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Abstract: IL-6 signaling plays an important role in inflammatory processes in the body. While a
number of models for IL-6 signaling are available, the parameters associated with these models
vary from case to case as they are non-trivial to determine. In this study, optimal experimental
design is utilized to reduce the parameter uncertainty of an IL-6 signaling model consisting of
ordinary differential equations, thereby increasing the accuracy of the estimated parameter values
and, potentially, the model itself. The D-optimality criterion, operating on the Fisher information
matrix and, separately, on a sensitivity matrix computed from the Morris method, was used as the
objective function for the optimal experimental design problem. Optimal input functions for model
parameter estimation were identified by solving the optimal experimental design problem, and the
resulting input functions were shown to significantly decrease parameter uncertainty in simulated
experiments. Interestingly, the determined optimal input functions took on the shape of PRBS signals
even though there were no restrictions on their nature. Future work should corroborate these findings
by applying the determined optimal experimental design on a real experiment.

Keywords: optimal experimental design; D-optimality criterion; Fisher information matrix;
sensitivity analysis; IL-6 signaling; parameter estimation; piecewise constant functions

1. Introduction

Mathematical models of intracellular signaling pathways are important for understanding and
predicting how cells respond to certain stimuli. Such models can be modified readily when new
findings become available, and can be a useful tool in directing new studies based on hypotheses
generated by the model’s predictions.

Interleukin-6 (IL-6) is a cytokine involved in a variety of inflammatory processes [1–4].
Understanding the signaling pathways associated with extracellular IL-6 excitation is important
for elucidating and modulating the biological response to inflammation. Because chronic inflammation
can cause tissue damage and poses a serious health risk during chronic infection or autoimmune
conditions [5–7], therapeutic treatments for chronic inflammation are an active area of research.
These efforts can be augmented through the use of mathematical models for inflammatory signaling,
where IL-6 plays a major role.

An IL-6 signaling model (Appendix A) was previously developed in [1–4]. Originally, a detailed
model containing 77 ordinary differential equations (ODEs) and 128 parameters was derived,
followed by a model simplification procedure to decrease the number of ODEs and parameters
to 13 and 19, respectively. The simplified model contains only the variables and parameters deemed
necessary for representing the dynamics of the signaling system, as determined by parameter sensitivity
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analysis and observability analysis [2]. This simplified model is the subject of the present study, and will
henceforth be referred to as the ‘IL-6 model’ or the ‘model’ while the original detailed model will be
referred to as the ‘original IL-6 model’ or the ‘original model’.

In this study, optimal experimental design was applied to increase the accuracy of the 19 parameters
of the IL-6 model. The parameters in this model correspond to rate constants for the chemical reactions
in the signaling pathway represented by the model. By increasing the accuracy—and conversely
reducing the uncertainty—of the model parameters, it is possible to obtain a more accurate model
through iterative model adjustment. To demonstrate and examine this step in the model development
process, optimal experimental design methods were applied in this study to minimize the uncertainty
of the IL-6 model parameters estimated from least squares with experimental data.

Optimal experimental design has been utilized for decades in a variety of settings in which
it is of interest to maximize efficiency of resource use and obtain a significant amount of
information from experiments with acceptable cost [8–16]. Recently, as biological modeling and
systems biology have emerged as an important area in biomedical research, optimal experimental
design applied to biological experimental systems has become more popular [17–28]; additionally,
optimal experimental design has been recognized as a valuable tool in optimal control for several
decades [29]. For example, Jones et al. [13] maximized production of an exogenous commodity
chemical in metabolically engineered E. coli using an empirical modeling method similar to those used
in [15,16] to maximize the efficacy of drug delivery. Weber [26] utilized optimal experimental design
to maximize model prediction accuracy for a model of vesicle transport via the trans-Golgi network.
Bandara [18] performed optimal experimental design to reduce parameter uncertainty in a model of
phosphatidylinositol 3,4,5-trisphosphate signaling. These studies demonstrate the effectiveness of
optimal experimental design for obtaining maximally informative experimental data.

Here, optimal experimental design is applied to the problem of maximizing parameter accuracy
for the IL-6 model. In particular, the D-optimality criterion, applied to the Fisher information matrix
(FIM), is maximized over a set of IL-6 concentration input functions to determine an optimal dynamic
IL-6 input profile for exciting the signaling system to generate data for least squares estimation of the
model parameters [30]. The experimental design constraints considered in the problem are based on
available resources and limitations present in a typical laboratory capable of performing the designed
experiments. Namely, it is assumed that (a) the measurements of protein concentrations for two
transcription factors are recorded as a time series; (b) the sampling time between measurements does
not change during the course of an experiment; (c) the model represents signal transduction in rat
hepatocytes which are stimulated in vitro with IL-6 following a dynamic input function; and (d) the IL-6
concentration is kept below cytotoxic levels. A piecewise constant IL-6 input function was computed
by solving the optimal experimental design problem with the D-optimality criterion, operating on
the Fisher information matrix, as the objective function. Since the Fisher information matrix contains
only local information, a sensitivity matrix was also computed using the Morris method and the
D-optimality criterion was applied to the sensitivity matrix as well in order to corroborate that the
results are not just local in nature. The optimal IL-6 input function was found to substantially decrease
the model parameter uncertainty in simulated least squares fits compared to a constant stimulation
with IL-6.

The paper is organized as follows: optimal experimental design and its application to ODE
models are presented in Section 2; application of optimal experimental design to the specific case of
the IL-6 model is presented in Section 3 and results from solving the optimal experimental design
problem are presented in Section 4, including simulation results for calculating parameter uncertainty;
Section 5 discusses implications and suggests further applications of the optimal experimental design
methodology presented here. The IL-6 model is included for reference in Appendix A.
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2. Optimal Experimental Design

An ordinary differential equation model, e.g., for describing signal transduction, can be written as

dx
dt

= f (t, x, u, p); y = g(t, x, u, p), (1)

where x is a time-dependent vector of state variables, u is a time-dependent controlled input to the
system, p is a vector of constant parameters, and y is a vector of measured quantities related to the
model variables. Often, as is the case here, y is simply a subset of state variables from the vector
x that are measured experimentally over time. While these measurements y are discrete in nature,
the assumption that y is a continuous variable can be made if the sampling frequency is sufficiently high.

Optimal experimental design involves maximizing a criterion function that indicates
the quantity of information gained by a given experiment, often in the context of model
identification [8–12,14,17–23,29,31]. Several commonly used criterion functions for experimental design
exist. One of these is A-optimality, which seeks to minimize the trace of the inverse of the Fisher
information matrix. This criterion results in minimizing the average variance of the estimates of
the regression coefficients. Another popular approach is E-optimality which maximizes the smallest
eigenvalue of the Fisher information matrix. However, the most popular approach is D-optimal
experimental design, i.e., which maximizes the determinant of the FIM [14,19,24]. The D-optimality
criterion was chosen for this work as it seeks to minimize the covariance of the parameter estimates
for a specified model [14]. It should be noted that no experimental design is optimal in all aspects
and maximizing one particular criterion often negatively affects the experimental design of other
criteria. That being said, the D-optimality criterion has found widespread use in practice as it results
in experimental designs that have many of the properties that one usually looks for. For numerical
considerations, the natural logarithm of the determinant of the FIM was taken for the problem
presented. The optimal experimental design objective can be written generally as

maxϕD(F), (2)

where F is the FIM, defined in more detail below, and ϕD is the D-optimality criterion.
Taking the determinant of the parameter covariance matrix corresponds to computing the

volume of the parameter space that would allow for a solution to the least squares parameter fitting
problem [14,18]. The volume of this parameter space represents the covariance, or uncertainty, of the
parameters. Because the FIM is related to the inverse of the covariance matrix [8,10], maximizing
the determinant of the FIM results in minimizing the determinant of the covariance matrix, and thus
minimizing the volume of the parameter space, or minimizing parameter uncertainty.

The FIM is computed from the sensitivity coefficients of the model, which can be an ODE model
as shown in Equation (1). Local sensitivity coefficients are defined as

∂xi
∂pj

∣∣∣∣∣
t,p

, (3)

where xi is the i-th state variable in the model, pj is the j-th model parameter in the vector p, and t is
the time at which the partial derivative is evaluated [2,3,32]. The local sensitivity coefficient represents
the change in a model state with respect to a change in the value of a parameter, and is a function
of time and the parameter vector. At every time point during an experiment, or a model simulation,
a sensitivity coefficient can be calculated for any of the state variables. However, the FIM contains the
sensitivity coefficients for only those state variables which are measured in experiments for generating
data to be used in parameter estimation using least squares fitting, i.e., the sensitivity coefficients for
the vector y. The FIM is written as

F = STS, (4)
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where S is the sensitivity matrix [32]

S =



∂y1
∂p1

(t1) ∂y1
∂pnp

(t1)
...

...
∂y1
∂p1

(tN) ∂y1
∂pnp

(tN)

. . .
∂y2
∂p1

(t1) ∂y2
∂pnp

(t1)
...

...
∂y2
∂p1

(tN) ∂y2
∂pnp

(tN)


∈ R(2N)xnp , (5)

and np is the number of parameters in the model. Here, the formula shown for S corresponds
to an experiment in which two state variables are measured in a time series from time t1 to tN ;
one can extend the formula to the general case of any number of experimentally measured outputs,
however, two outputs are realistic for the application investigated in this paper. The local sensitivity
coefficients for all of the state variables of the model can be calculated by solving the system of ordinary
differential equations

d
dt

∂x
∂pT =

∂ f
∂xT

∂x
∂pT +

∂ f
∂pT (6)

where x is the column vector of state variables, p is the column vector of model parameters, and f is the
column vector of functions defining the model, as in Equation (1) [32]. To calculate the D-optimality
criterion value for a given experiment design, the model ODEs (Equation (1)) are solved simultaneously
with the sensitivity equations (Equation (6)), the FIM is constructed (Equations (4) and (5)), and the
determinant can then be computed. To determine an optimal experiment, an optimization problem is
solved which searches through different experimental designs, computing the D-optimality criterion
in this way for every iteration.

The Morris method [3] can also be utilized for calculating sensitivity coefficients in a covariance
matrix. It should be noted that such an approach results in more than local information due to the
certain properties of the Morris method. Using the Morris method, global sensitivity coefficients
are calculated by repeatedly sampling parameter values from a distribution. Finite difference
approximations of the local sensitivities are then computed at each value of the sampled parameter
vector, and the finite difference approximations are averaged to obtain each global sensitivity coefficient
as shown in Equations (7) and (8).

dijk =
yi(t, p1, . . . , pj + ∆jk, . . . , pnp) − yi(t, p1, . . . , pj, . . . , pnp)

∆jk
(7)

sij =
1

nd

nd

∑
k=1

dijk (8)

Here, dijk is a finite difference derivative approximation for the local sensitivity of yi with respect
to parameter pj at the k-th sampled value of pj, ∆jk defines the sampled value of pj depending on
the distribution of pj, and nd is the number of samples chosen for pj. This method for calculating
sensitivity coefficients takes into account the uncertainty of the parameter values by averaging over
samples from the parameter distribution. Therefore, using the Morris method for calculating the
sensitivity coefficients in the FIM does not rely on knowledge of an exact value for the parameters.
In fact, the exact values of the parameters are by definition unknown—otherwise, one would not
need to estimate the parameters. For this problem, the parameter distributions were considered to be
normal with a mean at the nominal parameter values and a standard deviation of one-tenth the value
of each parameter.
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3. Formulation of the Optimal Experimental Design Problem for the IL-6 Model

The values of the parameters p in ODE models are generally unknown and must be estimated
using experimentally measured data points [20,30,33]. The problem considered here is to optimize the
function for the controlled variable u in order to minimize the uncertainty of the parameters estimated
by least squares parameter estimation.

In the IL-6 model, u represents the IL-6 concentration in the local environment of the cells being
stimulated by IL-6. The IL-6 concentration at a given time determines the signaling behavior of the
cells, which is characterized by the concentrations of each signaling molecule in the pathway at time
t. Thus by modulating the input IL-6 concentration, u, as a function of time, the signaling dynamics
can be influenced so that measurements of components of the signaling pathway can yield maximal
information about the model parameters.

The measured state variables for this problem were chosen to be STAT3N*-STAT3N* and C/EBPβ,
two transcription factors of the IL-6 signaling pathway which are directly involved in transcribing
DNA to RNA. These measurements were chosen because of the availability of a fluorescent reporter
system for measuring the concentrations of these two proteins [2,34]. To design an optimal experiment
for minimizing parameter uncertainty, experiments were considered in which the concentrations of
these two proteins are measured in a time series every 45 min for 22 h using a fluorescent reporter
system. This time sequence for image acquisition was utilized previously to obtain initial estimates
for the parameters of the model [2]. However, for the initial parameter estimation, a constant IL-6
concentration at an arbitrary level of 100 ng/mL was utilized as the input function [2]. In the present
work, optimal experimental design was applied to optimize the input function over a continuous set
of time-dependent input functions while utilizing the same time sequence for data acquisition as was
utilized in [2]. This allows for evaluating whether the parameter uncertainty can be decreased by
optimizing the input function while holding other experimental control decisions constant.

For this problem, the set of input functions to optimize was chosen to be the piecewise constant
input functions with fixed and equal time intervals and IL-6 concentrations bounded between 0 and
7.5 nM. These input functions were chosen because they can be implemented experimentally due to
the long intervals during which a concentration is constant, and because they can be parameterized
so as to arrive at an optimization problem with a finite number of variables. Specifically, the number
of optimization variables is the number of concentration levels allowed in the piecewise constant
function. This is illustrated in Figure 1 with a piecewise constant input function for IL-6 that has r = 4
concentration levels. As an example, to determine the optimal input function with r = 4 concentration
levels, the optimal experimental design problem would be solved with four optimization variables
representing the four concentration levels of such an input function.

These piecewise constant input functions can be written as

u(t) =
r
∑

k=1
ckstep(t − (k − 1)∆t) −

r
∑

k=1
ckstep(t − k∆t)

= c1step(t) +
r
∑

k=2
[ckstep(t − (k − 1)∆t) − ck−1step(t − (k − 1)∆t)] − crstep(t− r∆t)

= c1step(t) +
r
∑

k=2
(ck − ck−1)step(t − (k − 1)∆t) − crstep(t − r∆t)

(9)

where ck is the k-th concentration level in the vector c, ‘step’ is the Heaviside step function, r is the
number of concentration levels in the input function, and ∆t = 22 h/r is the time interval for each
concentration level in the input function.

By changing the vector c to modulate the IL-6 input function, the solution of the model ODEs and
local sensitivity ODEs are modulated. This causes the FIM, and thus the D-optimality criterion value,
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to be a function of c. Therefore, the optimal experimental design problem for minimizing parameter
uncertainty in the IL-6 model can be written as

max
0≤c≤7.5 nM

ln|F(c)|, (10)

where |·| is the determinant and F is calculated from Equations (4) and (5) with y1 from Equation (5)
being the concentration of STAT3N*-STAT3N*, y2 being the concentration of C/EBPβ, and p being
the parameters of the IL-6 model. Specifically, in order to calculate the FIM, the IL-6 signaling ODE
model is numerically integrated simultaneously with the local sensitivity equations (Equation (6)) for
a given input function represented by c, and the FIM is constructed according to Equations (4) and (5).
This ODE integration is carried out in every iteration of the optimization problem to evaluate the
D-optimality criterion value until the optimization solver determines a solution.

Processes 2017, 5, 49  6 of 12 

 

ODE model is numerically integrated simultaneously with the local sensitivity equations (Equation 

(6)) for a given input function represented by c, and the FIM is constructed according to Equations 

(4) and  (5). This ODE  integration  is carried out  in every  iteration of  the optimization problem  to 

evaluate the D‐optimality criterion value until the optimization solver determines a solution. 

 

Figure 1. Example of a piecewise constant input function for IL‐6 (Interleukin‐6) concentration with r 

= 4. The input function shown here can be represented as a vector of the four concentration levels in 

chronological order: c = [1.1, 5.2, 0.9, 7.4] nM IL‐6. 

When solving the problem using the Morris method to obtain global sensitivity coefficients, the 

local sensitivity coefficients in the FIM are replaced by the global sensitivity coefficients calculated 

by the Morris method. For the Morris method, the local sensitivity ODEs do not need to be solved; 

rather, the model ODEs are solved repeatedly using the sampled parameter values, and the finite 

difference approximations of the partial derivatives are computed and averaged. 

To solve the optimal experimental design problem for each value of r from 1 to 6, the MATLAB 

function  ‘fminsearch’ was utilized  [35]. Additionally,  to  account  for  the bound  constraints on  the 

concentration levels, a stop flag was imposed in the program for running the optimization solver. 

Multiple  initial guesses were utilized for each value of r  to avoid  local optima  (between 5 and 18 

initial guesses were used depending on r, in order to cover the range of possible qualitative input 

function shapes for each value of r). 

4. Optimal Experimental Design for the IL‐6 Signaling Model 

Solving the optimal experimental design problem for minimizing parameter uncertainty in the 

IL‐6 model for values of r from 1 to 6 resulted in an optimal IL‐6 input function for each value of r. 

The optimal  solutions  for  each  r are  listed  in Table 1, which also  lists  several  sub‐optimal  input 

functions for comparison. Note that the D‐optimality criterion value is greatest for the optimal input 

function with r = 6 (see columns 1–4 in Table 1). The range of D‐optimality criterion values for the 

input functions listed in the table (column 4) is very wide if one considers that the values given are 

the  logarithm of  the determinant of  the FIM  rather  than  the determinant  itself. As  expected,  the 

D‐optimality criterion values for the optimal input functions increase with r (see Table 1, column 4); 

this is due to the degrees of freedom added when r is increased. 

Figure 1. Example of a piecewise constant input function for IL-6 (Interleukin-6) concentration with
r = 4. The input function shown here can be represented as a vector of the four concentration levels in
chronological order: c = [1.1, 5.2, 0.9, 7.4] nM IL-6.

When solving the problem using the Morris method to obtain global sensitivity coefficients,
the local sensitivity coefficients in the FIM are replaced by the global sensitivity coefficients calculated
by the Morris method. For the Morris method, the local sensitivity ODEs do not need to be solved;
rather, the model ODEs are solved repeatedly using the sampled parameter values, and the finite
difference approximations of the partial derivatives are computed and averaged.

To solve the optimal experimental design problem for each value of r from 1 to 6, the MATLAB
function ‘fminsearch’ was utilized [35]. Additionally, to account for the bound constraints on the
concentration levels, a stop flag was imposed in the program for running the optimization solver.
Multiple initial guesses were utilized for each value of r to avoid local optima (between 5 and 18 initial
guesses were used depending on r, in order to cover the range of possible qualitative input function
shapes for each value of r).

4. Optimal Experimental Design for the IL-6 Signaling Model

Solving the optimal experimental design problem for minimizing parameter uncertainty in the
IL-6 model for values of r from 1 to 6 resulted in an optimal IL-6 input function for each value of r.
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The optimal solutions for each r are listed in Table 1, which also lists several sub-optimal input
functions for comparison. Note that the D-optimality criterion value is greatest for the optimal input
function with r = 6 (see columns 1–4 in Table 1). The range of D-optimality criterion values for the
input functions listed in the table (column 4) is very wide if one considers that the values given
are the logarithm of the determinant of the FIM rather than the determinant itself. As expected,
the D-optimality criterion values for the optimal input functions increase with r (see Table 1, column 4);
this is due to the degrees of freedom added when r is increased.

Table 1. Optimal and sub-optimal input functions for values of r from 1 to 6.

Input Function (nM) r Optimal? D-Optimality
Criterion Value

Covariance
Norm

Covariance
Trace

3.83 1 no −133.9 161 216
6.59 1 yes −114.5 43.8 45.2

[0.48, 7.34] 2 yes −28.9 12.95 12.96
[6.30, 1.60, 7.20] 3 yes 0.30 0.0033 0.0040

[1.09, 5.22, 0.90, 7.39] 4 yes 3.24 6.56 × 10−5 6.59 × 10−5

[0.99, 5.64, 0.95, 7.37, 0.97] 5 yes 18.8 1.90 × 10−6 1.91 × 10−6

[0.89, 5.94, 1.01, 7.14, 1.07, 5.22] 6 yes 29.7 4.26 × 10−6 4.83 × 10−6

[6.97, 0.67, 7.23, 0.88, 7.49, 1.09] 6 no 19.8 0.195 0.204
[7, 6, 5, 4, 3, 2] 6 no −41.4 42.2 46.8
[1, 4, 6, 6, 4, 1] 6 no −32.2 1.63 2.03

[3, 4, 5, 6, 7] 5 no −47.9 55.5 68.8
[6, 6, 5, 3, 3] 5 no −47.5 1.32 1.44

To test whether higher D-optimality criterion values for an input function corresponded to lower
uncertainty, simulations were run for each of the input functions listed in Table 1. For these simulations,
data were generated by utilizing the original IL-6 model and adding normally distributed noise to the
measurements. Specifically, for a given input function, a simulation was run by integrating the original
IL-6 model, adding Gaussian noise with a mean of 0 and a standard deviation of 1 at the measurement
time points (every 45 min for 22 h), and fitting the parameters of the simplified IL-6 model to the
simulated data. The standard deviation of 1 was chosen to provide a reasonable signal to noise ratio
for the model variables. For each input function, 30 simulations were run and parameters were fitted
for each simulation. A parameter covariance matrix was then calculated for each of the input functions
using the parameter fits from the 30 simulations that were run for each input function. The norm
and trace of these covariance matrices were utilized as measures of uncertainty for the parameters.
The norm accounts for covariances, while the trace takes into account only variances. Columns 5 and 6
of Table 1 show the norm and trace of the covariance matrix for each input function. As expected, one
can observe that the uncertainty is generally lower for optimal input functions than for sub-optimal
input functions. However, the relationship between the (a priori computed) D-optimality criterion and
the (a posteriori determined) uncertainty is not monotonic; e.g., the uncertainty for the r = 5 optimal
input function is slightly lower than that for the r = 6 input function while the D-optimality criterion
value is greater for the r = 6 input function (Table 1). Furthermore, the uncertainty for the r = 6
sub-optimal input function shown is larger than that for the optimal r = 4 and r = 5 input functions
even though the D-optimality criterion value is greater for the r = 6 sub-optimal input function. There
are a number of possible reasons for this lack of monotonicity, such as nonlinearity of the IL-6 model
and the fact that optimal experimental design theory is an approximate theory in the case of nonlinear
models [8,10].

In order to corroborate that these findings also hold up when global rather than local analysis is
used, the Morris method was implemented for computing sensitivity coefficients. This resulted in the
optimal input functions listed in Table 2. Figure 2 shows the optimal input functions computed by both
the local method and the Morris method for r from 1 to 6. It was observed that both methods resulted
in optimal input functions with alternating IL-6 concentration levels, reminiscent of pseudo-random
binary signals (PRBS signals). While the different methods sometimes result in input profiles that start
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high vs. low, the general shape of the functions is an oscillation between a low and a high value of the
input. This suggests that PRBS-like signals may be favorable for minimizing parameter uncertainty in
the IL-6 signaling model.Processes 2017, 5, 49  8 of 12 
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Table 2. Optimal input functions for values of r from 1 to 6 via the Morris method

Input Function (nM) r

7.37 1
[2.38, 6.60] 2

[7.21, 1.83, 7.15] 3
[6.01, 1.05, 6.02, 0.99] 4

[7.36, 1.27, 6.68, 0.73, 6.70] 5
[6.11, 0.99, 5.75, 1.02, 6.26, 1.02] 6
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An important take-away message from the simulation results is that optimal experimental design
can be very effective at providing an a priori design, yet this does not replace evaluating the quality of
a design a posteriori.

5. Discussion

The IL-6 model aims to capture the behavior of molecules involved in both the Jak-STAT pathway
and the MAPK pathway [2]. This model is larger and more nonlinear than most models that have
previously been the subject of optimal experimental design involving signaling pathways [18,24,25].
The present study shows that optimal experimental design can be utilized for improving the
parameter accuracy of moderately complex nonlinear models. Further, the study shows that
parameter uncertainty can be substantially decreased by optimizing the input function alone without
simultaneously optimizing the experimental measurement time points for this particular system.
This observation potentially has fortunate implications for experimental systems in which the input
function can be controlled but the experimental measurement time points are dictated by practical
considerations and cannot be changed.

The main step in the optimal experimental design was the sensitivity analysis for constructing the
FIM. This involves constructing the Jacobian of the model equations so that the sensitivity equations can
be integrated to obtain the sensitivity coefficients for the FIM. In principle, this method can be applied
to any ODE model. The main step in the analysis is therefore to calculate all of the partial derivatives
in the Jacobian, since the Jacobian will be different for every ODE model. For the Morris method,
the information matrix is constructed by sampling from the parameter distribution and calculating
finite difference derivative approximations for the sensitivities. In both cases—i.e., local and global
methods—an ODE solver capable of accurately integrating the ODEs must be used, along with the
optimization solver in order to evaluate the objective function for each optimization iteration.

Optimal experimental design using the D-optimality criterion was effective, according to the
simulation results, in decreasing the parameter uncertainty in the model. However, one has to caution
that this is only one aspect. For example, it has been shown in work by White et al. [36] that increased
parameter accuracy does not guarantee an improvement in the accuracy of the model.

The form of the optimal input functions for the IL-6 model raises an interesting point regarding
general system identification theory. Each of the determined optimal input functions takes the form
of a PRBS-like sequence (see Figure 2), a commonly used input signal for system identification [37],
even though this input function shape was not postulated during the formulation of the optimal design
problem. Furthermore, computing an experimental design where sensitivities were computed via
the Morris method also led to PRBS-like optimal inputs. Without commenting on generality, a PRBS
signal seems to be a good choice for inputs of the investigated IL-6 signaling model, a result that may
potentially carry over to other signaling pathway models.

6. Conclusions

Optimal experimental design was applied to the problem of minimizing parameter uncertainty
in an IL-6 signaling model representing the Jak-STAT and MAPK pathways. The D-optimality
criterion, operating on the FIM, was constructed using sensitivity equations, which were solved
simultaneously with the equations of the model. Piecewise constant input functions were determined
by solving this optimization problem; the piecewise nature of the inputs lays the groundwork for
implementing the determined IL-6 concentration profiles on an experimental system. The optimal input
functions resulted in decreased parameter uncertainty for the model, as observed from simulations
in which parameters were fitted using the optimal input functions for inducing the signaling system.
Interestingly, the determined optimal input functions took on the shape of PRBS signals even though
this was not in any way postulated by the optimal experimental design problem. This observation was
further validated by formulating and solving the problem using a global method in addition to the
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local method. Future work should corroborate these findings by applying the determined optimal
experimental design to an actual experiment.
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Appendix A

The ordinary differential equations comprising the IL-6 model from [2] are shown below, with
initial values for the variables and a schematic of the signaling network taken from [2]. Parameter
values from the initial fit performed in [2] and values from the average simulated fit using the optimal
r = 5 input function (from the local method) are shown in Table A1. Units for parameter values
correspond to time in seconds and concentrations in nM.
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Table A1. Parameter values from initial parameter fit [2] and from optimal r = 5 input function.

Parameter Initial Fit r = 5 Fit 1

p1 2.336 × 10−5 2.59 × 10−5

p2 0.002 0.0128
p3 0.0138 0.0148
p4 1.502 1.508
p5 0.273 0.232
p6 3.282 × 10−4 5.653 × 10−4

p7 0.023 0.024
p8 1290 1219
p9 50.6 52.3
p10 2.067 × 10−4 5.557 × 10−4

p11 16.52 16.55
p12 0.04 0.06
p13 0.0023 0.0023
p14 4.059 × 10−4 4.221 × 10−4

p15 5.086 × 10−4 8.717 × 10−4

p16 16.0 15.9
p17 5.115 × 103 5.085 × 103

p18 1.198 × 10−5 1.648 × 10−5

p19 1.0 × 10−6 3.0 × 10−5

1Averaged from 30 simulations utilizing the original IL-6 model.
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