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Abstract: Differential activation of neuronal populations can improve the efficacy of clinical devices
such as sensory or cortical prostheses. Improving stimulus specificity will facilitate targeted neuronal
activation to convey biologically realistic percepts. In order to deliver more complex stimuli to a
neuronal population, stimulus optimization techniques must be developed that will enable a single
electrode to activate subpopulations of neurons. However, determining the stimulus needed to
evoke targeted neuronal activity is challenging. To find the most selective waveform for a particular
population, we apply an optimization-based search routine, Powell’s conjugate direction method,
to systematically search the stimulus waveform space. This routine utilizes a 1-D sigmoid activation
model and a 2-D strength–duration curve to measure neuronal activation throughout the stimulus
waveform space. We implement our search routine in both an experimental study and a simulation
study to characterize potential stimulus-evoked populations and the associated selective stimulus
waveform spaces. We found that for a population of five neurons, seven distinct sub-populations
could be activated. The stimulus waveform space and evoked neuronal activation curves vary with
each new combination of neuronal culture and electrode array, resulting in a unique selectivity
space. The method presented here can be used to efficiently uncover the selectivity space, focusing
experiments in regions with the desired activation pattern.

Keywords: optimization; closed-loop; feedback; extracellular electrical stimulation; micro-electrode
array (MEA); dissociated culture; Powell

1. Introduction

By developing new techniques to selectively activate particular neurons within a population,
stimulation devices can better control their direct effects on activated tissue, and thereby improve
stimulus efficacy. Selective activation to modulate neuronal activity is crucial for many science and
clinical applications because selectivity allows stimuli to target a specific population. In applications
such as deep brain stimulation (DBS), which is used in treating Parkinson’s disease and epilepsy,
targeted stimulation can guide a stimulus to alleviate symptoms due to disease or injury. A priority
in designing stimuli is to reduce side effects resulting from the activation of off-target populations.
During DBS, stimuli must be designed to specifically target a baseline activity level such that the
stimulus evokes sufficient activity to provide a therapeutic effect, while not excessively activating
tissue leading to side effects [1–4]. There is a therapeutic subspace in the strength–duration waveform
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space, between which side effects are reduced and stimulus efficacy is increased, and stimulation
algorithms must incorporate feedback of the evoked activity to enable neuronal targeting within
this subspace.

Improving the selectivity of electrical stimuli for targeted neuronal activation is also a critical
step in the development of advanced neural prostheses. The prosthesis field is expansive, including
peripheral and cortical prostheses, with applications including restoration of lost motor and sensory
function in artificial limbs; cochlear prostheses for restoring audition [5,6]; retinal prostheses for
restoring vision [7–9]; and cortical prostheses for inducing sensory percepts and reading motor intent
directly from the brain [10–16]. An effective prosthesis must encode a variety of unique stimuli.
For example, the hand senses surface texture, heat, pressure, and directionality of contact, all of which
are encoded uniquely. An early pioneering team pursuing the development of selective stimulation
techniques utilized the cable model to discover that monophasic cathodic stimuli could be used to
selectively activate neuronal fibers over cell bodies [17]. There is a vast potential neuronal activation
space available for exploitation to extend the repertoire of stimulus messages by activating various
subpopulations of the accessible neuronal population. Studies have shown that by using cortical
electrodes, patients are able to detect the activation of even a single neuron [18], suggesting even the
smallest differences in the activated population of neurons are detectable.

Our goal is to develop a technique that facilitates the measurement of all accessible neuronal
subpopulations and finds the waveforms most selective for a target group. Exploiting the spatial
location and natural variation in stimulus-evoked activation probabilities assists in the preferential
selection of neuronal populations. The activation probability, in response to a rectangular current-pulse,
is described by a two-parameter strength–duration curve. Although a neuron will typically activate
with greater probability as charge is increased, some neurons activate preferentially to a long
pulse-width, while others respond preferentially to a short-pulse-width, high-amplitude pulse [19].
For any given pair of accessible neurons, the inherent differences in their strength–duration curves can
be exploited for delivering selective waveforms. However, searching a multi-dimensional parameter
space, which could include stimulus strength and duration, electrode location or multiple electrodes
and number of neurons in a population is technically challenging.

Closed-loop (CL) methods are well suited for fast searches through a large input parameter space
to find an optimal stimulus waveform, owing to their online feedback of measured responses for
determining subsequent stimuli [20–23]. Closed-loop techniques are advantageous over open-loop
techniques in a multi-parameter space because CL techniques can learn from past data to rapidly
locate the stimulus space that provides the most selective neuronal activation. A model-based
search routine can guide the search and mitigate the inherent noise in the stimulus-evoked neuronal
response. By utilizing CL search methods, Brocker et al. [24] used a computational model and
genetic algorithm to develop non-regular temporal stimulation patterns for DBS, which, when tested
experimentally, improved stimulus efficacy while reducing device power requirements. Additionally,
Pais-Vieira et al. [25] implemented a brain-to-brain interface in rats that altered the stimulus waveform
in one cortical prosthesis based on the actions of a separate rat, and the pair of rats learned to
change their behavior to benefit them both. Numerous other studies have been conducted to
investigate selectivity of electrical stimuli in humans, including for example, an investigation of
human nerve stimulation thresholds [26], selective stimulation for improvement in motion control
of musculoskeletal systems [27], selective stimulation of the human femoral nerve [28] and the
optimization of selective stimulation parameters for multi-contact electrodes [29]. These developments
in science and technology, many of which were successful due to the adoption of closed-loop
methodologies, are not limited to neuroscience. For example, McMullen and Jensen [30] developed
a model-based multi-dimensional optimization of a microreactor that monitors a chemical reaction
where no a priori information is available on the reaction parameters. By utilizing real-time feedback
of an estimate of the system state, CL techniques can improve on current technologies by increasing
search efficiency to find optimal input parameters.
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In this work, we have implemented an automated search technique, Powell’s conjugate
direction method, to traverse the input parameter space. The difference in strength–duration curves
among neurons creates regions in the waveform space that offer access to stimulus selectivity.
Adopting Powell’s method for optimizing stimulus parameters allows for multiple parameters to
be probed simultaneously in order to find the maximum in selectivity. Deterministic optimization
methods, such as Powell’s method, generally start with an initial guess, and then iteratively improve
on the solution according to a directional search algorithm. Our application of Powell’s method allows
us to rapidly search through multiple variables to maximize the difference between activation curves.
Resistance to noise is a design priority, given that neuronal responses are inherently noisy, and Powell’s
method is more resistant to noise than gradient approaches since taking the derivative of noisy data
leads to inaccuracy.

2. Material and Methods

We designed a closed-loop system [31] for optimizing stimulus pulse parameters based on a
model of neuronal activation and an experimental goal. Figures 1–3 have been reproduced from our
previously published article [31] in order to allow the methods to be self-contained within this article.
The system comprises hardware and software components that select and deliver stimuli designed to
evoke a particular neuronal response. Each measured response is used to refine the model and the next
stimulus is automatically chosen. The modular design, which separates data collection from both data
analysis and decision-making, enables the user to select a model structure and an experimental goal in
order to investigate a variety of questions. Each section of the system is described in more detail below.
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Figure 1. Phase contrast micrograph of the high-density electrode array, on which healthy neurons
are growing. The HD array consists of two 6 × 5 electrode grids (10 µm diameter, 30 µm spacing).
The distance from center-to-center of the two electrode arrays is 200 µm.

2.1. Cortical Cell Culture

Embryonic Day 18 (E18) rat cortices were enzymatically and mechanically dissociated according
to [32]. Cortices were digested with trypsin (0.25% w/EDTA) for 10–12 min, strained through a 40 µm
cell strainer to remove clumps and centrifuged to remove cellular debris. Neurons were re-suspended
in culture medium (90 mL Dulbecco’s Modified Eagle’s Medium (Irvine Scientific, Santa Ana, CA,
USA, 9024), 10 mL horse serum (Life Technologies, Carlsbad, CA, USA, 16050-122), 250 µL GlutaMAX
(200 mM; Life Technologies 35050-061), 1 mL sodium pyruvate (100 mM; Life Technologies 11360-070)
and insulin (Sigma-Aldrich St. Louis, MO, USA, I5500; final concentration 2.5 µg/mL)) and diluted
to 3000 cells/µL. Sixty electrode high density microelectrode arrays (MEAs; Multi Channel Systems,
Reutlingen, Germany) were used for experimentation comprising 10 um TiN electrodes at a 30 um
electrode spacing in a configuration of 2 grids of 6 × 5 electrodes. The MEA substrate was SiN and ITO
(indium tin oxide) electrode tracks were chosen for their transparency during imaging. MEAs were
sterilized by soaking in 70% ethanol for 15 min followed by UV exposure overnight. MEAs were
treated with polyethylenimine to hydrophilize the surface, followed by three water washes and 30 min
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of drying. Laminin (10 µL; 0.02 mg/mL; Sigma-Aldrich L2020) was applied to the MEA for 20 min,
half of the volume was removed, and 30,000 neurons were plated into the remaining laminin atop the
MEA. A phase contrast micrograph of a culture atop a MEA can be seen in Figure 1. Cultures were
protected using gas-permeable lids [32] and incubated at 35 ◦C in 5% carbon dioxide and 95% relative
humidity. The culture medium was fully replaced on the first day in vitro (DIV) and then once every
four DIV afterwards.

2.2. Electrical Stimulation

Electrical stimulation was performed using an STG-2004 stimulator and MEA-1060-Up-BC
amplifier (Multi Channel Systems). MATLAB (Natick, MA, USA) was used to control all hardware
devices, which were synchronized by TTL pulses sent from the stimulator at the beginning of each
stimulation loop. In all stimulus iterations, a trigger pulse was first delivered to the camera to begin
recording so that background fluorescence levels could be measured. An enable pulse was then
delivered to the amplifier, which connected the stimulus channel to a pre-programmed electrode.
A single cathodic square current pulse was then delivered to a single electrode centered under the
camera field of view. Cathodic pulses were chosen because they have been shown to be most effective
at evoking a neuronal response [33].

2.3. Optical Imaging

As described by Kuykendal et al. [31] automated optical imaging was used to measure the
stimulus-evoked neuronal response. All preparation procedures were conducted in the dark to
lengthen experiments by minimizing photobleaching and phototoxicity. First, culture media was
removed and neurons were loaded with Fluo-5F AM (Life Technologies F-14222), a calcium-sensitive
fluorescent dye with relatively low binding affinity at a concentration of 9.1 µM in in DMSO
(Sigma-Aldrich D2650), Pluronic F-127 (Life Technologies P3000MP) and artificial cerebral spinal fluid
(aCSF; 126 mM NaCl, 3 mM KCl, 1 mM NaH2PO4, 1.5 mM MgSO4, 2 mM CaCl2, 25 mM D-glucose)
with 15 mM HEPES buffer for 30 min at ambient 25 ◦C and atmospheric carbon dioxide. Before imaging,
cultures were rinsed two times with aCSF to remove free dye. Cultures were bathed in a mixture of
synaptic blockers in aCSF (15 mM HEPES buffer). This included (2R)-amino-5-phosphonopentanoate
(AP5; 50 µM; Sigma-Aldrich A5282), a NMDA receptor antagonist; bicuculline methiodide (BMI;
20 µM; Sigma-Aldrich 14343), a GABAA receptor antagonist; and 6-cyano-7-nitroquinoxaline-2,3-dione
(CNQX; 20 µM; Sigma-Aldrich C239), an AMPA receptor antagonist. This cocktail was shown to
suppress neuronal communication [34] to ensure that the recorded neuronal activity was directly
evoked by the stimulus. The culture was then kept in a heated amplifier (Multi Channel Systems
TC02, 37C) within the imaging chamber. The stage position was calibrated with respect to the desired
field of view using the electrodes as fiducial markers. A MATLAB graphical user interface was used
to automatically position the field-of-view over the stimulation electrode. During an experiment
neurons were illuminated using a light-emitting diode (LED; 500 nm peak power) and LED current
source (TLCC-01-Triple LED; Prizmatix, Givat-Shmuel, Israel) through a 20× immersion objective
and a fluorescein isothiocyanate (FITC) filter cube. Evoked activity was optically recorded using a
high-speed electron multiplication CCD camera (30 fps; QuantEM 512S; Photometrics, Tucson, AZ,
USA), which has a 512 × 512 pixel grid covering a 400 µm × 400 µm area. After an experiment
concluded, three aCSF washouts were performed at three-minute intervals, the culture media was
replaced, and the culture was returned to the incubator.

2.4. Detecting Action Potentials

For each neuron, the measured intensity of a 16 × 16-pixel (12.5 µm × 12.5 µm) field centered on
the soma was spatially averaged. Calcium signaling is dynamic and continuous within both neurons
and glia associated with a neuronal population; therefore, there exists a low-level fluorescence that can
be measured within these cell bodies due to the action of the calcium indicator as a chelator trapped
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with all cells. However, numerous studies have been published demonstrating the use of calcium
indicators to infer neuronal spiking enabled by both the relatively fast and large change in measurable
fluorescence at a neuronal cell body immediately following an action potential [35–38].

The relative change in fluorescence, ∆F/F, was calculated by subtracting the baseline (an average
of four pre-stimulus frames, 30 fps) from an average of four post-stimulus frames (30 fps) and dividing
the difference by the baseline. The post-stimulus frames were defined as those immediately following
the delivered stimulus. Two fluorescence traces are shown across time in Figure 2.
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Figure 2. Stimulus-evoked fluorescence traces. Two traces are shown in which an action potential
was evoked in response to the stimulus (bold line) and no action potential was evoked (light
line). The stimulus timing with respect to the evoked signal is denoted by the bold arrow and is
expanded below to show the two stimulus pulse control variables, the current (µA) and the pulse
width, or duration (µs). Action potentials were assumed to occur if the post-stimulus change in
fluorescence (∆F/F) was greater than three times pre-stimulus levels (threshold shown as a horizontal
bar). The pre-and-post-stimulus fluorescence levels were calculated as a time-average of four frames
(represented with transparent gray bars).

Figure 2 shows two traces, one in which an action potential was generated, and one in which
no action potential was generated. The standard deviation of the baseline frames was calculated in
initial stimulus iterations and used as a measure of the fluorescence noise level. An action potential
was assumed to have occurred if the ∆F/F was greater than three times the noise level within a
particular neuron.

The average decay time constant of a stimulus-evoked fluorescence curve was 1.5 s. Because of
this relatively slow signal decay, the experiment loop time was chosen to be 4.5 s (three decay time
constants) to allow the signal sufficient time to return to baseline. The progression of ∆F/F for one
neuron over the course of 1140 open-loop stimulus iterations is plotted in Figure 3, which illustrates
the evoked signal decay with increasing light exposure. Stimuli were randomly presented from a
range of stimulus strengths and durations, such that the neuronal response is mixed throughout the
experiment. For the first 200 stimuli, the change in fluorescence resulting from an evoked action
potential is unchanging. The signal then subsequently decays with each light exposure.
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2.5. The Sigmoidal Activation Model

A saturating nonlinear curve was used to fit to the neuronal probability of firing an action potential
in response to a varying stimulus current or pulse width. Specifically, a two-parameter sigmoid was
used to describe this 1-D activation curve for cathodic square-pulse stimuli:

p =
1

1 + b2e−(x−b1)
(1)

The sigmoid model provides an approximation for the stimulus needed to activate a particular
neuron with a given probability. The input activation parameter, x, is either the stimulus current
or pulse width, and the output is the probability, p, for a neuron to fire an action potential.
The two parameters describing the sigmoid are b1, the midpoint of the sigmoid, and b2, the slope of
the curve at the midpoint. Because the sigmoid describes a probability of activation, it spans from zero
to one. Each stimulus delivered produces a binary output, either the neuron fired an action potential
or it did not, however, along the transition region of the sigmoid curve, the same stimulus level that is
delivered 10 times may have a 50% probability of activating the neuron under test. Previous work
showed that the sigmoid curve is good fit for modeling neuronal activation [31].

2.6. Algorithm for Building One Dimensional Sigmoidal Activation Curves

The closed-loop search procedure was divided into two halves: First, the collected
stimulus-response data set was fit to the sigmoid model, and second, the sigmoid model was used
to calculate the next stimulus to be delivered. The algorithm always first began with five open-loop
stimuli that divided the stimulation space evenly before any curve fitting was performed. After the
fifth iteration, the sigmoid model was analytically linearized, and a linear least-squares fit of the
midpoint and slope parameters was performed to calculate a reasonable guess for the two sigmoid
parameters—the sigmoid midpoint and the slope of the curve at the midpoint. All measured
stimulus-evoked responses were equally weighted as zeros and ones. The output of the linear
regression was used as an initial guess for a nonlinear least squares curve fit using the MATLAB
Optimization Toolbox, which generated the best-fit sigmoid parameters. At this point, the sigmoid
model has been fit to the dataset. The next stimulus value was then chosen in order to gain information
about the sigmoid model midpoint and slope. To do this, the algorithm was designed to deliver the
next stimulus along the slope of the sigmoid curve. A target neuronal activation probability goal
was randomly chosen from the set of 0.25, 0.50 and 0.75, which spans the linear transition region of
the sigmoid. The stimulus that was predicted to produce the firing probability goal was calculated
using the sigmoid fit parameters and the activation probability goal. When a neuronal activation
sigmoid had a nearly infinite slope, which was often the case when the dataset was still small early on
in the experiment, the next stimulus chosen would be the same as the previously delivered stimulus.
To ensure that the algorithm did not get stuck at one stimulus value, a random jitter was added to
the stimulus up to 20% in either direction so that more data would be collected over the full range
of the transition region of the activation curve. Stimulus currents and pulse widths were binned into
0.2 µA and 20 µs blocks, respectively. After every stimulus iteration, the linear and nonlinear curve-fits
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were run to update the model. All stimulus-evoked responses that were collected were included in the
model, and data were never discarded. The search algorithm is presented below in pseudo-code form.

1. Collect data for five distinct stimulus levels.
2. Fit the sigmoid model to all available data points (zeros and ones).

a. Fit the linearly transformed sigmoid model to all zeros and ones in the dataset.

i. Use the linearly transformed sigmoid model, which derives from Equation (1),
to solve for the fit parameters b1 and b2.

x = −ln[(1/p − 1)/b2] + b1

b. Use the linear fit parameters as an initial guess for a nonlinear curve fit of the model in
Equation (1)

i. Minimize the sum-squared error
ii. Use lsqcurvefit Matlab algorithm to calculate b1 and b2

3. Select the stimulus parameter for the next step

a. Select from the set of probabilities {0.25, 0.50, 0.75} using randperm Matlab function
b. Calculate from the sigmoid model the corresponding stimulus value

i. Solve the linearly transformed sigmoid model described above, which derives from
Equation (1), for x—the next stimulus value.

c. If stimulus value is same as previous step, add jitter up to 20% in stimulus value, according
to a uniform random distribution.

4. Apply the calculated stimulus value in the experiment

a. Use calcium imaging and image processing determine if the stimulus-evoked change in
measured fluorescence surpassed threshold.

5. If convergence is not reached or if stimulus step count is not met, return to Step 2, else stop

2.7. The Strength–Duration Activation Model

Probabilistic neuronal activation in the 2-D strength–duration waveform space was described
according to Lapicque [39]:

I = r
(

1 +
c

PW

)
(2)

The stimulus pulse width, PW, is the input; the stimulus current, I, is the output, and the
two model parameters are the rheobase, r, and the chronaxie, c. The rheobase describes the stimulus
current below which a stimulus with infinite pulse width will not evoke an action potential, and the
chronaxie describes the stimulus pulse width that corresponds to a stimulus current of twice the
rheobase. A strength–duration curve must be defined for a particular activation probability, such that
there are a set of non-intersecting probability strength–duration curves spanning the two-parameter
waveform space.

2.8. Slices Through the Strength–Duration Waveform Space

We previously showed that when a one-dimensional slice is taken through the SD waveform space
in either the horizontal or vertical direction, the activation probability could be modeled by a sigmoidal
activation curve according to Equation (1) [31]. These slices are equivalent to constant-current and
constant-pulse width curves, respectively, and are demonstrated by the green lines in Figure 4A,B. In a
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similar regard, slices can be taken along a positively sloped diagonal, and in that case, the stimulus
strength is a combination of the stimulus current and pulse-width, but the sigmoid describing activation
probability can be plotted as a function of either parameter, given that the slice line is defined to relate
the two parameters. However, a slice with negative slope in the SD waveform space comprises a
set of either zero, one or two sigmoidal activation curves depending on the number of times that
the slice intersects with the probabilistic SD curves (Figure 4A). If all values of the input parameters
lying along the slice fall below the probabilistic SD curves, then the activation model is zero for
the entire slice. If the slice intersects once with the set of probability SD curves, then the activation
model comprises a single sigmoid (Figure 4C). The sigmoidal parameters are estimated by fitting
Equation (1) to the points where the slice intersects with the probabilistic SD curves. Lastly, if the
slice intersects with the SD curves twice, once along the left-hand portion of the SD curves and once
along the right-hand portion, then the activation probability first increases through the first crossing
and then decreases through the second crossing. The activation model for the negatively sloped
slice comprises the addition of two sigmoids: a lower-threshold sigmoid with positive slope and a
higher-threshold sigmoid with negative slope (Figure 4D). It is important to note that for monophasic
cathodic current-controlled stimuli, neurons will activate according to the strength–duration curve,
and the slicing through the waveform space is only a means by which searches can be performed.
In the case of the negatively sloped D2sigmoid (red dotted line in Figure 4A,D) neuronal activation
is still considered on the probability scale of zero to one. In the search routine implemented in these
studies, three discrete probability SD curves, having probabilities of 0.25, 0.50 and 0.75, were used for
constructing the activation models along a slice through the SD waveform space (Figure 4A).
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Figure 4. (A) Cartoon depiction of vertical (Dvertical), horizontal (Dhorizontal), and negatively-sloped
cross sections (D0sigmoid, D1sigmoid, D2sigmoid) through the strength–duration waveform space; (B) The
vertical and horizontal slices cross the set of SD curves once, which is modeled by a positively sloped
sigmoid. (C,D) The negatively-sloped slices can cross the set of SD curves either zero times (model
not shown), which produces a zero probability of firing across the range of stimulus inputs; one time
(C); which is modeled by a single negatively-sloped sigmoid; or two times (D); which is modeled by
a probability space comprising a lower-threshold positively-sloped sigmoid and a higher-threshold
negatively-sloped sigmoid.

2.9. Powell’s Conjugate Direction Method Search Routine

Powell’s conjugate direction method is a non-gradient search routine for finding the maximum
(or minimum) of a function. It is especially applicable to multi-dimensional searches of noisy systems
since its calculations do not rely upon derivatives, which are sensitive to noise. Powell’s method
specifically dictates the direction of each search iteration through the input parameter space, which in
this study is the strength–duration stimulus space, comprising a stimulus current and pulse-width for
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a rectangular pulse. An illustration of the generic search routine is depicted in Figure 5, which consists
of a series of line searches through the input space. Each line search comprises one execution of the
methods described above, in which the sigmoidal activation models are constructed for each of the
neurons within the population. Along each line search, an objective function is evaluated. For this
study, the objective function, f, measures the differences in sigmoidal activation curves such that the
sum of off-target neuronal activation probabilities, for m neurons, is subtracted from the sum of target
neuronal activation probabilities, for n neurons.

f = ∑n
i=1 Pi −

m

∑
j=1

Pj (3)

The sigmoidal activation curves for the target population are summed such that as each target
neuron activates, and the probability of firing transitions from zero to one, the objective function
increases by one. As the off-target neurons begin to activate, and their probabilities of firing transition
from zero to one, the objective function decreases by one. Therefore, along each line search, once all
sigmoidal activation curves have been estimated, the on- and off-target activation curves are combined,
and the maximum of the objective function is found.
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Figure 5. Depiction of the first four searches in Powell’s method. An initial point (PT0) is chosen in the
2-D search space. A search is performed in the vertical direction, D1, locating the maximal selectivity
at PT1. Point PT1 becomes the starting point for a search orthogonal to the first search in direction
D2. The maximal selectivity of the second search is found at PT2. The third search is performed in
the direction connecting points PT0 and PT2, direction D3, and resulting in a new maximum PT3.
The search continues with another horizontal search parallel to D2 and intersecting PT3; a subsequent
search is performed in the direction that connects the newly found point, PT4, to PT2. The algorithm
iterates until the search goal reached.

Powell’s method begins with an arbitrary point, PT0, chosen from the input space. The first
search direction (D1) is a vertical search crossing through PT0, which spans the extent of the
space. For this implementation, D1 is a variable-current, fixed-pulse-width search bracketed by
a minimum current of 0 µA and a maximum current of 25 µA. The maximum of the function is
found at PT1, which is a measurement of the selectivity achievable between two neurons. Point PT1
corresponds to the peak of the difference between the two neuronal activation curves, both modeled
as sigmoids. Like PT1, all following points found during a search also correspond to the maximum
of the objective function, which we have defined as the absolute value of the difference of sigmoid
activation curves. The next search direction, D2, is perpendicular to D1 and crosses through point PT1.
The search for the maximum of the selectivity curve (PT2) is repeated, but in this case, the search is a
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variable-pulse-width, constant-current search, which spans the entire pulse-width space. After the first
two searches, the routine alternates between diagonal and horizontal searches. Search direction 3, D3,
is a multi-dimensional search in both current and pulse-width that passes through points PT0 and PT2.
When the maximum of this search is found at PT3, the next search commences in direction D4, which
passes through PT3 and is parallel to D2. The following search is in the direction that connects points
PT2 and PT4. The search routine continues until the search goal is met. The implemented Powell
method is presented below in pseudo-code form.

1. Conduct line search, n, to find stimulus parameters that maximize difference in neuronal
activation probabilities

a. Determine the waveform space search direction

i. Case n = 1: Search is vertical through the waveform space with constant stimulus
duration (pulse-width)

1. Stimulus duration is pre-determined from setting “PT0”

ii. Case n = 2, 4, 6 . . . : Search is orthogonal to the first case through the waveform
space with constant stimulus current (amplitude)

1. Stimulus current is determined from “PT(n − 1)”

iii. Case n = 3, 5, 7 . . . : Search is diagonal through the waveform space, both stimulus
current and duration are varied

1. Direction is determined from line fit to “PT(n − 1)” and “PT(n − 3)”

b. Build activation curve models for neurons 1 to n
c. Evaluate the objective function: Find the maximum of the difference between neuronal

activation curves

i. Define the next search result as a point within the stimulus waveform space with
coordinates (stimulus duration, stimulus current), labeled “PTn”

2. If convergence is not reached based on the evaluation of the objective function, or a search count
is not met, return to Step 1, else stop

2.10. Simulations of Powell’s Conjugate Direction Method Search Routine

To augment the experimental studies, simulated neuronal activation models were generated, using
experimentally identified strength–duration curves for each neuron in the population. To implement
Powell’s method, a starting point was chosen from the input parameter space, similarly to what
was described in the experimental study above. A “true” sigmoidal activation model was then
constructed for each neuron along the first line search, in either the vertical or horizontal direction.
This “true” sigmoidal activation curve was then estimated in simulation similarly to the experimental
study. The closed-loop routine for building sigmoidal activation models was executed, delivering
50 simulated stimuli through the one dimensional input parameter space, and a simulated model of
the activation sigmoid was defined for each neuron in the study. These simulation studies enabled
consideration of additional scenarios and objective functions for the same population of neurons.
In reality, the number of experiments that can be performed is limited, due to photobleaching.

3. Results

To selectively activate a subpopulation of neurons, we experimentally implemented Powell’s
method, using a series of model-based line searches to locate the optimal combination of stimulus
strength and duration. In the first study, we applied our system to an experimental setting of cultured
neurons to analyze the selectivity achievable between two neurons. We then extended this study
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by experimentally measuring strength–duration curves for a population of five cultured neurons.
The selectivity space was mapped for the five neurons and the CL search routine was then used
in simulation to conduct further studies based on models generated by the experimentally derived
neuron activation curves. In the simulation studies, the robustness of the CL search method was
explored to target subpopulations consisting of multiple neurons.

3.1. Powell’s Method Applied Experimentally to Find the Most Selective Waveform between a Pair of Neurons

Five iterations of Powell’s method were experimentally performed to find the most selective
waveform between two neurons, labeled N1 and N2. In all five line searches, activation curves were
constructed using the sigmoid model in Equation (1). Stimulus-evoked responses were collected at
each stimulus point, and the sigmoid model was fit to all available data for each neuron according to
the methods. The search algorithm applied 50 stimuli designed for each neuron, along the line defined
online by the closed-loop search routine. As the stimulus space was divided and binned into 0.2 µA
and 20 µs resolution blocks according to the methods for building one-dimensional sigmoid activation
curves, numerous stimuli were delivered at each stimulus value. In this experiment, the 50 stimuli were
delivered in order to construct a one-dimension activation curve, and after each search was performed
for both neurons, the difference between the activation curves for N1 and N2 was determined according
to Equation (3) and a maximal selectivity point was calculated in real time.

The search routine automatically executed five complete multi-neuron search routines beginning
from a starting point near the middle of the range of stimulus currents and pulse widths (600 µs,
12.0 µA), denoted as PT0 in Figure 6A. The first search was a stimulus current search from the starting
point (D1, Figure 6A), with the stimulus pulse width fixed at 600 µs. This appears as a vertical line
in Figure 6. The maximum of the objective function f, which is the difference in sigmoids produced
by neurons N1 and N2, was calculated online to have occurred at 10.7 µA, and is depicted as point
PT1. The sigmoid parameters (b1, b2) derived from the first search were (11.2 µA, 20.1 µA−1) for
N1 and (6.80 µA, 0.67 µA−1) for N2. According to the Powell search method, the second search
was a perpendicular (Figure 6C), horizontal stimulus pulse-width search (D2) crossing through PT1.
The current was fixed at 10.7 µA, and the sigmoid search spanned the range of durations from 0 to
1000 µs. Again, the maximum of the difference of sigmoids for neurons N1 and N2 was calculated
online to be located at 375 µs, point PT2 (375 µs, 10.7 µA). The sigmoid parameters (b1, b2) derived
from the second search were (673 µs, 0.06 µs−1) for N1 and (349 µs, 3.06 µs−1) for N2. The third search
direction was then calculated by the routine as a line connecting points PT0 and PT2 (Equation (4)),
where I is the current (µA) and PW is the pulse width (µs).

I = 5.77 × 10−3PW + 8.53 (4)

The algorithm continued the automated search process. The activation curves were measured
along the third search direction and the difference in sigmoids was again calculated. The maximum
was measured at a pulse-width of 511 µs and current of 11.5 µA. The sigmoid parameters (b1, b2)
derived from the third search were (574 µs, 0.75 µs−1) for N1 and (343 µs, 0.15 µs−1) for N2. The fourth
search direction was then conducted parallel to the horizontal pulse-width search. The current was
fixed from the previous point at 11.5 µA, and the stimulus pulse-width was allowed to vary through
the entire range from 0 to 1000 µs. The maximum of the difference of sigmoids for neurons N1 and
N2 was measured as point PT4, at 455 µs and 11.5 µA. The sigmoid parameters (b1, b2) derived from
the fourth search were (501 µs, 1.05 µs−1) for N1 and (326 µs, 0.30 µs−1) for N2. The fifth and final
selectivity search was a two-parameter diagonal search connecting points 2 and 4 along the line defined
in Equation (5). The maximum difference between sigmoids was measured at a pulse width of 524 µs
and a current of 12.1 µA. The sigmoid parameters (b1, b2) derived from the fifth search were (550 µs,
0.56 µs−1) for N1 and (345 µs, 0.41 µs−1) for N2.

I = 10.11 × 10−3PW + 6.95 (5)
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The two neuronal activation curves were sufficiently steep and far apart that the maximum
selectivity achieved was nearly unity. Had a stopping criterion been imposed on the routine, it would
have stopped the search after the second iteration. Although applying Powell’s method to the case
of two neurons is relatively straightforward, the true utility of Powell’s method becomes apparent in
higher dimensions, such as a larger population of neurons or a greater number of stimulus parameters.Processes 2017, 5, 81 12 of 21 
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Figure 6. (A) Implementation of Powell’s method to search the strength–duration waveform space.
The thin lines denote the five search segments. The stimuli applied along each stimulus path is color
coded such that the darker the point, the greater the selectivity between the two neurons. The maxima
found along the search lines are highlighted with open circles; (B) the objective function (solid line) was
evaluated along each line search in the search routine of (A) according to Equation (3). The objective
function for each of the first four searches is plotted in each panel, and the maximum of the objective
function is denoted with an open circle, similarly to (A). The sigmoidal activation functions for each of
the two neurons, N1 and N2, are plotted with dotted lines. The outputs from the first four are depicted
here. In all five searches, activation curves for neurons N1 and N2, dotted lines, were estimated from
data; (C) The implementation of the search routine, magnified from the dashed box in panel (A).
The starting point, PT0, was chosen near the middle of the range of stimulus currents and pulse widths
(600 µs, 12.0 µA); (D) a cartoon depiction of the search routine, shown in panel (C). Each of the search
directions and measured peak selectivity points is highlighted.

3.2. Experimentally Measured Strength–Duration Curves for the Neuronal Population

During the experimental implementation of the search routine for neurons N1 and N2,
three additional neuronal activation curves were measured. As described previously, 50 targeted
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stimuli were delivered, per neuron, in each of the stimulus search directions. These stimuli were
delivered in order to increase the probability measurement resolution along the transition region
(0.25–0.75) of each neuron. At the conclusion of the search routine, the algorithm had collected
measurements for the each of five neuronal activation curves through the strength–duration waveform
space. Each sigmoid provided estimates of the 0.25, 0.50 (midpoint, or activation threshold) and
0.75 probabilities along the experimental search directions; these points were used to construct
probability strength–duration curves fit to Equation (2). This means that a separate strength–duration
curve was calculated for each neuron at each of the three probability levels. For other search directions
through the 2-D strength–duration space, a sigmoid activation curve could be approximated by fitting
the model in Equation (1) to the points where the search line intersected the 0.25, 0.50, and 0.75
probability strength–duration curves. Therefore, the sets of strength–duration curves could be used to
approximate the activation probability for each neuron at any point in the strength–duration waveform
space. For these five neurons, the strength–duration parameters (rheobase, r; chronaxie, c) for the 50%
activation curves shown in Figure 7 are as follows: N1 (2.91 µA, 5153 µs), N2 (1.73 µA, 3046 µs), N3
(8.17 µA, 1951 µs), N4 (7.34 µA, 3079 µs), N5 (2.58 µA, 4079 µs).

All possible neuronal activation combinations were mapped in the strength–duration waveform
space (Figure 7). This selectivity map shows that regardless of the goal, neuron N2 will always be
activated before other neurons. The activation spaces between the four other activation curves are
more nuanced because they intersect each other. The strength–duration curves cross because some
neurons preferentially activate at shorter stimulus pulse widths and higher currents, while other prefer
longer stimulus pulse widths and lower currents.

Processes 2017, 5, 81 13 of 21 

 

duration curve was calculated for each neuron at each of the three probability levels. For other 
search directions through the 2-D strength–duration space, a sigmoid activation curve could be 
approximated by fitting the model in Equation (1) to the points where the search line intersected the 
0.25, 0.50, and 0.75 probability strength–duration curves. Therefore, the sets of strength–duration 
curves could be used to approximate the activation probability for each neuron at any point in the 
strength–duration waveform space. For these five neurons, the strength–duration parameters 
(rheobase, r; chronaxie, c) for the 50% activation curves shown in Figure 7 are as follows: N1 (2.91 
μA, 5153 μs), N2 (1.73 μA, 3046 μs), N3 (8.17 μA, 1951 μs), N4 (7.34 μA, 3079 μs), N5 (2.58 μA, 4079 
μs). 

All possible neuronal activation combinations were mapped in the strength–duration 
waveform space (Figure 7). This selectivity map shows that regardless of the goal, neuron N2 will 
always be activated before other neurons. The activation spaces between the four other activation 
curves are more nuanced because they intersect each other. The strength–duration curves cross 
because some neurons preferentially activate at shorter stimulus pulse widths and higher currents, 
while other prefer longer stimulus pulse widths and lower currents.  

 
Figure 7. A map of selectivity regions accessible using one stimulating electrode. The strength–
duration curves associated with P = 0.5 are plotted for each of the five neurons, and the regions in 
between the curves are color coded to define the population that is activated within that waveform 
region. 

3.3. Powell’s Method Applied in Simulation to Find the Most Selective Waveform for a Population of Neurons 

Simulation studies were performed in order to investigate the behavior of Powell’s method for 
various neuronal subpopulations. As a first example, we chose a target region within the population 
strength–duration space defined in Figure 7 that promotes the activation of neurons N2, N3 and N5, 
while suppressing the activation of neurons N1 and N4 (colored orange). The region within the 
stimulus waveform space that maximizes the objective function is closed. We chose this region 
because we predicted that it would be the most difficult region to locate using Powell’s method. The 
theoretical maximum of the objective function is 3, which occurs when the three target neurons are 
activated and the two off-target neurons are not. As the stimulus strength increases and the target 
neurons activate, the value of the objective function increases, but as the off-target neurons activate, 
the value of the function decreases. For example, if an off-target neuron activates while the three 
target neurons activate, then the objective function will evaluate to 2. However, if none of the target 
neurons activate along a particular line search, but both off-target neurons activate, then the 

N1

N2

N4

N5

N3

N1 N2 N3 N4 N5

Figure 7. A map of selectivity regions accessible using one stimulating electrode. The strength–duration
curves associated with P = 0.5 are plotted for each of the five neurons, and the regions in between the
curves are color coded to define the population that is activated within that waveform region.

3.3. Powell’s Method Applied in Simulation to Find the Most Selective Waveform for a Population of Neurons

Simulation studies were performed in order to investigate the behavior of Powell’s method for
various neuronal subpopulations. As a first example, we chose a target region within the population
strength–duration space defined in Figure 7 that promotes the activation of neurons N2, N3 and
N5, while suppressing the activation of neurons N1 and N4 (colored orange). The region within the
stimulus waveform space that maximizes the objective function is closed. We chose this region because
we predicted that it would be the most difficult region to locate using Powell’s method. The theoretical
maximum of the objective function is 3, which occurs when the three target neurons are activated
and the two off-target neurons are not. As the stimulus strength increases and the target neurons
activate, the value of the objective function increases, but as the off-target neurons activate, the value
of the function decreases. For example, if an off-target neuron activates while the three target neurons
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activate, then the objective function will evaluate to 2. However, if none of the target neurons activate
along a particular line search, but both off-target neurons activate, then the objective function will
evaluate to −2, which is the theoretical minimum. The objective function for each line search was
defined according to Equation (3). For the target population N2, N3 and N5, the objective function was

f = −PN1 + PN2 + PN3 − PN4 + PN5 (6)

As shown in Figure 8, we found that there was variation in possible outcomes of the search
routine, depending on two initial conditions: the starting point, PT0, in the strength–duration space,
and the orientation of the first search direction, D1. In the first study, the initial search direction was a
horizontal line crossing through the point PT0 (600 µs, 12.0 µA). On the first search, the theoretical
maximum of the objective function was found. This point was located in the lower corner of the target
region in the SD waveform space at 535 µs and 12.0 µA.

For the second study, the starting point was shifted to a region where a line search in either
direction could not yield an objective function value of 3. This point was located at 700 µs and
10.0 µA. The first horizontal line search crossed the waveform space where target neurons N2 and N5
activated first, however, neuron N3 only activated after neuron N1. The maximum of the objective
function was 2. As the experimental search routine demonstrated earlier, the maximum of the objective
function became the point through which the next search direction would cross. The search routine
was iterated until the theoretical maximum of 3 was found at 366 µs and 14.8 µA, after search direction
D3. To confirm that the result was stable in the target region, an additional three searches were run,
and all results remained within in the target area.
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Figure 8. Two simulation studies were performed to find the selective region for the subpopulation
of neurons including neuron N2, N3 and N5. (A) The selective region is highlighted with stripes.
For the first study, a horizontal search through the starting point, PT0 (600 µs, 12.0 µA) yielded the
theoretical maximum of the objective function (open red circle at 535 µs, 12.0 µA); (B) the objective
function value is plotted along the first line search, D1. The individual neuronal activation sigmoids
are plotted alongside the objective function (dotted lines). The first three target neurons activated
before the off-target neurons activated; (C) The output from the second stimulation study, in which
the starting point, PT0, was shifted to 700 µs and 10.0 µA; (D) After the 3rd line search, the theoretical
maximum was found for the objective function.
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For a second target population, we chose an objective function that promotes the activation of
neurons N1, N2 and N5 (brown region in Figure 7), while penalizing the activation of neurons N3 and N4:

f = PN1 + PN2 − PN3 − PN4 + PN5 (7)

As in the implementation of Powell’s method for the experimental two-neuron search routine,
we chose to use the starting point, PT0 (600 µs, 12.0 µA), which was located in the middle of the
strength–duration waveform space, as shown in Figure 9. The first search was a stimulus current
search with fixed stimulus pulse-width. The maximum of the objective function was found at PT1
(600 µs, 10.1 µA) and was approximately 2. Through this vertical search line, there was no region
where all three target neurons were ON while the two off-target neurons were OFF. There existed,
however, a stimulus region where two of the target neurons activated, but the third neuron would not
activate until after one of the off-target neurons turned ON. As the stimulus value increased, the first
two neurons activated, and the objective function evaluated to 2; then as an off-target neuron activated,
the objective function decreased to 1; next the third target neuron activated, which brought the objective
function close to 2 again, until the final off-target neuron activated and pulled the objective function
back down to 1. At the highest allowed stimulus value, the function would always evaluate to one.

The next search was simulated in the variable-pulse-width, constant-current direction. Again a
sigmoid model was constructed for each neuron and the objective function was evaluated.
The maximum was 3, the maximum that was theoretically possible, and was found at PT2 (807 µs,
10.1 µA). Although the maximum was found after the second search, the routine was continued to
evaluate its stability. The third search was along the line that connected PT0 and PT2. In this search
direction, the models constructed for N1, N2 and N5 were single positively-sloped sigmoids because
the slice only crossed the left side of the neurons’ set of SD curves, similarly to a horizontal search.
The model constructed for N3 was a set of two sigmoids (described in Figure 4D) and for N4 was zero
because the slice did not cross the set of SD curves for that neuron. The maximum of the objective
function, combining all five neuronal activation models according to (7) was found at PT3 (870 µs,
9.5 µA). The fourth search was horizontal, parallel to the second search, and the maximum of the
function was found at PT4 (990 µs, 9.5 µA). Finally, the fifth search was again in a negative slope
direction and the maximum selectivity was found at PT5 (954 µs, 9.6 µA).

As the search progressed, the waveform at the maximum selectivity shifted toward
long-pulse-width stimuli. As is observable within the set of SD curves, at longer pulse widths,
the activation of neurons N2 and N4 converge toward a higher level, while neurons N1, N2 and N5 all
tend lower. This produces a selectivity region exhibiting larger stimulus pulse widths.
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Figure 9. (A) The strength–duration curves from a fit to Equation (2) with P = 0.5, are plotted for
five neurons using the experimental data collected during the CL search routine. The simulated
target population of neurons was chosen, including N1, N2 and N5, and an objective function was
created to promote the activation of the target neurons while penalizing the activation of the off-target
neurons, Equation (7). The five searches resulting from a simulated search routine are marked with
faint lines, and the objective function maxima are labeled and highlighted with open circles; (B,C) the
objective function along each search direction is plotted with a solid black line. The maximum of the
function is found at the open circles in each plot, which correspond to the various search directions in
Powell’s method.

4. Discussion

4.1. The Choice of Powell’s Method

Deterministic search methods, like Powell’s Method, have a great strength in optimization because
they converge quickly with a good initial starting point; the downside of deterministic methods is that
the search can be trapped in local minima if a poor initial starting point is used. A gradient-based
search method, such as gradient descent, is an undesirable method for finding the selective region
between populations of neurons because there exists a plateau of maximum selectivity between
neuronal strength–duration curves. Additionally, a gradient-based search routine is susceptible to
instability when applied to noisy data. Other non-gradient search methods could conceivably be
implemented for optimizing neuronal stimulation parameters including, Nelder-Meade, simulated
annealing, or a genetic algorithm. The significance of this experiment was to demonstrate the feasibility
of an optimization method applied directly to the experiment. In the experimental implementation,
the neuronal activation curves were relatively far apart in the strength–duration waveform space,
resulting in a large region between the two P = 0.5 curves where selectivity of neuron N2 over N1
is high. For that reason, the algorithm was able to quickly converge and find a stimulus solution
where the absolute value of the difference in activation sigmoids was approximately 1, the theoretical
maximum of the two-neuron objective function, after only two search iterations.

Methods for global optimization of deterministic systems are fairly advanced [40], but they require
a lot of function evaluations, and usually this number is many more than could be feasibly delivered
in a biological experimental setting. For stochastic systems like the neuronal system presented
here, the problem is much more difficult [41]. Local optimization methods are often used in the
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stochastic experimental context, although global optimization could be used in principle. Optimization
routines such as these that require a very large number of evaluations are often implemented in
non-biological or simulation environments, which is impractical for the experimental limitations
presented here. Biological models often require many parameter estimations, and the problem of using
experimental data in optimization often comes up in parameter estimation for biological systems [42].
While another approach may benefit from the implementation of a different optimization method and
search technique, the use of Powell’s Method should be extendible to more parameters to include a
more complex stimulus space, e.g., additional parameters such as stimulus frequency, and a larger
population of neurons.

4.2. Weighting the Objective Function

As the objective function complexity increases, there is an increasing likelihood that the theoretical
maximum of the objective function is unachievable. For these cases, the goal is to find the stimulus that
will be most selective for one subpopulation over another. For example, there is no perfect waveform
region for an objective function that targets neurons N1, N2 and N3 while not activating neurons
N4 and N5 (Figure 7). However, the objective function is still higher in some regions of the space,
compared to others. The objective function would evaluate to 2 in the region where neurons N2 and
N3 are fully activated (P1 + P2 + P3 − P4 − P5 = 0 + 1 + 1 − 0 − 0) because there is a penalty for not
activating neuron N1. In the waveform space where neurons N1, N2, N3 and N5 activate, the objective
function would again evaluate to 2 (P1 + P2 + P3 − P4 − P5 = 1 + 1 + 1 − 0 − 1). In this waveform
region, all three target neurons were activated, but there was a penalty because the off-target neuron
N5 was also activated. The preference for one waveform region over another will require additional
factors to be included into the objective function. Various neuronal probability combinations will result
in the same function evaluation without the inclusion of weighting to emphasize an experimental goal
of activating a particular set of neurons. For example, in a three neuron set, activation of neuron 1
and 2, or neuron 1 and 3, or neuron 2 and 3 would all evaluate to the same value if all three neurons
were equally weighted. However, the objective function could emphasize the activation of on-target
neurons by applying additional weight to P1, P2 and P3. This weighting would bias toward the
second waveform region, in which all three target neurons are activated because the increase in the
objective function from activating the third neuron would outweigh the penalty for activating the
off-target neuron. Conversely, the objective function could minimize off-target activation by applying
an increased penalty for activating off-target neurons. This increased penalty would naturally select
the first waveform region, in which only neurons N2 and N3 are activated, because the penalty for
activating neuron N5 would outweigh the benefit of activating neuron N1.

For an in vivo study the objective function may be governed by a larger population, for example,
a study’s goal could be to maximize the beneficial desired behavior while minimizing side effects.
The evaluation of a function in an experiment like that may weigh the activation intensity of an entire
neuronal subpopulation. A similar search routine could be implemented in which there is defined a
maximum stimulus that is allowable due to both safety precautions and due to the complementary
activation of an unwanted larger population than is desired. That maximum stimulus could then be
used to bracket the stimulus waveform space and a search could be performed in which wanted and
unwanted populations are weighted differently.

4.3. Choosing the Selectivity Point after Each Iteration

We chose an objective function that maximized the difference of sigmoids. However, this function
is susceptible to sudden shifts in the output when there is a plateau between the neuronal activation
curves, because the value of the objective function changes very slightly across the plateau. For example,
given a pair of neurons in which one has a very steep activation curve and the other has a shallower
curve, the maximum of the difference in sigmoids will occur very close to the steep neuron’s transition
region. This result occurs because the steep activation curve will evaluate to nearly one very near
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to the transition region, while the shallower sigmoid will more slowly transition from zero to one;
the maximum of the objective function will appear as far from the shallower sigmoid as possible.
The resulting maximum of the objective function occurring so close to the steep neuronal activation
curve may not be the ideal place to stimulate for selectivity. It may be preferable instead to stimulate
closer to the midpoint of span of stimuli that produce difference in sigmoids, as quantified by f, above
a predetermined fixed value. In selecting a stimulus at the midpoint of the span, the chosen stimulus
will maximize the distance between the selected neurons. As a selectivity point, the midpoint will have
greater robustness because any variation in the internal state of either neuron is less likely to cause the
neuronal activation probability to deviate significantly. Accounting for this factor is of greater import
for longer term studies or those in which synaptic blockers are not used, where drifting of the culture
is more likely to occur.

4.4. Limitations in the Approach

The advantage of simulation studies is the sheer number of function evaluations that are possible
where those possibilities are extremely limited in a biological experimental system. Further studies
will be necessary to elaborate on, and advance, the techniques presented here. In this work, we are
proposing and demonstrating a new concept and approach, however the specific simulation studies
performed in this work were not directly validated with experimental testing due to the limitations
inherent in an experimental approach.

We utilized an in vitro model neuronal system to specifically study only the direct activation of
neurons. While other systems, including in vivo neuronal structures, may not have the simplicity of a
synaptically silenced system like that which is presented here, we are interested in studying the way
in which stimulus waveforms directly evoke activity in a given neuron. By eliminating down-stream
synaptic communication in the model culture, we have essentially made a black box of the network.
This then allows us to assume, for example, that in a scenario where neuronal communication is in tact
downstream the expressed purpose of delivering stimuli through an array of micro-electrodes in only
to activate an initial target neuron in a culture. In this study, the neurons were uncoupled from the
surrounding network using synaptic blockers. While the CL system can estimate a neuronal activation
threshold, the algorithm will require modification for application to tracking potentially non-stationary
activation curves in a coupled network. In the studies presented herein, neuronal activation curves
proved to be stable over the experiment, however, a particular neuron’s activation curve may not be
stationary in the presence of synaptic network input.

5. Conclusions and Future Directions

In this work we demonstrated that a closed-loop search routine implemented according to
Powell’s method could be used to find the waveform region that is most selective for a subpopulation
of accessible neurons. We used a model-based search method for optimizing stimulus parameters
in the strength–duration space to target an arbitrary set of neurons. The success of this technique is
attributable to exploiting the natural variation in strength–duration curves between neurons. In our
experimental system, we use wide-field optical imaging as a measurement tool; it is likely that in other
applications non-optical methods will be used to record evoked activity. The findings in this work are
independent of measurement method, and so also apply to non-optical recording methods. Ultimately,
any stimulation routine needs to implement a technique to probe and characterize the population
response in order to design targeted stimuli that will enable more sophisticated control of the evoked
response. In the experimental application and in biological systems in general, there is variability
in population size, absolute neuron position, and relative position of the cells to the micro-electrode
arrays. It must therefore be assumed that each experimental application will have a unique response.
It is the uniqueness of each application that requires that the accessible neuronal population be learned,
and this accessible population be probed for response in the stimulus parameter space.
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While CL systems, such as the one presented here, enable learning about the nervous system,
they are also essential for clinical applications. For example, in delivering sensory stimuli from
prosthesis back to the brain, message encoding algorithms must be developed that measure evoked
activity online. Online feedback of the evoked activity will enable the controller to find the most
separable stimuli. Closed-loop techniques are indispensable for guiding a stimulus to be most
efficacious in a neuronal environment. In order to control the activity of a particular population, it must
be characterized online to measure how it is changing and evolving with each stimulus presentation.

The use of a model-based closed-loop search routine shows greatest benefit in larger dimensional
spaces. Multiple stimulating electrodes can be used to further increase selectivity; each additional
electrode doubles the dimension of the input parameter space. Future studies will examine the increase
in selectivity achievable using multiple electrodes and more complex stimulus waveforms, which will
result in even higher dimensional spaces. Future medical devices will use many electrodes in order
to encode more complex messages, which will require optimization routines similar to the work
presented here, which are effective in higher dimensional spaces. Although the Powell search routine
was implemented in this work, other search methods could be implemented including Nelder-Meade,
simulated annealing, or a genetic algorithm. These alternative search algorithms may offer advantages
over Powell’s method depending on the specific stimulation configuration and recording environment.
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