)
NLP MILP

# Average (s) Total (s) # Average (s) Total (s)

Cyclic, Traditional 18.07 7 0.735 5.15 1 - 12.92
Noncyclic, Iterative 159.4 7 0.743 5.20 5 30.58 154.2

5.2. Scenario 2

In Scenario 2, the market demands for products are smaller than that of Scenario 1 and more
varied. The noncyclic scheduling and control algorithm again selects the optimal number of production
slots as shown in Table 13, which is again less than the number of available products on the cyclic grade
wheel chosen by the cyclic scheduling and control algorithm. The integration of scheduling and control
is especially evident in Scenario 2. In a scheduling formulation without integration of process dynamics
and grade transition behavior, the noncyclic schedule would likely have selected the more profitable
products (for example, producing product 6 rather than product 2). However, process dynamics dictate
that the profit gain from producing the more profitable product (6) would be lost in the necessary grade
transition and accompanying off-specification production. This scenario demonstrates the benefits of
the combination of noncyclic scheduling and advanced control (see Table 14).

Computational burden in Scenario 2 is once again within the feasible range for both cyclic and
noncyclic scheduling and control methods as shown in Table 15. Due to the problem decomposition,
as in Scenario 1, the NLP computations require no more time for the noncyclic algorithm than the
cyclic algorithm. The relative increase of the computational burden of the noncyclic scheduling and
control problem is due to MILP problems in iterations. However, the demand filter shown in Table 16
is effective in reducing the number of MILP iterations required by preempting iterations for which
sufficient demand is not realized.

It is important to note that the MILP problem computational burden is independent of the process
model. Thus, for any given process, the relative increase in computational burden from cyclic to
noncyclic scheduling and control will be independent of process model complexity. The process model
only affects the nonlinear programming (or grade transition) portion of the problem decomposition,
which is equally burdensome to the cyclic and noncyclic formulations.

Table 13. Production schedule: Scenario 2.

Formulation
Selected Production Sequence and Slot Start Times (h)

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7

Cyclic, Traditional P1 (0) P2 (3.28) P3 (3.96) P4 (16.8) P5 (26.1) P7 (34.9) P6 (36.2)
Noncyclic, Iterative P1 (0) P2 (10.0) P3 (17.1) P4 (29.9) P5 (39.2) - -
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Table 14. Economic results: Scenario 2.

Formulation Profit ($)
Off-Spec (m3) Manufactured Amount per Product (m3)

1 2 3 4 5 6 7

Cyclic, Traditional 3,824 512 328 0 1200 860 800 1100 0
Noncyclic, Iterative 7,420 302 1000 638 1200 860 800 0 0

Table 15. Computational results: Scenario 2.

Formulation Total Time (s)
NLP MILP

# Average (s) Total (s) # average (s) Total (s)

Cyclic, Traditional 22.43 7 0.776 5.43 1 - 17.00
Noncyclic, Iterative 115.2 7 0.791 5.54 3 36.57 109.7

Table 16. Alpha iterations: Scenario 2.

α MILP B

pre-iteration - X(7 Problems)

1 DF -
2 DF -
3 DF -
4 DF -
5 X -
6 X -
7 X -

DF: Demand Filter.

5.3. Return Method: Additional Scenario

In Scenarios 1–2, the optimal number of slots is the first number of slots which the heuristic
demand filter allows to pass to the MILP problem. This is commonly the case due to the nature of
grade transitions. Fewer slots, when possible, are desirable as a grade transition is necessitated with
each additional slot. It may be intuitive for the algorithm to return the solution from the first MILP
problem; however, this is not always optimal, as shown through the additional scenario in Table 17.
The prediction horizon duration for this additional scenario is 48 hs, and the initial concentration is
0.10 mol/L. As demonstrated in Table 18, the profit predicted by the MILP problem increases from the
first slot allowed through by the heuristic demand filter upward because the difference in price between
the products with high demand (Products 6–7) and those with lower demands (Products 1–5) exceeds
the cost of additional grade transitions. Producing a larger number of products, with necessitated
grade transitions, is more profitable than producing a smaller number of products with lower prices.
This could have practical application in cases in which a selection must be made between multiple
high-price, low-demand specialty products and fewer low-price, high-demand commodity products.
As shown in Table 18, the most profitable number of slots is 5, though more grade transitions are
necessitated. The effect of additional grade transitions exceeds the benefit from the higher price of
the low-demand for combinations of more than five products, and five is selected by the algorithm
as the optimal number of products to manufacture during the prediction horizon (Tables 19 and 20).
More effective heuristic mechanisms for noncyclic combined scheduling and control algorithms are
subjects of future work.
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Table 17. Additional scenario: Product specifications.

Product CA (mol/L) Max Demand (m3) Price ($/m3)

1 0.10 1000 23
2 0.15 900 24
3 0.22 1200 29
4 0.28 1200 26
5 0.34 800 25
6 0.44 4000 21
7 0.50 4000 21

Table 18. Alpha Iterations: Additional scenario.

α MILP Predicted Profit ($)

pre-iteration - -

1 DF -
2 X 4,957
3 X 7,077
4 X 8,113
5 X 12,273
6 X 9,973
7 X 7,601

DF: Demand Filter.

Table 19. Production schedule: Additional scenario.

Formulation
Selected Production Sequence and Slot Start Times (h)

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7

Noncyclic, Iterative P1 (0) P2 (3.98) P3 (13.7) P4 (26.5) P5 (39.2) - -

Table 20. Economic results: Additional scenario.

Formulation Predicted Profit ($) Off-Spec (m3)
Manufactured Amount per Product (m3)

1 2 3 4 5 6 7

Noncyclic, Iterative 12,273 302 398 900 1200 1200 800 0 0

5.4. Scenario 3

Scenario 3 demonstrates the performance of the noncyclic integrated scheduling and control
method in the presence of process disturbances. The initial process and economic parameters
are identical to those of Scenario 2, and the initial algorithm schedule and control choices are
likewise identical. The process disturbance occurs between hours 2 and 3 of the simulation,
with a concentration increase of 0.15 mol/L, from the steady-state of Product 3 (0.22 mol/L) to
0.37 mol/L. The cyclic scheduling and control shown in Table 21 is not recalculated after the
disturbance. Consequently, although the process state moves to near the steady-state operating
conditions of Product 5, the schedule holds and the process is driven back to Product 2 operational
steady-state conditions before continuing with the cyclic grade wheel. This results in a large amount of
off-specification production. The combination of unnecessary grade transitions from the cyclic grade
wheel approach with the process disturbance caused a net loss through the 48 h simulation as shown
in Table 22.

The noncyclic integrated scheduling and control algorithm is allowed to re-calculate the optimal
scheduling and control trajectory post-disturbance. The result of the recalculation is an alteration of
the schedule to produce Product 5 (0.35 mol/L), the product with the closest steady-state operating
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condition to the disturbed process state, post-disturbance. The recalculation cuts profit losses by
reducing unnecessary grade transitions after the disturbance as well as between products which are
not necessary to produce during the horizon. The noncyclic scheduling and control algorithm pulls
through the simulation with a net profit, though far smaller than that of Scenario 2.

The computational burden shown in Table 23 is again within the feasible range for online dual
feedback structures for initial integrated scheduling and control problems; however, the recalculation
for the noncyclic algorithm requires additional computational time for nonlinear programming
problems. This demonstrates that process disturbances can lead to process states or conditions from
which model predictive control problems to steady-states are difficult to solve. With a dual loop feedback
structure, computational requirements of larger magnitudes can be tolerable. The computational burden
of the re-recalculation of the integrated scheduling and control problem for Scenario 3 is justified by the
profit recovery from the recalculation. Additionally, the recalculation time can be tolerated and allowed
by implanting a dual loop feedback structure in which the critical control loop is not dependent upon
the solution of the integrated scheduling and control problem. Thus, the integrity of process operation
(critical) is unimpeded by the computational burden of the process scheduling and control trajectory
re-optimization (beneficial, but not critical). In addition, in processes in which the model complexity
is too great for model predictive control approaches for integrated scheduling and control, surrogate
models, time-scale bridging models, or other specifically tailored empirical or reduced order models
can be substituted for the nonlinear process models in nonlinear programming optimal control and
grade transition problems, potentially transforming the optimal control and grade transition problems
into linear or otherwise simplified problems. Many such simplifications are demonstrated by literature
reviewed in Section 2.

Table 21. Production schedule: Scenario 3.

Formulation
Selected Production Sequence and Slot Start Times (h)

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7

Cyclic, Traditional P3 (0) P2 (12.0) P1 (12.7) P7 (16.3) P6 (18.1) P5 (29.9) P4 (38.7)
Noncyclic, Iterative (Initial) P3 (0) P4 (12.0) P5 (21.4) P2 (30.1) P1 (37.4) - -

Noncyclic, Iterative (Re-calc) - P5 (3.00) P4 (11.6) P3 (20.9) P2 (31.6) P1 (37.4) -
Noncyclic, Iterative (Actual) P3 (0) Disturbance P5 (3.00) P4 (11.6) P3 (20.9) P2 (31.6) P1 (37.4)

Table 22. Economic results: Scenario 3.

Formulation Profit ($) Off-Spec (m3)
Manufactured Amount per Product (m3)

1 2 3 4 5 6 7

Cyclic, Traditional (Actual) −2096 762 291 0 988 860 800 1100 0
Noncyclic, Iterative (Actual) 4993 440 1000 500 1200 860 800 0 0

Table 23. Computational results: Scenario 3.

Formulation Total Time (s)
NLP MILP

# Average (s) Total (s) # Average (s) Total (s)

Cyclic, Traditional 24.17 7 0.859 6.01 1 - 18.16
Noncyclic, Iterative (Initial) 112.0 7 0.836 5.05 3 35.63 106.9

Noncyclic, Iterative (Re-calc) 147.8 7 5.77 40.42 4 26.84 107.4

5.5. Scenario 4

Scenario 4 demonstrates the performance of the algorithm in the presence of volatile or changing
market demand for products (see Table 24). Updated market conditions at 4 h into the simulation show
demand increases for products 3 and 4 of 600 and 800 m3, respectively. The initial economic conditions
and initial process state are identical to those of Scenarios 2–3. As in Scenario 3, for comparative
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purposes, the cyclic schedule and control algorithm is constrained to not recalculate after the updated
market conditions are made available. The result is significantly reduced profits compared to the
re-optimized case. The noncyclic scheduling and control algorithm finds the initial optimal number
of products to produce given the economic conditions (5), and then re-calculates the schedule when
the updated market conditions are made available. The number of products to produce is reduced
by one, the re-optimization to make room for the increased demand for products 2–3. This flexible
re-optimization, eliminating the need for a rigid cyclic grade wheel approach, enables the scheduling
and control algorithm to reduce the number of products and eliminate unnecessary grade transitions.
The resulting profit increase from the noncyclic and re-optimized case is significant, as shown in
Table 25.

The computational burden of the re-optimization of Scenario 4 as shown in Table 26 is far less than
the burden of re-optimization in Scenario 3 as shown in Table 23. The process state for the initiation
of the re-optimization was at a production steady-state, and the re-optimization computational time
is comparable to that of the initial noncyclic calculation. As is the case with the other Scenarios,
the computational time requirement increase for the noncyclic algorithm lies solely in the increased
number of MILP problems. This relaxed computational burden increase is due to the problem
decomposition described in this work.

Table 24. Production schedule: Scenario 4.

Formulation
Selected Production Sequence and Slot Start Times (h)

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7

Cyclic, Traditional P5 (0) P4 (8.00) P3 (17.3) P2 (30.1) P1 (30.8) P7 (34.4) P6 (36.2)
Noncyclic, Iterative (Initial) P5 (0) P4 (8.00) P3 (17.3) P2 (30.1) P1 (37.4) - -

Noncyclic, Iterative (Re-calc) - P5 (4.00) P4 (8.00) P3 (23.3) P2 (44.1) - -
Noncyclic, Iterative (Actual) P5 (0) P4 (8.00) P3 (23.3) P2 (44.1) - - -

Table 25. Economic results: Scenario 4.

Formulation Profit ($) Off-Spec (m3)
Manufactured Amount per Product (m3)

1 2 3 4 5 6 7

Cyclic, Traditional (Actual) 2,816 546 294 0 1200 860 800 1100 0
Noncyclic, Iterative (Actual) 16,024 220 0 320 2000 1460 800 0 0

Table 26. Computational results: Scenario 4.

Formulation Total Time (s)
NLP MILP

# Average (s) Total (s) # Average (s) Total (s)

Cyclic, Traditional 23.15 7 0.950 6.65 1 - 16.50
Noncyclic, Iterative (Initial) 122.9 7 0.964 6.75 3 38.71 116.1

Noncyclic, Iterative (Re-calc) 132.0 7 0.994 6.96 5 25.00 125.0

5.6. Scenario 5

Scenario 5 demonstrates the benefit of the noncyclic scheduling and control algorithm in the
presence of volatile market prices. Updated market prices shown in Table 8 are made available
at 8 h into simulation. Initial market conditions and process state are the same as in Scenario 1.
Noncyclic scheduling and control initially selects three products to produce (1, 2, 3) as shown in Table
27, but responds to the price change by shifting production from products 2 and 3 to products 3 and 4,
which show increased selling prices in the market update. The noncyclic scheduling and control
approach demonstrates significant profit increases compared to the cyclic grade wheel approach,
which is non-responsive to updated market conditions (see Table 28).
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The computational burden for the noncyclic problem is again very high and infeasible for
fully closed-loop regulatory control as shown in Table 29; however, as mentioned in previous
discussion, the profit increase from re-optimization motivates a dual feedback structure to enable a long
computation while a control feedback loop is regulating the process until the combined scheduling and
control re-optimization is available. Relatively long computations are motivated by the clear potential
for economic gains. Utilization of commercial solvers and commercial optimization frameworks rather
than the open-source tools utilized in this work is also expected to reduce the computational burden of
the formulation.

Table 27. Production schedule: Scenario 5.

Formulation
Selected Production Sequence and Slot Start Times (h)

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7

Cyclic, Traditional P1 (0) P2 (2.88) P3 (23.6) P4 (44.4) P5 (45.1) P7 (45.9) P6 (47.2)
Noncyclic, Iterative (Initial) P1 (0) P2 (6.52) P3 (27.2) - - - -

Noncyclic, Iterative (Re-calc) - - P3 (8.00) P4 (28.8) - - -
Noncyclic, Iterative (Actual) P1 (0) P2 (6.52) P3 (8.00) P4 (28.8) - - -

Table 28. Economic results: Scenario 5.

Formulation Profit ($) Off-Spec (m3)
Manufactured Amount per Product (m3)

1 2 3 4 5 6 7

Cyclic, Traditional (Actual) 9,760 512 288 2000 2000 0 0 0 0
Noncyclic, Iterative (Actual) 20,820 224 652 80 2000 1844 0 0 0

Table 29. Computational results: Scenario 5.

Formulation Total Time (s)
NLP MILP

# Average (s) Total (s) # Average (s) Total (s)

Cyclic, Traditional 19.64 7 0.827 5.79 1 - 13.85
Noncyclic, Iterative (Initial) 181.2 7 0.892 6.24 5 35.01 175.0

Noncyclic, Iterative (Re-calc) 145.3 7 0.642 4.50 6 23.47 140.8

6. Conclusions

This work demonstrates the flexibility of a noncyclic combined scheduling and advanced control
framework. Economic benefit is demonstrated through a series of illustrative scenarios on a CSTR case
study. Computational burden is increased compared to that of a cyclic schedule due to an increased
number of MILP problems. However, economic benefit motivates the use of the noncyclic scheduling
and control method in volatile market conditions and with process disturbances in a dual loop feedback
structure. Economic results demonstrate the effectiveness of the flexible, noncyclic integration of
scheduling and control over a cyclic grade wheel approach to combining scheduling and control
when dealing with a large number of possible products within a short time-frame. The results also
demonstrate the effectiveness and computational feasibility of closed-loop noncyclic scheduling and
control with volatile market conditions. The benefit of a decomposition of the combined scheduling
and control problem into a mixed-integer continuous-time scheduling problem and multiple separable
dynamic optimization optimal control problems is demonstrated. This decomposition allows for
computationally light iterations of the mixed-integer problem, enabling the noncyclic formulation
within reasonable computational requirements. The benefits of shifting significant computational load,
which can be calculated offline from information known a priori, is also demonstrated.
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Abbreviations

The following abbreviations are used in this manuscript:

NMPC nonlinear model predictive control
MILP mixed-integer linear programming
MIDO mixed-integer dynamic optimization
LP linear programming
NLP nonlinear programming
NMPC nonlinear model predictive control
ISC integrated scheduling and control
CSTR continuous-stirred tank reactor
MIDO mixed-integer dynamic optimization
FBR fluidized-bed reactor
SEN state equipment network
MLDO mixed-logic dynamic optimization
RTN resource task network
mp-MPC multi-parametric model predictive control
fast MPC fast model predictive control
MINLP mixed-integer nonlinear programming
MINFP mixed-integer fractional programming
MILP master scheduling problem
KPI key performance indicator
EMPC economic model predictive control
HIPS high impact polystyrene
SBM scale-bridging model
ASU air separation unit
PWA piecewise affine
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