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Abstract: Clinical trial planning of candidate drugs is an important task for pharmaceutical
companies. In this paper, we propose two new multistage stochastic programming formulations
(CM1 and CM2) to determine the optimal clinical trial plan under uncertainty. Decisions of a clinical
trial plan include which clinical trials to start and their start times. Its objective is to maximize
expected net present value of the entire clinical trial plan. Outcome of a clinical trial is uncertain,
i.e., whether a potential drug successfully completes a clinical trial is not known until the clinical
trial is completed. This uncertainty is modeled using an endogenous uncertain parameter in CM1
and CM2. The main difference between CM1 and CM2 is an additional binary variable, which tracks
both start and end time points of clinical trials in CM2. We compare the sizes and solution times of
CM1 and CM2 with each other and with a previously developed formulation (CM3) using different
instances of clinical trial planning problem. The results reveal that the solution times of CM1 and
CM2 are similar to each other and are up to two orders of magnitude shorter compared to CM3 for all
instances considered. In general, the root relaxation problems of CM1 and CM2 took shorter to solve,
CM1 and CM2 yielded tight initial gaps, and the solver required fewer branches for convergence to
the optimum for CM1 and CM2.

Keywords: multistage stochastic programming; optimization under uncertainty; endogenous
uncertainty; clinical trial planning; mixed-integer programming

1. Introduction

Pharmaceutical industry is a global business with over one trillion U.S. dollars per year market
with extensive supply chains throughout the world [1]. A potential drug identified at discovery stage
has to go through pre-clinical testing, generally laboratory and animal model studies, before applying
for approval by regulatory bodies, such as The Food and Drug Administration (FDA) in USA. The goal
of these laboratory and animal model studies is to understand how the drug works and assess its safety.
The potential drugs that successfully complete pre-clinical trials enter clinical trial phase. Clinical trials
aim to demonstrate the safety and efficacy of the potential drug and are designed with and carried
out under strict guidelines and supervision of regulatory bodies. If a drug successfully completes
the clinical trials and is approved by the regulatory bodies, the drug is manufactured and distributed
to the market. Pharmaceutical manufacturers are under pressure to improve the efficiency of the
pharmaceutical R&D pipeline, partially because the patent protections of a number of significant
brand-name drugs will soon expire [2].

Scheduling and planning of clinical trials is one of the efficient ways to reduce the cost of developing
new drugs. There are three phases in clinical trials. The goal of Phase I clinical trials is to assess the
safety and dosage of the drug and to understand how it is metabolized in the body. The lengths of
Phase I clinical trials are several months. Approximately 70% of drugs will move to the next phase.
Phase II clinical trials are used to evaluate the drug’s effectiveness and short-term side effects on a
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limited number of target patient volunteers. Phase II may take from several months to two years.
Approximately 33% of drugs pass Phase II clinical trials and move to the next stage. Phase III clinical
trials aim to assess the benefit-risk ratio of the drug using a large number of target patient volunteers
(in the order of thousands). Phase III takes one to four years to complete and approximately 25–30%
of drugs pass Phase III [3,4]. Clinical trial planning is complicated due to its highly stochastic nature:
pharmaceutical companies do not know which drugs will successfully complete clinical trials a priori.
The outcomes of clinical trials significantly influence drug development plan, the investments and
overall profits. Clinical trial planning is a series of trade-offs between maximizing expected economic
returns and minimizing risk and maintaining a diverse portfolio of drugs under the limited drug
development dollars available. The plan tries to accomplish these goals by selecting which potential
drugs to push through the clinical trial pipeline and when to start the clinical trials of selected drugs.
This is a challenging problem due to its strong combinatorial character and impact of uncertainty.

Stochastic programming is a framework for modeling optimization problems that involve
uncertainty [5]. Stochastic programming optimizes the expected value of the decisions over all
possible realizations of uncertain parameters. A set of scenarios describes all possible realizations of
uncertain parameters. In clinical trial planning problem, the uncertain parameter is the outcome of
a clinical trial and it is an endogenous uncertain parameter because the decisions of whether or not
and when to start clinical trials influence when the outcomes are realized. We assume that there are
two discrete outcomes of a drug starting and completing a clinical trial: (1) the drug may successfully
pass the clinical trial; or (2) the drug may fail the clinical trial. Because the outcomes are discrete,
all combinations of possible realizations can be used to form a finite set of scenarios for the clinical
trial planning problem. To consider recourse action in multiple stages after realizations of uncertainty,
one of the widely used approaches employs multistage stochastic programming (MSSP). To avoid
making decisions that anticipate the values of uncertain parameters that have not been realized, a set
of constraints, called non-anticipativity constraints (NACs), are introduced to MSSPs.

Multistage stochastic programming is a scenario-based approach that considers recourse actions in
multiple stages after realization of uncertainty. In the MSSP formulations of problems with endogenous
uncertainty, decision variables are defined independently for each scenario. For formulations whose
objective function and constraints are all linear and include integer variables, the deterministic
equivalent of the MSSP can be constructed as a mixed-integer linear programming (MILP) model.

The general formulation of a MSSP with endogenous uncertainty can be written as follows:

min ∑
s

ps f (xs
l,t, γs

t ) (1)

gk,t(xs
l,t, γs

t ) ≤ 0 ∀k, s, t (2)

xs
l,1 = xs′

l,1 ∀s, s′ (3) ys,s′
t

xs
l,t = xs′

l,t
γs

t = γs′
t

 ∨ [
¬ys,s′

t

]
∀s, s′, ∀t > 1 (4)

ys,s′
t ⇔ H(xs

l,1, xs
l,2, . . . , xs

l,t) ∀s, s′, ∀t (5)

ys
t ∈ {0, 1} γs

t , xs
l,t ∈ R (6)

where f , gk,t are differentiable functions, k is the index for the set of scenario-specific constraints, t is the
index for the set of discrete time periods, s is the index of the set of scenarios and ps is the probability
of scenario s. The variable xs

l,t is the decision variable associated with endogenous uncertain parameter
l at time t in scenario s. The variable γs

t is recourse-action variable at time t (t > 1) in scenario
s. The objective is to minimize the expected value of f . Functions gk,t define the scenario-specific
constraints. At the first time period, the values of decision variables must be identical because all
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scenarios are indistinguishable (Equation (3)). The variable ys,s′
t is a Boolean variable, which indicates

when scenarios s and s’ are indistinguishable. If ys,s′
t is True, then the decision variables and recourse

actions for these scenarios should be identical (Equation (4)). The value of the Boolean variable
depends on the decision variable values, as shown in Equation (5). If functions f , gk,t are all linear,
the deterministic equivalent of MSSP can be formulated as a MILP model.

There have been a number of studies that introduced stochastic programing models for solving
pharmaceutical clinical trial planning problem. Here, we limit our review to the ones that explicitly
incorporated the impact of clinical trial outcome uncertainty. Gatica et al. [6] developed a model
that integrates the production planning and investment strategy simultaneously in pharmaceutical
industries considering the impact of uncertainty in the outcome of clinical trials. The case studies
considered in the paper included only two phases of the clinical trials with three products yielding
64 scenarios. However, if all stages of clinical trials were considered, the size of the resulting model
would have become prohibitively large and would require heuristic approaches to solve. Colvin
and Maravelias [7] developed a MSSP model for clinical trial planning and included the impact of
endogenous clinical-trial outcome uncertainty. In a later study, they exploited the structure of the
problem to reduce the number of scenarios and extended their model to account for resource planning
by introducing outsourcing decisions [8]. In Reference [9], they introduced a number of theoretical
properties, which reduce the problem size and tighten the formulation, and developed a novel branch
and cut algorithm to solve the resulting problem efficiently. Sundaramoorthy et al. [10] proposed a
stochastic programming formulation that integrates the capacity planning and clinical trial planning
and that takes into account uncertainty in the outcomes of clinical trials. The proposed formulation
was solved for problems with a total of 256 scenarios in 1127 CPUs. The solution time increases
significantly for problems with more than 256 scenarios.

Multistage stochastic programs and their deterministic equivalent forms quickly become
computationally intractable because the number of scenarios and the corresponding decision trees grow
exponentially as the number of uncertain parameters increases. Furthermore, for discrete-time MSSPs, the
problem size increases rapidly especially in numbers of variables and NACs with increases in the length of
the planning horizon. Thus, solving any large-scale MSSP model, especially with endogenous uncertainty,
requires significant computational effort. Most recent work on MSSPs with endogenous uncertainty
focuses on developing new algorithms or decomposition frameworks for solving these problems.

Solak et al. [11] developed a sample average approximation (SAA) algorithm to solve the
optimization problem of R&D project portfolio. The proposed algorithm approximates the MSSP
formulation with smaller MSSPs constructed using a random sample of scenarios selected from the
full set. For the case studies considered, the SAA algorithm obtained a solution within 3.4–8.3% of the
optimal. Gupta and Grossmann [12] proposed an improved lagrangean decomposition framework,
which decomposed the original problem into individual scenario groups. For process synthesis and
oilfield planning problems, the improved lagrangean decomposition framework obtained tighter
bounds with fewer iterations. Christian and Cremaschi [13] developed a knapsack-problem based
decomposition algorithm (KDA) for solving pharmaceutical clinical trial planning problem. The KDA
obtains feasible solutions by decomposing the original MSSP problem into a series of knapsack
problems. Instead of characterizing all realizations as scenarios, the KDA generates knapsack problems
at time periods when outcomes are realized. Solutions obtained by KDA were within three percent of
the optimum for the case studies considered. Christian and Cremaschi [14] presented a branch and
bound algorithm to solve large-scale MSSPs with endogenous uncertainty. The algorithm generates
dual bounds using progressive hedging (PH) and primal bounds using the KDA [14]. Although the
algorithm required considerable time to converge, it reduced the memory requirements considerably.
Apap and Grossmann [15] proposed a sequential scenario decomposition (SSD) approach for solving
MSSPs with endogenous and exogenous uncertainties. The algorithm starts at the initial time period
and selects one scenario from each exogenous scenario group. A sub-problem is constructed by
removing all NACs associated with the exogenous uncertain parameters. The scenarios in the
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sub-problem are only connected by first-time period NACs and NACs associated with the endogenous
uncertain parameter. The solution of the sub-problem is used to fix the variables of the original
MSSP at first-time period. The algorithm repeats this process until the end of the planning horizon.
At termination, all decisions are fixed in original MSSPs yielding a feasible solution. For the oilfield
development planning problem [15], the SSD solution was within 0.2% of the optimum.

Most of these algorithms decompose the original problem into smaller sub-problems to generate
a feasible solution. No recent literature studied the impact of different decision variable definitions
and corresponding sequencing and non-anticipativity constraints on the size and solution times of the
resulting MSSP formulations constructed for clinical trial planning.

Motivated by the above, we propose two new MSSP formulations, CM1 and CM2, for
pharmaceutical clinical trial planning problem. The first formulation, CM1, employs two decision
variables, which separately track the start and end time points of clinical trials. The second formulation,
CM2, introduces an additional binary variable, which tracks both start and end time points of a clinical
trial. We applied both formulations to solve 42 instances of clinical trial planning problem [16].
For comparison, all instances were also solved using the MSSP formulation of [7], which will be
referred to as CM3 here. All instances were solved to 0.1% optimality gap using ILOG CPLEX
Optimization Studio (Version 12.6.3.0, IBM, Armonk, NY, USA). The results reveal that CM1 and CM2
were consistently solved up to two orders of magnitude faster than CM3 for all cases. A closer look at
the branching trees indicates that the optimum was obtained with fewer branches for CM1 or CM2
than CM3. Section 2 gives the clinical trial planning problem statement. New MSSP formulations are
presented in Section 3. Section 4 summarizes and discusses the results of the computational studies.
Conclusion are summarized in Section 5.

2. Problem Statement

Following the problem definition of [7] and nomenclature given in Appendix A, the problem
addressed in this paper can be stated as follows. Givens are

(1) A set of candidate drugs (i ∈ I) that should go through a set of clinical trials
(j ∈ J = {PI, PII, PII I}),

(2) The length of the planning horizon, which is discretized into equal time periods p = 1, 2, 3 . . . T
(period p starts at time p − 1 and ends at time p), t = 1, 2, 3 . . . T + maxij(τij ∀i ∈ I, j ∈ J)
(period t starts at time t− 1 and ends at time t),

(3) Cost Cij, resource requirements(s) ρijr and duration τij of each clinical trial,

(4) Potential revenue of each drug if it successfully completes all clinical trials, revi
max. We assume

that the patent life of a drug begins to shrink once it starts its first clinical trial (i.e., j = 1). Losses
are represented by two penalty terms: γD

i (loss of market) and γL
i (loss of patent life).

The problem determines: (a) which clinical trials to start; and (b) when to start the selected clinical
trials. The objective is to maximize the expected net present value (ENPV) of the pipeline.

Scenario Representation

The source of the uncertainty for this problem stems from the outcomes of the clinical trials for
each drug. A drug can either pass (P) a clinical trial or fail (F) it. Each candidate drug must successfully
complete |J| clinical trials before any revenue associated with that drug can be realized. Because a
drug will drop out of the pipeline (i.e., will not continue to the subsequent clinical trials) when it
fails a clinical trial, a single uncertain parameter can be used to represent the outcomes of the clinical
trials for a drug and will have a total of |J + 1| outcomes. Let the clinical-trial outcome uncertainty of
drug i be defined by parameter Ωi, then the outcome space of this parameter with three clinical trials
(J = {PI, PII, PII I}) can be reduced to {PI − F, PII − F, PII I − F, PII I − P} as shown in Figure 1.
For example, the outcome PII − F for drug i means drug i successfully completed (i.e., passed) clinical
trial PI but failed clinical trial PII.
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Figure 1. The outcome space of uncertain parameter associated with drug i, Ωi.

The scenarios for the MSSP model are constructed as Cartesian product of uncertain parameter
outcomes. The total number of scenarios for a clinical trial planning problem with |I| drugs is then
equal to |S| = 4|I|, where S is the scenario set. Assuming that the probabilities of outcomes are
independent, the probability for each scenario s can be calculated by Ps = P(Ω1 ∩ Ω2 ∩ . . . Ω|I|) =
P(Ω1)× P(Ω2)× . . . P(Ω|I|) = ∏

i
P(Ωi). For a more detailed discussion of scenario representation,

we refer the reader to [7].

3. Mathematical Programming Models

3.1. Clinical Trial Planning Model with Two Binary Variables (CM1)

The first formulation, which is referred to as CM1, uses two binary decision variables, Xi,j,p,s and
Yi,j,t,s. The first binary variable, Xi,j,p,s, tracks when a drug starts a clinical trial. Formally, it is equal
to one if drug i starts clinical trial j at time period p in scenario s. The second binary variable, Yi,j,t,s,
tracks when a clinical trial is completed and is equal to one if drug i completes clinical trial j at time
period t in scenario s.

3.1.1. Scheduling and Resource Constraints

Equations (7)–(9) state that each clinical trial j for drug i is started at most once (Equation (9)), that
it ends at most once (Equation (7)) and that all clinical trials that have been started should be completed
(Equation (9)). Equation (10) ensures that as soon as the start time of each clinical trial is determined,
its end time is also known. Constraint in Equation (11) states that clinical trial j for drug i cannot be
started before the drug completes previous clinical trial j − 1. Equation (12) limits the total resource
utilized by active clinical trials at any time period to the maximum level for each resource type r.

∑
t

Yi,j,t,s ≤ 1 ∀i, j, s (7)

∑
p

Xi,j,p,s ≤ 1 ∀i, j, s (8)

∑
p

Xi,j,p,s −∑
t

Yi,j,t,s = 0 ∀i, j, s (9)

Yi,j,p+τi,j,s = Xi,j,p,s ∀i, j, p, s (10)

t′

∑
p

Xi,j,p,s ≤
t′

∑
t

Yi,j−1,t,s ∀i, j > 1, t′, s (11)



Processes 2017, 5, 71 6 of 21

∑
i

∑
j

t′≤p

∑
t′>p−τi,j

ρi,j,rXi,j,t′,s ≤ ρr
max ∀r, p, s (12)

3.1.2. Non-Anticipativity Constraints

The outcomes of clinical trials are the source of uncertainty for this problem. The scenarios differ
in the outcomes of certain (drug, clinical trials) pairs (i, j). The first set of NACs (Equation (13)) are for
p = 1, i.e., the first time period. At this stage, all scenarios are indistinguishable, i.e., none of the drugs
completed any clinical trials.

Xi,1,1,1 = Xi,1,1,s ∀i, s (13)

We define the subset B of S× S as scenarios s and s′, which are distinguishable in the outcome of
one (drug, clinical trial) pair (is, s′ , js, s′). The non-anticipativity constraints (NACs) should be enforced
for scenarios (s, s′) ∈ B until the differentiating event occurs, i.e., (drug, clinical trial) pair (is, s′ , js, s′)

is completed. The NACs for (s, s′) ∈ B should be active until the differentiating event, i.e., until drug
is, s′ completes clinical trial js, s′ . Thus, the remaining NACs are expressed with Equation (14), which
can equivalently be written as Equation (15): ¬ ∑

t′≤p
Yis,s′ ,js,s′ ,t′,s

Xi,j,p,s = Xi,j,p,s′

 ∨
 ∑

t′≤p
Yis,s′ ,js,s′ ,t′,s

 ∀i, j, p ≥ 1, (s, s′) ∈ B (14)

− ∑
t′≤p

Yis,s′ ,js,s′ ,t′,s ≤ Xi,j,p,s − Xi,j,p,s′ ≤ ∑
t′≤p

Yis,s′ ,js,s′ ,t′,s ∀i, j, p ≥ 1, (s, s′) ∈ B (15)

3.1.3. Objective Function

The objective (Equation (16)) is to maximize the expected net present value (ENPV), which has
three components: current revenue Rvs, future revenue FRevs and costs Csts. The current revenue for
scenario s represents the revenue from drugs that have successfully completed all clinical trials within
the planning horizon and it is calculated using Equations (17)–(19). In Equation (17), the parameter
revmax

i is the potential revenue of drug i once it successfully completes all clinical trials. The revenue
is reduced using the penalty parameters γi

D and γi
L for reduced patent life and market share [7].

In Equation (18), a binary variable, Di,j,p,s, is introduced to determine the cases where drug i successfully
completed trial j− 1 yet it did not start the subsequent clinical trial j.

Max : ENPV = ∑
s

ps(Rvs + FRevs − Csts) (16)

Rvs = ∑
i

∑
p

{
revi

maxXi,PII I,p,s − γi
D ∑

j=PII,PII I
Di,j,p,s − γi

L(t + τi,PII I)Xi,PII I,p,s

}
∀s (17)

Di,j,p,s = −Xi,j,1,s +
t′≤p

∑
t′>τi,j−1

Xi,j−1,t′−τi,j−1,s −
t′≤p

∑
t′

Xi,j,t′,s ∀i, s, j ∈ {PII, PII I}, p (18)

The future revenue assesses the potential revenue from the clinical trials that have not been
completed in the planning horizon and it follows the definition of Colvin and Maravelias [7].
Equations (19) and (20) are used to calculate the future revenue:

FRevs = ∑
i

∑
j 6=PI

revi,j
open fi,jDi,j,|T|,s + ∑

i
revi,PI

open fi,PI Di,PI,p,s

+∑
d

∑
j ∈{PI,PII}

∑
p>|T|−τd,j

revi,j,t
run fi,j+1Xi,j,p,s ∀s (19)
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Di,PI,s = 1−
t′≤|T|

∑
t′

Xi,PI,t′,s ∀i, s, j ∈ {PII, PII I} (20)

The parameter revi,j
open in Equation (19) is the potential revenue from drug i whose j-th clinical

trial has not been started in the planning horizon despite its previous trial (j− 1) being completed and
it is calculated using Equation (21). The parameter revi,j,p

run (Equation (22)) is the potential revenue of
drug i whose clinical trial j will be completed beyond the end of the planning horizon. The parameter
fi,j (Equation (23)) represents the fraction of the revenue that would be realized by completing all
remaining trials at the end of the planning horizon and it is used to favor pushing the drugs through
the clinical trial pipeline towards the end of the planning horizon [1]. The total cost for scenario s is
calculated by discounting the total cost incurred due to all completed or running clinical trials by the
time discounting factor cdp shown in Equation (24). The discounting factor is calculated for each time
period via Equation (25), where np is the interest rate for period p.

revi,j
open = revi

max − γi
L

|T|+ ∑
j′≥j

τi,j′

 ∀i, j (21)

revi,j,p
run = revi

max − γi
L

p + ∑
j′≥j

τi,j′

 ∀i, j, p (22)

fi,j = 0.9

[
revi

max − γi
L|T| −∑j′≥j Ci,j

revi
max − γi

L|T|

]
∀i, j (23)

Csts = ∑
i,j,p

cdtCi,jXi,j,p,s ∀s (24)

cdp = 1− np(t− 1) ∀p (25)

The deterministic equivalent of the first multistage stochastic programming formulation (CM1),
a large-scale mixed integer linear program (MILP), is then given by:

Max : ENPV

Xi,j,p,s ∈ {0, 1}, Yi,j,t,s ∈ {0, 1} (26)

s.t. Constraints (7)–(25)

3.2. Clinical Trial Planning Model with an Integrated Time Binary Variable (CM2)

The second formulation, which is referred to as CM2, introduces one more binary decision
variable, Wi,j,t,p,s, similar to [17], which tracks both start and end time periods of clinical trial j of drug i.
This decision variable is equal to one if (drug, clinical trial) pair (i, j) is started at time period p and
ends at time period t. The new binary variable satisfies the following relationship:

Wi,j,t,p,s ⇔ Xi,j,p,s ∧Yi,j,t,s (27)

Equations (28)–(30) translate the logical expression given in Equation (27) into constraints.

Wi,j,t,p,s ≥ Xi,j,p,s + Yi,j,t,s − 1 ∀i, j, t, p, s (28)

Xi,j,p,s ≥ Wi,j,t,p,s ∀i, j, t, p, s (29)

Yi,j,t,s ≥Wi,j,t,p,s ∀i, j, t, p, s (30)
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With the additional binary variable, we introduce one more constraint: Equation (31), which
state that each clinical trial can only be started and completed at most once. The original sequencing
constraint Equation (9) is replaced by Equation (32):

∑
p

Wi,j,p+τi,j,p,s ≤ 1 ∀i, j, s (31)

∑
t

Yi,j,t,s = ∑
p

Wi,j,t+τi,j,p,s ∀i, j, s (32)

Part of scheduling and resource constraints (Equations (7), (11) and (12)), NACs (Equations (13)
and (15)) and the objective function of CM1 (Equation 16) are retained in CM2. The new binary
variable, Wi,j,t,p,s, replaces the binary variable Xi,j,p,s in Equations (17)–(20) and (24). The deterministic
equivalent of this formulation is also a large scale MILP:

Max : ENPV

Rvs = ∑
i

∑
p

{
revi

maxWi,PII I,p+τi,PII I ,p,s − γi
D ∑

j=PII,PII I
Di,j,p,s − γi

L(p + τi,PII I)Wi,PII I,p+τi,PII I ,p,s

}
∀s (33)

Di,j,p,s = −Wi,j,1+τi,j,1,s +
t′≤p
∑

t′>τi,j−1

Wi,j−1,t′,t′−τi,j−1,s −
t′≤p
∑
t′

Wi,j,t′+τi,j,t′,s

∀i, s, j ∈ {PII, PII I}, p ∈ T

(34)

FRevs = ∑
i

∑
j 6=PI

revi,j
open fi,jDi,j,|T|,s + ∑

i
revi,PI

open fi,PI Di,PI,p,s

+ ∑
d

∑
j ∈{PI,PII}

∑
p>|T|−τd,j

revi,j,t
run fi,j+1Wi,j,p+τi,j,p,s ∀s (35)

Di,PI,s = 1−
t′≤|T|

∑
t′

Wi,PI,t′+τi,j,t′,s ∀i, s (36)

Csts = ∑
i,j,p

cdtCi,jWi,j,p+τi,j,p,s ∀s (37)

Xi,j,p,s, Yi,j,t,s, Wi,j,t,p,s ∈ {0, 1} (38)

s.t. Constraints (7), (11), (12), (13), (15), (21)–(23), (28)–(32)

3.3. Clinical Trial Planning Model of Colvin and Maravelias [1] (CM3)

An MSSP model for the clinical trial planning problem was developed by Colvin and Maravelias [1]
and we compared the solution times of CM1 and CM2 to this formulation. In this paper, we refer
to the MSSP model of Colvin and Maravelias [7] as CM3. The entire formulation of CM3 is given in
Appendix B for completeness. Here, we provide a brief overview. The model CM3 uses binary variable
Xi,j,p,s to track the start time of clinical trial j of drug i, similar to CM1. The model also defines two more
continuous variables, Vi,j,p,s and Zi,j,p,s, bounded between zero and one. The continuous variable Vi,j,p,s
is defined such that it is equal to one if drug i completes clinical trial j by the beginning of time period t
in scenario s. For example, if the (drug, clinical trial) pair (i, j) is completed at time period p in scenario
s, the variable Vi,j,t′,s will be equal to one for all t′ ≥ p. The third continuous variable, Zi,j,p,s, becomes
one if drug i completes clinical trial j− 1 by time period p and has not started clinical trial j.

A comparison of the decision variable values of the three formulations for an example is shown
in Figure 2. In this example, we assume that first clinical trial (PI) of a drug D1 takes two time periods
and it is started on time period one. Then, binary variables XD1,PI,1,s in CM1, CM2 and CM3 would
all be equal to one. In CM1 and CM2, binary variables YD1,PI,3,s would be equal to one because drug
D1 would complete clinical trial PI at time three. Furthermore, in CM2, the binary variable WD1,PI,3,1,s
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would be equal to one, which indicates that the clinical trial (D1, PI) starts at time one and ends at time
three. In CM3, the variable VD1,PI,p,s would be equal to one for all p ≥ 3 and the variable ZD1,PII,3,s
would be equal to one, because the clinical trial (D1, PI) is completed while the trial (D1, PII) have not
been started yet.
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4. Computational Experiments, Results and Discussion

In this section, we apply all three formulations to solve 42 different instances of clinical trial
planning problem. All models were implemented in Pyomo [18] and solved using ILOG CPLEX
Optimization Studio on a standard node of Auburn University Hopper Cluster. The node has 20 cores
with E5-2660 2.60 GHz processors and 128 GB of memory [19]. We compare the sizes and solution
times for CM1, CM2 and CM3. The source code for models and case study files are available upon
request from the corresponding author.

4.1. Clinical Trial Plan for a Small Example

In this section, we present the details of the clinical trial plan generated for a small case study.
The case study includes three potential drugs that must complete three clinical trials. The planning
horizon is 36 months and it is divided into 12 equal time periods. The remaining parameters of this
case study can be found in Table A2 of Appendix C. The optimum ENPV is $1189 M and all three
formulations (CM1, CM2 and CM3) yield the optimum in 7, 5 and 10 CPUs. Figure 3 presents the
optimum decision tree, i.e., the clinical trial plan for this case study.

At t = 0, all scenarios are indistinguishable and hence, the solution recommends starting clinical
trial PI of drug D1 for all scenarios. The duration of clinical trial PI of drug D1 is two time periods and
at t = 1, its outcome is not realized. Therefore, all scenarios are still indistinguishable and the decisions
to carry (drug, trail) pair (D3, PI) is recommended for all scenarios. At t = 2, the (D1, PI) is completed
leading to two subsets of scenarios: (a) scenarios that (D1, PI) passes and scenarios that (D1, PI) fails.
For scenarios in group (a), the recommends starting clinical trial PII for drug D1, whereas for group
(b), the plan recommends starting (D2, PI) in (b). At t = 3, when the outcome of (D3, PI) is realized
for scenarios sets in (a) which passes (D1, PI) and started (D1, PII), the solution recommends waiting
rather than starting the trial (D2, PI) immediately. This is due to the resource limitation, we cannot
start the (D2, PII) if D1 is successful, which causes penalties of reduced active patent life for D2 being
idle in the pipeline.
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4.2. Clinical Trial Planning—Base Case Studies

We used five instances of the pharmaceutical clinical trial planning problem originally presented
in [1,16] as base case studies. These instances have two, three, four, five and six potential drugs that
must complete clinical trials before they can be marketed for revenue. The parameters of these five
base case studies can be found in Appendix C, Tables A1–A5.

As expected, all three formulations yielded the same optimal ENPV and clinical trial plan for
each instance. The optimal ENPVs for these case studies are given in the second column of Table 1.
The remaining columns in Table 1 summarize the number of variables and constraints for each
formulation. Table 1 reveals that CM1 has the fewest number of variables and constraints while CM2
has the most for each instance and that all models yielded very large MILPs for the six-drug case with
more than one million variables and four million constraints. That is one of reasons that six-drug
case required considerable computational effort, more than 30 CPU hours, to solve to 0.1% optimality
gap. The change in computational times (in CPUs) with the number of drugs for each formulation is
plotted using logarithmic scale in Figure 4. The solution times of CM3 were the longest and although
the solution times of CM1 and CM2 were similar, those of CM2 were shorter for the five-drug and
six-drug instances. For example, CM2 only took 8114 CPUs to solve the six-drug case, while CM1
12,991 CPUs and CM3 108,746 CPUs. Although CM2 has the most variables and constraints for all
instances (Table 1), CM2 takes shorter to solve than CM3 in each instance. It is worth noting that the
model generation time of Pyomo for all cases were relatively small and are negligible compared to the
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solution times. For example, for the six-drug case, the solution time for CM3 was 108,746 CPUs while
the generation time was only 18 CPUs.

Table 1. Problem sizes for five instances of CM1, CM2 and CM3.

Cases
CM1 CM2 CM3

Variables Constraints Variables Constraints Variables Constraints

2-Drug 586 952 838 1492 613 1051
3-Drug 17,281 44,065 24,193 64,801 21,249 49,761
4-Drug 48,385 138,497 66,817 193,793 57,345 150,529
5-Drug 239,617 802,305 454,657 1,078,785 284,673 862,721
6-Drug 1,142,785 4,386,817 1,585,153 5,713,921 1,359,873 4,677,633
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4.3. Sensitivity of Solution Times to Problem Parameters and Sizes

In this section, we investigate the sensitivity of the solution times of all formulations to the
changes in the problem parameters and size. For these studies, we used the five-drug problem from
the previous section as the base case. This problem has five candidate drugs, three clinical trials,
a six-period planning horizon and two limiting resources. The parameters of the base case five-drug
problem are given in Table A4 of Appendix C.

4.3.1. Sensitivity of Solution Times to Problem Parameters

The parameters of the clinical trial planning problem are resource availability, clinical trial costs,
maximum revenues, patent-life-loss penalty, market-share-loss penalty and clinical trial durations
(Table 2). To study the impact of overall resource availability, we construct four problems with
varying degrees of overall resource availabilities similar to [16]: (1) fully constrained; (2) 40 percent
unconstrained; (3) 70 percent unconstrained; and (4) unconstrained. The base case problem is assumed
to be fully constrained. The unconstrained case provides enough resources to allow all drugs to
complete all clinical trials simultaneously without any delay. The 40 percent-unconstrained case is
generated by increasing the available resource of the fully constrained case by 40 percent. In the 70
percent unconstrained case, this increase is 70%. The values of trial cost, max revenue of each drug,
active patent-life-loss penalty and market-share-loss penalty are all perturbed by ±10% and ±25%.
To investigate the sensitivity of clinical trial durations, we extend the length of all clinical trials by one
and two time periods.
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Table 2. Descriptions of case studies used to study the impact of problem parameters on solution times
of CM1, CM2 and CM3.

Variation Case Name Variation Value

Resource availability

5-Drug -
5-Drug-RA40% +40%
5-Drug-RA70% +70%

5-Drug-RA100% +100%

Trial cost

5-Drug-TC75% −25%
5-Drug-TC90% −10%

5-Drug-TC110% +10%
5-Drug-TC125% 25%

Maximum revenue

5-Drug-RV75% −25%
5-Drug-RV90% −10%
5-Drug-RV110% +10%
5-Drug-RV125% +25%

Active patent life loss penalty

5-Drug-GL75% −25%
5-Drug-GL90% −10%

5-Drug-GL110% +10%
5-Drug-GL125% +25%

Market share loss penalty

5-Drug-GD75% −25%
5-Drug-GD90% −10%

5-Drug-GD110% +10%
5-Drug-GD125% +25%

Trial Duration
5-Drug-TL1 +1
5-Drug-TL2 +2

Table 2 summarizes the five-drug clinical trial planning problem instances generated using the
explained perturbations. A plus sign (+) in Variation Value column refers to an increase in magnitude
and a minus sign (−) refers to a decrease. The number next to the sign indicates the magnitude of
the increase/decrease. The case names provide descriptive information. For example, case name
5-Drug-RA70% corresponds to five-drug base-case problem with 70 percent unconstrained resources
and 5-Drug-RA100% refers to the five-drug case without any resource constraints. Similarly, case name
5-Drug-RV75% corresponds to the five-drug base case problem whose maximum revenue from each
drug are decreased by 25% yielding 75% of maximum revenue for each drug. In Table 2, resource
availability, trial cost, max revenue of each drug, active patent-life-loss penalty, market-share-loss
penalty and clinical trial duration are labeled as RA, TC, RV, GL, GD and TL, respectively. All changes
in parameter values except resources availability did not significantly impact solution times, and their
results are summarized in Table A6.

The resource availability had a significant impact on solution times. Thus, we extended our
sensitivity analysis and included three-, four- and six-drug instances. The results are summarized
in Table 3 and they reveal that the solution times increase as the problems become more resource
constrained. Similar to the results for the base case studies, the solution times of CM1 and CM2 are
up to two orders of magnitude shorter than that of CM3. The difference in solution times becomes
more pronounced for instances that are larger and more tightly resource-constrained. The fully
unconstrained resource case is equivalent to removing all resource constraints, which will allow
completing clinical trials of all potential drugs simultaneously yielding a relaxed problem. Therefore,
the fully unconstrained cases take a few CPUs to solve. It is worth noting that the solutions and
ENPVs of relaxed problems with fully unconstrained resources (such as 3-Drug-R100%, 4-Drug-R100%,
5-Drug-R100% and 6-Drug-R100%) are valid upper bounds for all cases with resource constraints.
As the problem becomes more resource-constrained, it becomes more difficult to solve requiring longer
solution times for all three formulations. As an example, for the six-drug problem, the solution times
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of CM1, CM2 and CM3 are more than two orders of magnitude longer for the original problem (6-Drug
in Table 3) than the fully unconstrained case (6-Drug-R100%). Therefore, for significantly large cases
such as the six-drug one, which requires more than 22 CPU hours to solve to 0.1% optimality gap using
model CM3, if the resource constraints were relaxed, valid upper bounds within 3% can be generated
very quickly, e.g., within one CPU hour for the six-drug case.

Table 3. Resource constraint perturbation results for CM1, CM2 and CM3.

Cases ENPV
Solution Time (CPUs)

CM1 CM2 CM3

3-Drug 1189 7 5 10
3-Drug-R40% 1211 5 4 18
3-Drug-R70% 1220 2 2 5

3-Drug-R100% 1221 2 2 4
4-Drug 1697 8 11 28

4-Drug-R40% 1719 3 4 8
4-Drug-R70% 1721 3 4 6

4-Drug-R100% 1721 3 4 5
5-Drug 2083 161 158 2372

5-Drug-R40% 2123 37 43 324
5-Drug-R70% 2128 25 32 153

5-Drug-R100% 2128 59 72 318
6-Drug 2450 12,991 8114 108,746

6-Drug-R40% 2510 649 688.5 9786
6-Drug-R70% 2517 297 334 3629

6-Drug-R100% 2517 282 3234 3348

4.3.2. Sensitivity of Solution Times to Problem Sizes

Varying the number of trials, the number of resources and the length of planning horizon changes
the size of the resulting problems for all formulations. The number of trials and the length of planning
horizon change the number of variables and constraints. The number of resources change the number
of constraints. For example, by doubling the length of planning horizon, all binary variables will be
doubled and so will the related constraints.

We use the five-drug base case problem to study the impact of these parameters on the resulting
problem sizes and solution times. Table 4 summarizes the considered variations, i.e., the parameter
names along with the magnitude of the changes made to generate the case studies. In Table 4, each
case study is associated with a unique case number for easy identification in graphs and tables. Case 9
in Table 4 refers to the original five-drug base case problem. A plus/minus sign (+/−) in Magnitude
of Change column of Table 4 refers to an increase/decrease in magnitude. The number next to the sign
indicates the magnitude of the increase/decrease.

Table 4. Size perturbation cases and file names with variation value.

Case Number Variation Magnitude of Change

1
Number of trials

+1
2 +2

3

Number of resources

+1
4 +2
5 +3
6 +4

7 Length of planning horizon −2

8 Original 5-Drug Case +2
9 0
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The solution times of CM1, CM2 and CM3 are plotted for all cases of Table 4 in Figure 5a. Similar
to the results of previous section, the solution times of CM1 and CM2 are consistently shorter than CM3
for all cases with different problem sizes. The root relaxation solution times of CM1, CM2 and CM3
(Figure 5b) reveals that both CM1 and CM2 yield the root relaxation solution considerably faster than
CM3 in all cases. For example, in Case 8, ILOG CPLEX Optimization Studio took 843, 896 and 4059
CPUs to solve the root node relaxation problems for CM1, CM2 and CM3, respectively. The comparison
of initial gaps of CM1, CM2 and CM3 are shown in Figure 5c. The CM1 and CM2 yield much tighter
initial gaps than CM3. The comparison of number of branches required to solve the problems to 0.1%
optimality gap (Figure 5d) reveals that most cases (1, 2, 3, 6 and 7) are solved in root node. For cases
requiring branching, CM1 and CM2 required considerably fewer nodes than CM3. For example, in Case
8, CM1, CM2 and CM3 require 2085, 1031 and 7184 nodes. These results indicate that CM1 and CM2
require shorter times for branching than CM3, which in turn results in shorter solution times.

From the parameters that change the size of the problem, the planning horizon has the most
significant impact on the problem sizes and solution times (Figure 5, Cases 7 and 8,). For example,
the solution time for Case 7, which has five candidate drugs, three clinical trials, a four-period planning
horizon and two limiting resources, are only 22 CPUs for CM3. After extending the planning horizon
to eight time periods, the solution time increased to 785,530 CPUs, a four orders of magnitude increase
with only extending the planning horizon by four time periods. For discrete-time MSSPs, the problem
size increases rapidly especially in numbers of variables and NACs with increases in the length of
planning horizon and this translates into longer solution times.

The number of trials has relatively small influence on the performance of models (Cases 1 and 2).
The number of resources had the least impact as varying the number of resources did not influence the
initial gaps and had very little impact on solution times (Cases 3–6 in Figure 5).

To investigate the strength of the relationship between solution times (in CPUs) and root relaxation
solution times (in CPUs), initial gap and number of branches, we plotted solution times against these
variables and calculated the corresponding Pearson correlation coefficient. The solution times (s)
versus root relaxation solution times (s) are plotted in Figure 6. The corresponding Pearson correlation
coefficients are 1.0, 1.0 and 0.8 for CM1, CM2 and CM3. The values of the correlation coefficient
reveal relatively strong positive relationship between solution times and root relaxation solution times.
Similar plots for the initial gap and number of branches are given in Figures 7 and 8, respectively.
The correlation coefficients for initial gap are 0.8, 0.8 and 0.7 for CM1, CM2 and CM3, a weaker
relationship than the root relaxation solution times. The correlation coefficients between solution
times and number of branches are 1.0, 1.0 and 1.0 for CM1, CM2 and CM3. Note that the correlation
coefficient calculations for number of branches ignore the cases where the solution was obtained at the
root node. All correlation coefficients are positive, which indicates (as expected) an increase in root
relaxation solution time, initial gap or number of branches increases the solution times. The correlation
coefficients for root relaxation solution times and number of branches are larger than the ones for
initial gap suggesting a stronger positive correlation with the solution time for these variables.

By comparing three models of all case studies, the results reveal that both CM1 and CM2 perform
better than CM3. The proposed binary variables in CM1 and CM2 contribute to shorter root relaxation
solution times and generate tighter initial gaps. In addition, most problems with all formulations
were solved at the root node. For instances where ILOG CPLEX Optimization Studio branched, CM1
and CM2 consistently required fewer branches than CM3, which suggests that the binary variables in
CM1 and CM2 provided ILOG CPLEX Optimization Studio with more efficient branching variables.
The correlations of root relaxation solution time, initial gap and number of branches with solution times
revealed that all three have strong positive relationships to solution times. When the root relaxation
solution time, initial gap and number of branches of a problem instance increase, so does the solution
time. For all formulations, we also found that the root relaxation solution time and number of branches
have stronger impact on solution time than initial gap.
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5. Conclusions

This paper presented two new MSSP formulations, CM1 and CM2, for pharmaceutical clinical
trial planning problems. The first formulation, CM1, uses two binary variables to track the beginning
and the end of clinical trials. The second formulation, CM2, introduces an additional binary variable
that tracks both the beginning and the end of clinical trials. We compare the sizes and solution times of
CM1 and CM2 to each other and to CM3, an MSSP presented in [7] for clinical trial planning problem,
for different instances.

The results reveal that both CM1 and CM2 provide tighter formulations than CM3 and are
solved faster by ILOG CPLEX Optimization Studio. The proposed binary variables in CM1 and
CM2 contribute to shorter root relaxation solution times and generate much tighter initial gaps. It is
worth noting that for all formulations, most problems were solved at the root node. For instances with
branches, CM1 and CM2 consistently required fewer branches than CM3, which suggest that the binary
variables in CM1 and CM2 provided ILOG CPLEX Optimization Studio a more efficient branching
variable. The correlation coefficients between the solution time and root relaxation solution time, initial
gap and number of branches, respectively, revealed that all three have strong positive relationship
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to solution times. When the root relaxation solution time, initial gap and number of branches of a
case increase, so does its solution time. For all formulations, the correlations suggest that the root
relaxation solution time and number of branches have stronger impact on solution time than the initial
gap. We also investigated the sensitivity of solution times and problem sizes to the parameters of
the clinical trial planning problem. The results revealed that the resource constraints and length of
planning horizon contribute most to the computational complexity of this problem. It is worth noting
that ILOG CPLEX Optimization Studio was not able to solve any of the formulations for a seven-drug
case study. The future work will focus on developing decomposition approaches to generate valid
upper and lower bounds quickly to solve large instances of the clinical trial planning problem.

In this paper, the outcomes of clinical trials of different drugs are assumed to be independent.
This assumption may not be valid when the pipeline contains drugs that are being developed for
treating similar conditions or that have similar formulations and characteristics. In such cases, the
outcomes of the events for these drugs may not be independent, i.e., may be correlated. Then,
the decision to start any clinical trial of these drugs will not only affect the timing of realizations
of their endogenous uncertain parameters (clinical trial outcomes), but also affect the probability
distributions of these uncertain parameters. For instance, let’s assume that drugs D1 and D2 have
similar formulations and their outcomes are correlated and that the solution recommends starting drug
trial pair (D1, PI) at period one. When the outcome of (D1, PI) is realized, the probability distribution
of outcome space for D2 would be different if drug D1 passes PI or fails it. This will make the resulting
problem a MSSP with both Type I and Type II endogenous uncertainty, which is a more difficult
formulation to solve with limited approaches available to address it. We left this as future study.
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Appendix A. Nomenclature

Indices/Sets

i ε I drugs
j ε J clinical trials; J = {PI, PII, PIII}
r ε R resource type
s,s’ ε S scenarios
p ε {1,2, . . . T} time periods
t ε {1,2, . . . T + maxij(τij)} time periods

B
pairs of scenarios that differ in the outcome of one clinical trials (i, j);
non-anticipativity constraints are expressed only for (s,s’) ε B.

Parameters

Ci, j cost of trial time periods
Cdt discounting factor for time value of money
fi. j discounting factor for open revenue
Pi, j probability of trial (i, j) being successful
ps probability of scenario s
revi

max maximum possible revenue for drug i

revij
open estimated revenue realized for drug i, if trial (i, j − 1) completed while trial (i, j) not started,

is successfully developed beyond the end of the time horizon
γi

D loss coefficient—late completion
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γi
L loss coefficient—loss in active patent life

ρi,j,r resources of type r required to start trial (i, j)
τi, j duration of trial (i, j)
ρr

max maximum resources available of type r

Variables

Csts total development cost in scenario s
Rvs revenue of scenario s
FRvs free revenue of scenario s
ENPV expected net present value
Xi,j,p,s ε {0, 1} 1 if clinical trial (i, j) starts at the time p for scenario s
Yi,j,t,s ε {0, 1} 1 if clinical trial (i, j) ends at the time t for scenario s
Wi,j,t,p,s ε {0, 1} 1 if clinical trial (i, j) starts at the time p and ends at the time t for scenario s
Vi,j,t,s ε [0, 1] 1 if clinical trial (i, j) is completed by the beginning of period t in scenario s
Zi,j,t,s ε [0, 1] 1 if clinical trial (i, j) can be started at the beginning of time t for scenario s

Appendix B. MSSP Formulation of Colvin and Maravelias (2008)

ENPV = ∑
s

ps(Rvs + FRevs − Csts) (A1)

Vi,j,t,s = Vi,j,t−1,s + Xi,j,t−τi,j,s ∀i, j, t, s (A2)

Zi,1,1,s = 1−Xi,1,t,s ∀i, s (A3)

Zi,1,t,s = Zi,1,t−1,s −Xi,j,t,s ∀i, t > 1, s (A4)

Zi,j,t,s = Zi,j,t−1,s + Xi,j−1,t−τi,j−1,s −Xi,j,t,s ∀i, j > 1, t, s (A5)

∑
t

Xi,j,t,s ≤ 1 ∀i, j, s (A6)

∑
t′≤t

Xi,j,t′ ,s ≤ Vi,j−1,t,s ∀i, j > 1, t, s (A7)

∑
i

∑
j

t′≤t

∑
t′>t−τi,j

ρi,j,rXi,j,t′ ,s ≤ ρr
max ∀r, t, s (A8)

Xi,1,1,s = Xi,1,1,1 ∀i, s (A9)

− V
is,s′ ,js,s′ ,t,s

≤ Xi,j,t,s −Xi,j,t,s′ ≤ V
is,s′ ,js,s′ ,t,s

∀i, j, (s, s′) ∈ Ψ, t > 1 (A10)

Csts = ∑
i,j,t

cdtCi,jXi,j,t,s ∀s (A11)

Rvs = ∑
i

∑
t

revmax
i Xi,PII,t,s − γi

D(Zi,PII,t,s + Zi,PIII,t,s)− γi
L(t + τi,PIII)Xi,PIII,t,s ∀s (A12)

FRevs = ∑
i

∑
j

revopen
i,j fi,jZi,j,|T|,s + ∑

i
∑

j∈{PI,PII}
∑

t>|T|−τi,j

revrun
i,j,tfi,j+1Xi,j,t,s ∀s (A13)

revi,j
open = revi

max − γi
L

|T|+ ∑
j′≥j

τi,j′

 (A14)

revi,j
run = revi

max − γi
L

t + ∑
j′≥j

τi,j′

 (A15)
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fi,j = 0.9

[
revi

max − γi
L|T| −∑j′≥j Ci,j

revi
max − γi

L|T|

]
(A16)

Xi,j,t,s ∈ {0,1} 1 if trial (i,j) starts at the beginning of time t for scenario s (A17)

Vi,j,t,s ∈ [0,1] 1 if trial (i,j) is completed at the beginning of time t for scenario s (A18)

Zi,j,t,s ∈ [0,1] 1 if trial (i,j) can be started at the beginning of time t for scenario s (A19)

Appendix C. The Parameters of Five Base Case

Table A1. Parameters of the two-drug case study.

Drug Duration Probability
of Success Cost ($M) Resource 1

(Max = 2)
Resource 2
(Max = 3) revmax γL γD

PI PII PI PII PI PII PI PII PI PII

D1 2 4 0.3 0.5 10 90 1 1 1 2 3100 19.2 44
D2 2 3 0.4 0.6 10 80 1 2 1 1 3250 19.6 56

Clinical trial plan for a 15-month planning horizon divided into five equal time periods.

Table A2. Parameters of the three-drug case study.

Drug Duration Probability of
Success

Trial Cost
($M)

Resource 1
(Max = 2)

Resource 1
(Max = 3) revmax γL γD

PI PII PIII PI PII PIII PI PII PIII PI PII PIII PI PII PIII

D1 2 4 4 0.3 0.5 0.8 10 90 220 1 1 2 1 2 3 3100 19.2 44
D2 2 3 5 0.4 0.6 0.8 10 80 200 1 2 2 1 1 3 3250 19.6 56
D3 2 3 4 0.3 0.6 0.9 10 90 180 1 1 2 1 1 3 3300 20 52

Clinical Trial plan for a 36-month planning horizon divided into 12 equal time periods.

Table A3. Parameters of the four-drug case study.

Drug Duration Probability of
Success

Trial Cost
($M)

Resource 1
(Max = 4)

Resource 1
(Max = 3) revmax γL γD

PI PII PIII PI PII PIII PI PII PIII PI PII PIII PI PII PIII

D1 1 1 3 0.3 0.5 0.8 10 90 220 1 1 2 1 2 3 3100 19.2 22
D2 1 2 2 0.4 0.6 0.8 10 80 200 1 2 2 1 1 3 3250 19.6 28
D3 1 1 3 0.3 0.6 0.9 10 90 180 1 1 2 1 1 3 3300 20 26
D4 1 2 2 0.4 0.6 0.8 10 100 170 1 1 2 1 2 3 3000 19.4 24

Clinical trial plan for an 18-month planning horizon divided into six equal time periods.

Table A4. Parameters of the five-drug case study.

Drug Duration Probability of
Success

Trial Cost
($M)

Resource 1
(Max = 4)

Resource 1
(Max = 3) revmax γL γD

PI PII PIII PI PII PIII PI PII PIII PI PII PIII PI PII PIII

D1 1 1 3 0.3 0.5 0.8 10 90 220 1 1 2 1 2 3 3100 19.2 22
D2 1 2 2 0.4 0.6 0.8 10 80 200 1 2 2 1 1 3 3250 19.6 28
D3 1 1 3 0.3 0.6 0.9 10 90 180 1 1 2 1 1 3 3300 20 26
D4 1 2 2 0.4 0.6 0.8 10 100 170 1 1 2 1 2 3 3000 19.4 24
D5 1 2 3 0.35 0.5 0.9 10 70 210 1 1 2 1 1 3 3150 19.6 24

Clinical trial plan for an 18-month planning horizon divided into six equal time periods.
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Table A5. Parameters for a six-drug case study.

Drug Duration Probability of
Success

Trial Cost
($M)

Resource 1
(Max = 4)

Resource 1
(Max = 3) revmax γL γD

PI PII PIII PI PII PIII PI PII PIII PI PII PIII PI PII PIII

D1 1 1 3 0.3 0.5 0.8 10 90 220 1 1 2 1 2 3 3100 19.2 22
D2 1 2 2 0.4 0.6 0.8 10 80 200 1 2 2 1 1 3 3250 19.6 28
D3 1 1 3 0.3 0.6 0.9 10 90 180 1 1 2 1 1 3 3300 20 26
D4 1 2 2 0.4 0.6 0.8 10 100 170 1 1 2 1 2 3 3000 19.4 24
D5 1 2 3 0.35 0.5 0.9 10 70 210 1 1 2 1 1 3 3150 19.6 24
D6 1 2 3 0.45 0.45 0.8 10 85 195 1 2 2 2 1 3 3050 19 25

Clinical trial plan for an 18-month planning horizon divided into six equal time periods.

Appendix D. The Parameter Perturbation Results for CM1, CM2 and CM3

Table A6. Parameter perturbation results for CM1, CM2 and CM3.

Numbers Case Name ENPV
Solving Times (s)

CM1 CM2 CM3

1 5-Drug-GD75% 1360.78 332 426 4972
2 5-Drug-GD90% 2127.53 536 551 3870
3 5-Drug-GD110% 2123.03 477 638 5759
4 5-Drug-GD125% 2127.56 489 532 5656
5 5-Drug-GL75% 2083.53 260 277 5650
6 5-Drug-GL90% 2083.4 442 440 4380
7 5-Drug-GL110% 2081.13 396 418 4393
8 5-Drug-GL125% 2080.27 476 452 6214
9 5-Drug-RV75% 2111.88 404 412 6021
10 5-Drug-RV90% 2093.38 544 554 5912
11 5-Drug-RV110% 2070.03 427 573 4137
12 5-Drug-RV125% 2051.49 477 479 4249
13 5-Drug-TC75% 1443.15 347 390 3556
14 5-Drug-TC90% 1826.37 175 214 3511
15 5-Drug-TC110% 2337.79 485 500 6824
16 5-Drug-TC125% 2721.78 671 602 4451
17 5-Drug-TL1 2003 38 45 84
18 5-Drug-TL2 1862 9 14 23
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