
Industrial Process Monitoring in the Big Data/Industry 4.0 Era: from
Detection, to Diagnosis, to Prognosis

Authors: 

Marco S. Reis, Geert Gins

Date Submitted: 2018-07-31

Keywords: equipment health, process health, prognosis, fault detection and diagnosis, industrial process monitoring

Abstract: 

We provide a critical outlook of the evolution of Industrial Process Monitoring (IPM) since its introduction almost 100 years ago. Several
evolution trends that have been structuring IPM developments over this extended period of time are briefly referred, with more focus on
data-driven approaches. We also argue that, besides such trends, the research focus has also evolved. The initial period was centred
on optimizing IPM detection performance. More recently, root cause analysis and diagnosis gained importance and a variety of
approaches were proposed to expand IPM with this new and important monitoring dimension. We believe that, in the future, the
emphasis will be to bring yet another dimension to IPM: prognosis. Some perspectives are put forward in this regard, including the
strong interplay of the Process and Maintenance departments, hitherto managed as separated silos.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2018.0241
Citation (this specific file, latest version): LAPSE:2018.0241-1
Citation (this specific file, this version): LAPSE:2018.0241-1v1

DOI of Published Version:  https://doi.org/10.3390/pr5030035

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)



processes

Article

Industrial Process Monitoring in the Big
Data/Industry 4.0 Era: From Detection, to Diagnosis,
to Prognosis

Marco S. Reis 1,* and Geert Gins 2

1 CIEPQPF-Department of Chemical Engineering, University of Coimbra Polo II, Rua Sílvio Lima 3030-790,
Coimbra, Portugal

2 AIXIAL Belgium, Charleroise Steenweg 112, B-1060 Brussels, Belgium; geert.gins@icloud.com
* Correspondence: marco@eq.uc.pt; Tel.: +351-239-798-727

Academic Editors: Leo H. Chiang and Richard D. Braatz
Received: 1 June 2017; Accepted: 27 June 2017; Published: 30 June 2017

Abstract: We provide a critical outlook of the evolution of Industrial Process Monitoring (IPM) since
its introduction almost 100 years ago. Several evolution trends that have been structuring IPM
developments over this extended period of time are briefly referred, with more focus on data-driven
approaches. We also argue that, besides such trends, the research focus has also evolved. The initial
period was centred on optimizing IPM detection performance. More recently, root cause analysis and
diagnosis gained importance and a variety of approaches were proposed to expand IPM with this
new and important monitoring dimension. We believe that, in the future, the emphasis will be to
bring yet another dimension to IPM: prognosis. Some perspectives are put forward in this regard,
including the strong interplay of the Process and Maintenance departments, hitherto managed as
separated silos.

Keywords: industrial process monitoring; fault detection and diagnosis; prognosis; process health;
equipment health

1. Introduction: Old and New Trends in Industrial Process Monitoring

With the emergence of Industry 4.0 and the Big Data movement gaining momentum, industry is
now presented with unique opportunities in terms of key enablers for boosting its performance to a new
level. Performance is here taken in the widest sense, from operational, economic and market-related
aspects to process safety and environmental. The key enablers are [1]: (i) data; (ii) technology and (iii)
analytics (Figure 1). In fact, data abounds now more than ever, and the speed at which they accumulate
is accelerating: according to IBM, 1.6 zetabytes (1021 bytes) of digital data are now available, and this
number is increasing [2]. This data deluge is possible because of the development of better, faster
and more informative sensing technology, able to collect information from multiple sources, in order
to store it in integrated databases and to make it available anywhere at any time. Technology also
provides the computational resources (high performance computing, cloud services, distributed and
parallel computing, etc.) required to process large amounts of data using advanced analytics platforms
(the third enabler), turning them into actionable information, in useful time.

The pressure to take advantage of the key enablers in every function and at any organizational
level is rapidly building up [3]. Hitherto, this has happened more visibly in large companies [4],
but small and medium enterprises may—and should—also engage in this endeavour [5]. The capacity
of organizations to learn and adapt is now under test, and the race for turning the three key enablers
into effective sources of competitive advantage is on.
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Figure 1. The key enablers underlying the Big Data movement.

As most core functions in an industrial enterprise, Process Monitoring must inevitably follow this
path and address the challenges of synergistically combining the triplet data/technology/analytics,
with all knowledge and practices developed and acquired over almost 100 years, since the pioneering
work of Walter A. Shewhart in the early 1920s [6]. Industrial Process Monitoring (IPM) is an activity
of central importance in companies around the world, allowing them to achieve higher levels
of safety, efficiency, quality, profitability and environmental management performances [7–9].
A retrospective analysis of the evolution of IPM since its introduction clearly demonstrates the constant
struggle undertaken to adapt to new and more demanding application scenarios, characterized by
harder-to-handle data structures arising from increasingly complex processes. In the next subsections,
some of the easy (and not so easy) identifiable trends of the 10 decades of existence of IPM are shortly
referred, including the more recent ones that may guide the evolution of IPM in the near future.

1.1. From Univariate, to Multivariate, to High-Dimensional (“Mega-Variate”)

As a response to the increasing availability of sensors and data acquisition systems collecting
information from process units and streams (e.g., temperature, flow rate, pressure, pH, conductivity,
etc.), the initially developed univariate approaches [6,10,11] quickly evolve to multivariate
methodologies [12,13] and then to high-dimensional frameworks [14–18], able to cope not only
with the size, but also with the highly collinear (quite often also rank-deficient) nature of typical
data-rich scenarios. This is an old and well-established trend of IPM, which requires no further
introduction, since it has been widely addressed and discussed in research and review articles over the
last 20 years [8,9,14,15,18–22].

1.2. From Homogeneous Data Tables to Heterogeneous Datasets

The development of metrology and sensing technology led to new types of “variables” to be
handled, such as spectra, hyperspectral images, hyphenated data, chromatograms, granulometric
curves, particle size distributions, profilometric data, etc. [23–27]. This already motivated the
development of dedicated solutions and the emergence of Profile Monitoring as a new field in
IPM [24,25,28,29]. The homogeneous data sources prevailing in most of the history of IPM, which were
composed mainly of process sensors and univariate quality measurements, all of them collecting scalar
values at each sampling time (the so called scalar sensors), are now being upgraded with a rich variety
of data structures, consisting of higher order tensors, such as spectra (1st order tensors), grey-level
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images (2nd order tensors), hyperspectral images (3rd order tensors), hyphenated measurements
(nth order tensors, with n ≥ 2, known as tensorial sensors). This heterogeneous character of current
industrial data is just the reflex of the Variety dimension of Big Data, in the scope of IPM.

1.3. From Static, to Dynamic, to Non-Stationary

The inertial characteristics of industrial phenomena associated with the high sampling rates
provided by modern instrumentation lead to the appearance of autocorrelation patterns in the collected
data. The traditional process monitoring methods that were designed to operate under the assumptions
of independent and identical distributed random variables (i.i.d.) characteristic of static stationary
processes, including all Shewhart-like control charts and its multivariate generalizations, such as the
Hotelling’s T2 control chart and Multivariate Statistical Process Control based on Principal Components
Analysis (PCA-MSPC), have to be upgraded to include process dynamics [30]. Several types of
solutions were proposed to handle the presence of autocorrelation in continuous production systems,
namely: (i) adjusting the control limits of the monitoring charts—a solution essentially restricted
to univariate processes with very simple dynamics (such as univariate first order autoregressive
processes) [31–33]; (ii) monitoring the one-step-ahead prediction residuals using a dynamic model
structure estimated from normal operation data, such as; time-series [30,34], state-space (e.g., through
Canonical Variate Analysis) [35–38] or dynamic latent variable models [39–41]; (iii) implement
a variable transformation that diagonalizes the autocorrelation matrix, as happens in multiscale
statistical process control; this approach also allows one to handle the presence of multiscale dynamics
and complex disturbances [42–45].

More recently, the need to address non-stationary dynamics has grown in importance, as batch
processes are now claiming the attention they deserve given their ubiquitous presence in industrial
systems (from semiconductors, to chemicals, pharmaceutical, food, etc.). These processes are
intrinsically non-stationary and may present several stages, characteristics that raise important
challenges for their monitoring. Solutions developed for this important class of processes include
two-way [46,47] and three-way multivariate approaches [48–50], dynamic methods [51–53] and
feature-oriented approaches [54,55].

1.4. From Monitoring the Mean, to Dispersion, to Correlation

The univariate approaches for process monitoring pay close attention to changes in the mean
and dispersion of the quantitative process variables under monitoring. However, when moving
to multivariate and high-dimensional applications, the focus becomes increasingly centred on the
analysis of the processes mean levels. Examples include the Hotelling’s T2 control chart as well as the
latent variable approaches for high-dimensional monitoring. In fact, even though PCA-MSPC is often
considered to be capable of detecting changes in the variables correlation structure, namely through the
Q or SPE (squared prediction error) statistic, and a closer look reveals that such sensitivity can be indeed
quite low [56–58], and the main strength of this approach is really on monitoring the process levels.
On the other hand, a common property of modern industrial processes is the existence of control loops
and advanced supervision platforms distributed across all units and organized in several regulation
layers through cascading schemes. Such regulating machinery continuously strives to push the target
variables to their set points, compensating for the existence of uncontrollable variation sources in some
of the input variables (known as load variables in the control community). When a fault occurs, control
loops strive to maintain the variable levels at their targets, masking the existence of process upsets.
Therefore, in practice, variable levels are not so strongly affected by the existence of process faults,
due to the effective action of control loops. However, the correlation between variables does change
significantly, as the interplay between process measurements is perturbed by the occurrence of the
fault. In these conditions, there are good reasons to expect and believe that monitoring the process
correlation structure and, in particular, the fine-grained correlation structure (partial correlations),
will bring added sensitivity to the detection of process upsets and also to improve the diagnosis
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capability of monitoring methods. This line of research was followed by Rato and Reis [57,59]; see also
Huwang, et al. [60], Sullivan, et al. [61] and references therein.

1.5. From Unstructured to Structured Process Monitoring

Underlying any process monitoring activity is a model of the normal operating conditions (NOC).
Classical NOC models include the Gaussian, Binomial, Poisson, Latent Variable, depending on the
object of supervision. Non-parametric approaches are also employed to cope with less conventional
NOC regions [62–65]. Parameters from these approaches are estimated using NOC data, from which
control limits are established. However, process data is not the only source of information regarding
the system under monitoring. Background knowledge about the process, the existence of accurate
mechanistic models built from first principles for some of the process units, process flowsheets, etc.,
constitute additional sources of available information with which any process operating under NOC
must comply. In other words, they represent constraints for the process operating under normal
conditions. By including such constraints in the monitoring procedure, one is incorporating more
of the systems’ reality in the NOC description. This may have two interesting consequences: (i) as
a more complete description of the NOC behaviour is available, it should be possible to detect finer
deviations from it, i.e., to increase the monitoring sensitivity; (ii) the use of such additional information
will also increase the effectiveness of process diagnosis and troubleshooting activities, beyond what is
possible to achieve with the mere use of NOC data. The latter consequence deserves a more detailed
inspection. A closer analysis of the nature of NOC data reveals that it is non-causal (or acausal). In fact,
data collected and used for process monitoring only reflects normal operation conditions—using
Fisher’s terminology, it consists of “happenstance” data and is therefore non-causal in nature. Models
built from this data, such as Principal Component Analysis (PCA) or Partial Least Squares (PLS) for
high-dimensional processes, will therefore be restricted to the description of non-causal relationships.
They do not contain the key ingredient for full diagnosis and fault isolability: causality. This is why,
when “inquired” about which variables are mostly contributing to a given change in the monitoring
statistics (the purpose of contribution plot analysis), these methods are bound to put forward the set of
variables that are correlated with the fault origin without distinguishing which variables are the cause
of the fault and which variables are the result, leading to the well-known smearing-out effect; see more
in references [8,66–70]. This is a limiting feature of traditional “unstructured” approaches that can
be circumvented by incorporating more causal-oriented structure or a priori process knowledge in
IPM methodologies.

1.6. Summary of the Article Content and Contributions

The trends presented in the previous sections underline the increasingly complex contexts
regarding collected data and the underlying generating mechanisms (processes) that IPM has been
facing throughout its history. Traditional monitoring methodologies are no longer able to cope with
most of the current application scenarios, and several challenges remain to be addressed, such as:
dealing with the increasing volume of data, incorporating multiscale and non-stationary dynamics,
fusing heterogeneous data structures, integrating process knowledge with data, monitoring the
correlation structure, etc. This is the current context of IPM that makes it one of the most interesting
fields in industrial operations, given the number and the relevancy of the challenges, for which suitable
solutions need to be found in the short term.

However, a strategic change is also happening in terms of research focus in IPM. The earlier times
where characterized for a high, almost entire, dedication to reduce the time between the occurrence
of a fault and its detection. For many years, this was the dominating concern of process monitoring,
and many methods are still proposed to improve the detection performance, especially its speed.
Currently, either because this problem is well covered for a large number of situations, or because
of a growing awareness for the effectiveness of the whole IPM cycle instead of just its first stage,
this situation is changing. In fact, looking to the typical IPM cycle in practice, one can easily notice
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that the difference between a good method and the best method, in terms of their detection speed,
is typically of the order of seconds, maximum minutes. However, the subsequent stage of the IPM
cycle after detection, which is diagnosis, may typically take hours to days, to be successfully completed.
Therefore, the process downtime is strongly dominated by the diagnosis stage, and the detection
phase is usually only a minor part of it. Consequently, efforts for reducing process and equipment
downtime may be more effective if applied on improving fault diagnosis rather than on reducing the
detection time by the same relative amount. These facts are currently redirecting more attention to
fault diagnosis, and more IPM contributions are appearing in this area.

This is the present. However, we envisage that, with the rising standards of process efficiency,
safety, environment performance and economical turnover, together with the new technology resources
including those enabled by Manufacture 4.0, IPM will not stop there. Furthermore, the next natural
step will be, we believe, the development of predictive capabilities and tools for system failure and
malfunction: fault prognosis. Of course, there will always be room for activity at all the three major
stages of IPM (detection, diagnosis and prognosis). This is a necessary condition to keep up with the
pace of challenges raised by the continuous evolution of industrial processes. However, the state of the
art of Diagnosis and Prognosis methods is expected to experience a strong (“inflationary”) expansion
in the immediate (present) and near future, respectively, which happened with Detection in the past.

These three moments of IPM evolution will be discussed in Sections 2–4. Special emphasis will be
given to the present (Diagnosis), but also to the future (Prognosis). In Section 5, we further elaborate
on the contents of this article, and conclude with our final remarks.

2. Research Focus—The Past: Detection

As referred to in the introductory section, IPM has undergone several trends that reflect the
need to adapt to increasingly complex scenarios of processes to be monitored and data to be
handled. The prevailing focus in this endeavour has been to achieve the best detection performance
possible, as the challenges become more demanding. This includes the mainstream of univariate and
multivariate statistical process monitoring methods, which are based on the adoption of a certain
probabilistic model structure that is flexible enough for describing the NOC behaviour for a wide
class of industrial processes. These general purpose approaches typically do not require specific
information about the process structure, other than the parameter estimates of the NOC model that are
obtained from process data during Phase 1 analysis [71,72]. Examples include the celebrated Shewhart,
Exponentially Weighted Moving Average (EWMA) and Cumulative Sum (CUSUM) control charts
based on the univariate i.i.d. Gaussian model [6,10,11], which can be leveraged to a large class of static
processes upon the use of sample means, as a consequence of the Central Limit Theorem. Also included
are their multivariate extensions that consider NOC behaviours consistent with an m-dimensional
i.i.d. Gaussian process, namely the Hotelling’s T2 chart [12], the Multivariate Exponentially Weighted
Moving Average chart (MEWMA) [13] and Multivariate Cumulative Sum chart (MCUSUM) [73],
as well as the high-dimensional methodologies based on PCA and PLS [14–17]. These last two
approaches belong to the class of latent variable monitoring approaches, and have achieved high
levels of success and acceptance in both academia and industry. Their model structures present
elements more consistent with the nature of industrial processes operating under normal conditions.
Figure 2 presents the model structures implicitly considered in multivariate and latent variable process
monitoring approaches, where their acausal nature and assumed distinct inner mechanisms become
clear. In particular, multivariate methods tacitly consider the variability drivers to be observable,
presenting different levels of correlation. On the other hand, latent variable frameworks assume
that the observed variability in the collected measurements is driven by a few underlying and
unobservable quantities, which are responsible for their variation (raw materials, environmental
conditions, machines, operators, etc.). The last description resonates well with what happens in
industrial units operating under NOC scenarios, which motivates the adoption of latent variable tools
to handle problems in these settings.
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Figure 2. Graphical illustration of the model structures underlying: (a) classical multivariate approaches
and (b) latent variable approaches.

Many other statistical process monitoring methodologies for variables [71,74] and attributes [75,76]
belong to this category, as well as other more advanced techniques developed to handle the
dynamic [30,34–37,39–41,53,77], multiscale [42–44,78], non-Gaussian [79–82] and nonlinear [81–84]
nature of industrial processes, but it is beyond the scope of this paper to provide an exhaustive
presentation of them all (see also [8,9,85]).

All of the methods referred to above were developed to accommodate the increasing complexity
of processes and data, and their performance was essentially characterized in terms of detection
metrics, which confirms the focus of IPM in the past. The major detection performance dimensions are:
detection speed and detection strength.

Detection speed regards the promptness or celerity in signaling an abnormality after it occurs. It is
usually assessed through the number of observations it takes to, on average, signal an abnormal event
of a given type and with a given magnitude. The figures of merit typically used for characterizing
detection speed, are the Average Run Length (ARL) or the related quantity Average Time to Signal
(ATS) [43,57,71,86–88]. More recently, other measures have also been proposed, such as the Conditional
Expected Delay (CED), which represents the average detection delay under the condition that no false
alarms have been issued until the moment where the fault occurs [88,89].

Detection strength is related with the ability to correctly detect abnormal situations without
incurring in excessive false alarms [90]. The figure of merit commonly adopted is the True Positive
Rate, TPR, also referred as True Detection Rate, TDR [43,56,91]. The missed detection rate (a.k.a, overall
type II error) is also used sometimes (MDR = 1 − TPR), especially when the aim is to highlight the
missed faults [92]. TPR is also known as the method’s sensitivity. Its computation depends on the
significance level used to establish the monitoring control limits. The significance level corresponds to
the False Positive Rate (FPR, a.k.a., False Alarm Rate, FAR or overall type I error). Therefore, when
computing TPR, the FPR must be fixed and clearly specified. Moreover, a comparison of methods
based on their TPR is valid only if their (observed) FPR are controlled to be identical.

Achieving good levels of detection speed and strength has been the main focus of IPM research in
the past. This is a necessary step when handling new processes, but there is an increasing pressure
not to stop the development of advanced monitoring at this stage, and to move on to the often more
challenging activity of finding out what the root cause for the abnormality is: process diagnosis.

3. Research Focus—The Present: Diagnosis

The NOC models used in the IPM approaches referred in the previous section contain interesting
features for fault detection, namely robustness, good power (sensitivity) and simplicity. However,
when addressing the next stage of IPM, Diagnosis, some of their limitations emerge.
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One of the limitations is a direct consequence of their intrinsic acausal (or non-causal) nature.
The acausal characteristics of the NOC models for the IPM approaches presented in Section 2 do not
constitute a major problem when the goal is fault detection: it is usually sufficient to assess whether
new observations fall inside the NOC envelope. This envelope contains the NOC variability, and
can be derived just attending to the average variables’ levels and main associations among them.
However, diagnosis requires more information in order to be properly executed. This activity demands
knowledge about the causal directionality of the propagation of effects in the system. Only with this
information available is it possible to back-track and figure out which variables may be connected with
the origin of the observed abnormal effect. Such causal structure is absent from methods focused on
detection, and may lead to ambiguous diagnosis when they are used for that purpose: the smearing-out
effect in contribution plots in the scope of PCA-MSPC is a direct consequence of the acausal nature of
PCA; see [8,66,67]).

To circumvent this limitation of classical detection-oriented approaches, several methodologies
have been developed recently, incorporating more about the process’ causal connectivity in IPM,
not only to improve detection but mainly to address fault diagnosis. These “structured” approaches
(named this way because they incorporate process-specific structure in their formulations) can be
classified as either knowledge-based or data-driven according to the origin of the information on causality.

Knowledge-based structured approaches exploit pre-existing knowledge or information about
the causal connectivity of the processes. This a priori knowledge can be translated into qualitative
or semi-quantitative NOC models, which bring process-specific causal information to IPM, based on
which diagnosis and troubleshooting can be conducted. For instance, one piece of knowledge
commonly available in virtually all industrial processes is the compendium of process flowsheets and
flow diagrams of the several processing units that constitute the plant. These diagrams show all the
relevant pieces of equipment, pipes connecting them, and how information flows from transducers
to controllers to actuators [93]. From the analysis of such process maps, causality directions can be
readily established and translated into computational code to be integrated in IPM. One approach for
codifying this information is through Causal Maps [94–97]. Other qualitative and semi-quantitative
descriptions for incorporating the process causal structure include bond graphs [98,99], signed digraphs
(SGDs) [100–103], parity relations [104], gray-box models [105] and Bayesian Networks [98,106,107].

Data-driven structured approaches, on the other hand, extract the process-specific information for
fault diagnosis directly from the immensity of historical records available in process databases. In the
era of Big Data and Industry 4.0, this type of structured IPM approaches finds a particularly favourable
context to expand their application scope and to grow in diversity and importance. For this reason,
we will dedicate some more attention to this category of structured IPM methods, by referring, in the
next two subsections, distinct perspectives for conducting process diagnosis using process-specific
information, namely:

1. Network inference structured approaches (NISA),
2. Classification-based approaches (CBA).

3.1. Data-Driven Structured Approaches for Process Diagnosis: Network Inference Structured
Approaches (NISA)

This category of data-driven structured methods only requires access to the available NOC
data. For example, Bauer, et al. [108] used transfer entropy to identify the directionality of the fault’s
propagation path, based on which the root cause of process upsets can be better isolated. Alternatively,
time delay analysis can also be applied to the same purpose [109]. On the other hand, Yuan and
Qin [110] combined Granger causality with PCA to perform feature selection for faults with oscillatory
characteristics and identified the modules that, with high probability, may contain the root cause of
the fault.

Partial correlations also constitute a viable solution to extract the network of direct relationships
linking the observed variables [111–113]. Therefore, they present the potential to be incorporated in
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effective data-driven structured IPM approaches. In this context, Rato and Reis developed the class of
Sensitivity Enhancing Transformations (SET), a solution based on the use of partial correlations that
was already successfully applied to process monitoring. Applications include static, dynamic [114] and
multiscale processes [115], both offline and online, and for detection [57] as well as for diagnosis [59].
In brief terms, this approach pre-processes the set of monitored variables using a decorrelating
transformation that is established taking into account the causal associations between the observed
variables. These causal associations stem from a network inference algorithm, which is based on the
use of partial correlations and time-series analysis. The transformation essentially consists of building
a predictive regression model for each variable as a function of its causal parents, which is then used
to compute the variable residuals. Any remaining associations are further removed with resorting
to an additional Cholesky transformation. The decorrelated variables can then be monitored using
conventional monitoring statistics, such as the Hotelling’s T2 [116].

3.2. Data-Driven Structured Approaches for Process Diagnosis: Classification-Based Approaches (CBA)

Classification-based approaches (CBA) are more demanding in terms of requirements imposed to
the data resources: they assume the existence of a labelled dataset of process faults, rather than just
access to NOC data, as happens with NISA methods. Therefore, NISA and CBA represent two distinct
ways of performing data-driven fault diagnosis: NISA inferring causality from NOC data; CBA using
data from previous faults to assist the diagnosis of future upsets. In this context, an obvious limitation
of CBA methods is the availability of such labelled dataset of abnormal occurrences. However,
with the increasing accumulation of data, situations where this requirement is met tend to increase,
turning it into a viable alternative for processes that are in operation for some time. Furthermore,
classification approaches can be adapted to recognize previously unseen process upsets. In this case,
fault identification can be delegated to process experts. Once a sufficient amount of examples of a new
upset have been collected, the CBA model can be expanded or retrained to recognize the new type of
process disturbances.

The main motivation for developing this class of methodologies is also rooted in the limitations
found in popular tools for conducting fault diagnosis in multivariate scenarios. For instance, the use
of contribution plots [47,67,117] is a common way to conduct fault identification in a PCA-based
process monitoring approach. They indicate which variables exhibit different behavior from normal
operation without requiring any prior information [8]. The final stage of linking signalled variables
to an underlying root cause is left to the process expert [8]. However, this is a complicated task,
especially for complex processes [118], and, in addition, fault smearing is inherently present in all
types of contributions [66] and can lead to incorrect diagnosis [8,67]. In this context, if a historical
database of known process faults is available, fault identification can be translated into a classification
problem and several machine learning methodologies can be used to facilitate root cause analysis [119].
The idea is simple: a classification model is trained to distinguish between all possible fault types
based on each fault’s fingerprint pattern of faulty sensors and actuators; then, during monitoring, the
classifier assesses each detected abnormality against this reference library and assigns it to the class it
most closely resembles.

In basic process monitoring, fault detection and identification are conducted sequentially: process
disturbances are first detected, after which their root cause is identified. This approach is typically
followed by researchers stemming from classical statistical process monitoring. However, fault
classification models enable the simultaneous detection and identification of process upsets, simply
by including “normal operation” as an extra class in the classifier. This approach is more common
in research teams with machine learning backgrounds, being adopted, for example, by Yu [120],
Lazzaretti et al. [121], and Jing and Hou [122].

However, this apparently simpler methodology also raises some practical issues that need
to be addressed. A first issue faced by simultaneous fault detection and identification is that a
large data imbalance typically exists between the normal operation class and one or more fault
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classes, as faulty examples are difficult to obtain [123–125]. This presents a significant challenge
for most multi-class classifier types [126–129]. One-class classifiers, which characterize each data
class with a separate model, are more tolerant towards class imbalance because they only consider
one class at a time, but density-based methods (Gaussian Mixture Models, Parzen models, etc.) still
need a sufficient amount of samples to correctly estimate the sample density [130] and to construct
meaningful boundaries for each class.

A second issue is that classifiers assign equal weights to each misclassification. In applications
where fault diagnosis systems support operator actions and are not (yet) used to directly control
the process (e.g., in the chemical or pharmaceutical industry), correct fault detection might be much
more important than correct classification. Classifiers for simultaneous detection and identification
require class-specific parameters (e.g., different misclassification costs per fault class) to deal with these
asymmetric performance requirements [131]. As more parameters are introduced, identification of the
fault classification model becomes more complex, and the simplicity in the mathematical formulation
of simultaneous fault detection and identification is lost. A solution for this problem was provided
by Gins et al. [132]. In contrast, the sequential approach inherently allows for a different emphasis
between fault detection and fault identification.

We argue that the sequential fault detection and identification methodology exhibits significant
advantages over a simultaneous approach in many situations. However, the exact difference in
performance between simultaneous and sequential fault detection and identification has never been
thoroughly quantified in an extensive series of benchmarks.

Another class of fault diagnosis approaches based on a classification framework is the one based
on variable selection methodologies. The underlying principle is that, when a fault occurs, not all
variables change simultaneously. Only a subset of the process variables experiment a significant
change. Therefore, by isolating this set of variables, it is possible to reduce the search space of possible
faults and speed up the troubleshooting process. The selection of variables is done by implementing
a classification methodology before and after the fault is detected and analysing the most discriminating
variables for separating these two classes. More information about this class of methodologies can be
found in the works of Wang and Jiang [133] and Zou et al. [134].

4. Research Focus—The Future: Prognosis

Once the solutions and methodologies for detection and diagnosis become stabilized and
accessible to process owners, the next logical stage in the evolution of IPM (the future) will be,
from our perspective, the integration of a predictive dimension: fault prognosis. Knowledge about
the evolution of operational risk along time is a highly valuable and strategic asset, as it would
allow for a better planning of maintenance and shutdown operations, minimizing production losses,
while securing the safety of people and equipment. Economic benefits would simultaneously arise
from a better management of process targets and operational risk, but how could it be accomplished in
practice? Some opportunities lie ahead that can make this endeavour a reality. Below, we share some
ideas on possible routes for addressing this challenge.

With the emergence of Industry 4.0 and Big Data, structured and unstructured data will become
increasingly available from all points of the process. Process and product quality databases have
been integrated in the past to develop predictive approaches for process monitoring, control and
optimization. Soft sensors and inferential models are examples of tools used in this context [135–140].
However, quite strangely, there is one database that has been largely overlooked and ignored by
most process-oriented developers: the maintenance department database. This resource accumulates
faults from all equipment in the plant, and a reasonable conjecture in this context would be that the
equipment failure behaviour can be related to the conditions they were subjected to during service.
Therefore, by crossing process and maintenance databases, critical information will be obtained about
the effect of operation conditions on systems reliability, which can finally bring insights for process
improvement and a predictive dimension to operational risk management.
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Prognosis may look like a contradiction when analysed under the frame of Shewhart’s “common
cause”/“special cause” systematization of variation, where special causes are unpredictable by nature.
Shewhart’s perspective, as well as that of the mainstream Statistical Process Control (SPC)/Industrial
Process Monitoring (IPM) community, is focused on “Process Health” (as expected—note the presence
of the term “Process” in both designations). However, prognosis is closely related to “Equipment
Health”—the evolution of the equipment performance over time—based on which inferences that
can be made regarding operational effectiveness and failure rate. Thus, prognosis will benefit from
an approximation of IPM and disciplines like Reliability and Maintenance (R&M), an interaction that
we believe still has much to offer in the forthcoming times.

The aforementioned integration of IPM/R&M will be beneficial not only from the process
monitoring perspective, but also (and very importantly) from the standpoint of creating the conditions
to make a global optimization of process units, taking into account process-oriented targets (production
throughput, selectivity, product quality) and reliability metrics (service time, down-time, time between
failures, failure rate). Both have a decisive impact in the global performance of the company, and cannot
(should not!) be handled as separates silos (as done in the past), with non-overlapping and independent
analysis workflows.

5. Discussion and Final Remarks

In this article, we have made a critical overview of several trends that have been structuring
the evolution of IPM since its appearance as an industrial activity almost 100 years ago, as well as
the changing research focus in this extended period, from detection, passing by diagnosis, towards
prognosis. Section 2 pointed out the strong focus of early works on statistical process monitoring
towards the early detection of process upsets (the past). Metrics like the Average Run Length (ARL) and
Average Time to Signal (ATS) were the preferred performance criteria, despite their limitations [86,88].

However, the ultimate goal of monitoring is to secure a safe operation for people and assets and to
minimize the total downtime of the process, of which the detection time is usually only a small fraction.
More significant in this regard is the time spent in diagnosing and troubleshooting activities, until
the root cause of the problem is isolated and criticality assessed, based on which a decision is made
regarding the continuation of the operation or its immediate shutdown. In this context, several tools
and procedures have been proposed to facilitate and narrow down the quest for the underlying root
cause. This was the scope of Section 3 (the present), where methodologies, such as the T2 decomposition
proposed by Mason et al. [141], in the context of multivariate statistical process monitoring and the
contribution plot approach in the context of high-dimensional process monitoring using Principal
Components Analysis (PCA) and Partial Least Squares (PLS) models [15,67], are well-known examples
of the importance given to fault diagnosis. The former approach is limited by the scope of application
of the Hotelling’s T2 methodology, usually restricted to less than 10–15 process variables and involving
an undesirably combinatorial complexity that scales unfavourably with the number of variables under
monitoring. The latter approach, on the other hand, is indeed quite fast and simple, and often brings
up useful information about the problem. However, it also presents some undesirable features, such as
the “smearing-out effect”, i.e., a fault in one variable will have an impact on the contributions reported
for all the variables correlated with it, reducing the effectiveness of the diagnosis process [66]. These
limitations can be properly addressed by IPM methodologies that are able to incorporate more of the
process-specific causality structure in their formulations, as described in Section 1.5.

Section 4 addresses what we believe will be the next wave of interest in IPM: Prognosis.
With it, IPM will acquire a predictive capability that allows for a better management of processes
and their critical assets. Several non-stationary phenomena that previously were just assumed to
exist but not handled will be explicitly modelled and integrated in IPM procedures. This includes
equipment wearing, fouling, deactivation, corrosion, ageing, etc. Approaches can either be data-driven,
model-based, or both (grey/hybrid models). Process and Reliability and Maintenance will necessarily
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increasingly interact, with mutual benefits for each individual operation, but, most importantly, for the
good of the overall system, the entire plant.

This article reflects our personal views, grounded on our experience in this field and on a careful
analysis of the rich and diverse technical literature published over the years. We believe the proper
integration of the three dimensions of IPM—detection, diagnosis and prognosis—shall make this
activity even more effective and important for the companies’ operations in the future.
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