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Abstract: The gut microbiome is a highly complex microbial community that strongly impacts
human health and disease. The two dominant phyla in healthy humans are Bacteroidetes and
Firmicutes, with minor phyla such as Proteobacteria having elevated abundances in various disease
states. While the gut microbiome has been widely studied, relatively little is known about the
role of interspecies interactions in promoting microbiome stability and function. We developed a
biofilm metabolic model of a very simple gut microbiome community consisting of a representative
bacteroidete (Bacteroides thetaiotaomicron), firmicute (Faecalibacterium prausnitzii) and proteobacterium
(Escherichia coli) to investigate the putative role of metabolic byproduct cross feeding between species
on community stability, robustness and flexibility. The model predicted coexistence of the three
species only if four essential cross-feeding relationships were present. We found that cross feeding
allowed coexistence to be robustly maintained for large variations in biofilm thickness and nutrient
levels. However, the model predicted that community composition and short chain fatty acid levels
could be strongly affected only over small ranges of byproduct uptake rates, indicating a possible
lack of flexibility in our cross-feeding mechanism. Our model predictions provide new insights
into the impact of byproduct cross feeding and yield experimentally testable hypotheses about gut
microbiome community stability.

Keywords: microbial communities; biofilm consortia; gut microbiome; cross feeding; metabolic
modeling; biofilm modeling

1. Introduction

Natural microbial communities typically form biofilms in which different species compete for
and efficiently utilize available nutrients [1–5]. The presence of spatial heterogeneity within biofilms
plays an essential role in the evolution and function of microbial species [2,6–9] and has profound
effects on biofilm formation and development [5,10–12]. Concentration gradients in key nutrients
due to limited diffusion can establish metabolic niches within the biofilm which produce spatial
variations in biomass density [13] and partitioning of species [14]. With their inherent chemical
gradients, biofilms can provide niches for both fast and slow growing organisms, a design feature
thought to be critical to the stability of naturally occurring systems. Microbes residing in multispecies
biofilms exhibit phenotypes distinct from planktonic growth. For instance, these immobilized bacteria
can tolerate antimicrobial agent concentrations 10,000-fold higher than the same microbes grown
planktonically [15,16]. Biofilm communities are often compared to tissues found in higher eukaryotic
organisms based on the large number of cell types involved, the complex interactions between cells,
the ability of cells to self-organize into three-dimensional structures and the emergent properties of the
integrated systems.
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Natural communities have evolved to exploit the native metabolic capabilities of each species
and are highly adaptive to changes in their environments. Adaption is achieved through a variety of
mechanisms, including cross feeding of metabolites synthesized by one species to support the growth
of another species [17–20]. These cross-feeding relationships are a result of metabolic specialization
and establish a food web within the community that maximizes utilization of available resources.
When combined with the biofilm mode of growth and associated diffusional limitations, cross
feeding establishes local metabolic niches that allow otherwise slower growing species to coexist
with faster growing species and is hypothesized to stabilize the community against environmental
perturbations [21–24]. The spatial partitioning of metabolism and physical immobilization by secreted
polymers make biofilm cultures distinct from planktonic cultures grown in well-mixed environments
where coexistence is not possible unless the species have the same growth rate.

The Human Microbiome Project was launched in 2008 with the goal of developing improved
understanding of the human microbiome and its role in human health and disease [25]. To date, the
most widely studied system is the gut microbiome due to its critical role in food metabolism [26–28],
profound influence on the immune system [29,30] and suspected role in a wide variety of diseases
including gut infections [31], inflammatory bowel and Crohn’s diseases [32,33], obesity [34],
diabetes [35], cardiovascular disease [36], rheumatoid arthritis [37], colorectal cancer [38] and even
depression [39]. The human gut microbiome is a highly complex multispecies system thought to consist
of at approximately 1800 genera and 15,000–36,000 species of microbes [40]. The two dominant phyla
in healthy humans are Firmicutes and Bacteroidetes, which comprise more than 90% of the community.
Other important but much less prevalent phyla are Proteobacteria, Actinobacteria, Euryarchaeota and
Verrucomicrobia as well as Eukaryota such as fungi. A critical metabolic function of the gut microbiota
is to convert dietary fiber into short-chain fatty acids (SCFAs) that can be absorbed by the host intestine
as an energy source. The key SFCAs acetate, propionate and butyrate are commonly present in an
approximate 60:20:20 molar ratio [41].

Gut microbiome function is usually robust to dietary changes and other perturbations that
alter species composition and SCFA synthesis. Correspondingly, metagenomic studies have shown
wide variations in microbiota diversity and composition within healthy human populations [42].
However, large perturbations in susceptible individuals can result in long-term microbiome alteration.
Many diseases are associated with the gut flora being perturbed from their normal state through a
poorly understood process known as dysbiosis [26,43]. For example, Clostridium difficile infections are
often attributed to the use of broad spectrum antibiotics that inadvertently alter microbiota diversity
and species composition, thereby reducing colonization resistance to pathogen invasion [44,45].
The role of species interactions in maintaining healthy community function or promoting dysbiosis are
poorly understood. Despite some recent progress [46–48], the types of species interactions required
for stable community dynamics in biofilm communities where nutrient gradients provide niches for
different metabolic lifestyles have not been elucidated.

While foundational to the vast majority of microbial life on the planet, the basic design principles
of cross-feeding microbial biofilms remain poorly understood due largely to the complexity of
naturally occurring systems [1,5]. Synthetic microbial communities comprised of a smaller number
of well characterized and genetically manipulable organisms are tractable alternatives to natural
systems [49–51]. In principle, these synthetic communities can be designed to capture the most
salient features of the corresponding natural communities while offering the capability to manipulate
individual species metabolism and cross-feeding interactions. However, few comprehensive studies
of metabolite cross feeding in synthetic biofilm communities are available in the literature [50,52].
Quantitative understanding of the relationships between metabolite cross feeding, spatial arrangement,
metabolic rates and community metabolism is critical to systematically analyze and rationally
manipulate biofilm communities associated with the human gut and other microbiomes.

In this study, we developed a biofilm metabolic model of a very simple bacterial
community consisting of a representative bacteroidete (Bacteroides thetaiotaomicron), firmicute
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(Faecalibacterium prausnitzii) and proteobacterium (Escherichia coli) as an in silico surrogate for the
human gut microbiome. The model was used to investigate differences between single and multispecies
biofilms, to discover putative cross-feeding relationships between biofilm species, to determine
which cross-feeding relationships were essential for species coexistence, to examine robustness
of the cross-feeding community to biofilm and environmental perturbations and to explore the
flexibility of the cross-feeding strategy with respect to SCFA synthesis. The model generated new
and experimentally testable hypotheses about the role of byproduct cross feeding in the stability and
function of the human gut microbiome.

2. Results

2.1. Metabolic Analysis of Single Species Biofilms

We first performed flux balance analysis (FBA) with the genome-scale metabolic reconstruction of
each species to determine the secreted byproducts to be included in biofilm metabolic models. Nutrient
uptake rates were specified as 10 mmol/gDW/h for glucose and 1 mmol/gDW/h for the three amino
acids (methionine, serine, tryptophan) essential for F. prausnitzii in silico growth. The FBA results for
planktonic growth can be qualitatively summarized as follows (Figure 1):

• B. thetaiotaomicron: high fluxes of acetate and CO2 and a low flux of propionate
• F. prausnitzii: high fluxes of butyrate, CO2, formate and lactate
• E. coli: high fluxes of acetate, ethanol and formate and a very low flux of succinate

Figure 1. Secreted byproducts predicted by metabolic reconstructions and biofilm metabolic models of
the three individual species. The same byproducts were predicted for planktonic and biofilm growth
with the exception of B. thetaiotaomicron, for which CO2 was produced only planktonically and succinate
was produced only in the biofilm.
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These secreted byproducts were included as extracellular metabolites in single species biofilms
to further characterize byproducts possibly cross fed in the three species biofilm community. Single
species biofilm simulations were performed assuming a fixed biofilm thickness of 40 µm, bulk
nutrient concentrations of 5 mmol/L glucose and 0.5 mmol/L each amino acid, and initial conditions
corresponding to a spatially uniform biomass concentration of 10 g/L. Due to the lack of available data
on species-specific uptake kinetics for glucose and the three amino acids, each species was assigned
the same uptake parameters (see Materials and Methods). Dynamic simulations were run for 300 h to
ensure that a steady-state solution was obtained for each species.

Figure 2 shows steady-state spatial profiles of the biomass concentration, growth rates, nutrient
concentrations and byproduct concentrations for each single species biofilm. B. thetaiotaomicron
produced the highest biomass concentration throughout the biofilm due to its relatively high growth
rate in the nutrient rich region near the biofilm–stool interface (z = 0 µm). The biomass concentration
exhibited a strong spatial dependence due to biomass removal by erosion at the same interface.
The nutrient concentrations also showed spatial variations due to cellular consumption and diffusion
limited transport through the biofilm. The primary metabolic byproducts of B. thetaiotaomicron were
predicted to be acetate and succinate with propionate produced at relatively low levels. The CO2

synthesized planktonically was replaced by succinate in the biofilm environment. Byproduct
concentrations were almost constant throughout the biofilm due to diffusion and removal at the
two boundaries. The second fastest growing species E. coli produced acetate, ethanol and formate
as primary byproducts and succinate as a very minor byproduct. F. prausnitzii produced the least
biomass despite having the highest growth rate in the nutrient lean region near the colon–biofilm
interface (z = 40 µm). The primary metabolic byproducts of F. prausnitzii were butyrate, CO2, formate
and lactate, as predicted planktonically.
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Figure 2. Steady-state spatial profiles predicted by single species biofilm models. Units are
g/L for biomass, h−1 for growth rate and mmol/L for the other variables. Species: BT denotes
B. thetaiotaomicron, FP denotes F. prausnitzii and EC denotes E. coli.
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2.2. Predicting Cross-Feeding Relationships in the Multispecies Biofilm

A biofilm metabolic model was constructed for the three species community comprised
of B. thetaiotaomicron, F. prausnitzii and E. coli. Initial simulations were aimed at discovering
putative cross-feeding relationships without any a priori assumptions concerning the nature of
these relationships. Therefore, we allowed each species to uptake any available byproduct (acetate,
butyrate, CO2, ethanol, formate, lactate, propionate, succinate) to increase its local growth rate in the
biofilm. Butyrate uptake was excluded for B. thetaiotaomicron and ethanol and propionate uptakes
were excluded from F. prausnitzii because these models lacked the necessary exchange fluxes. Due to
the lack of data on species-specific uptake kinetics for the eight byproducts, each species was assigned
the same uptake parameters (see Materials and Methods). As with the single species, the multispecies
biofilm simulations were performed with a fixed thickness of 40 µm and bulk nutrient concentrations
of 5 mmol/L glucose and 0.5 mmol/L each amino acid. The initial conditions corresponded to spatially
uniform biomass concentrations of 10 g/L for each species.

Initial simulations showed that B. thetaiotaomicron failed to synthesize propionate in the
multispecies biofilm despite producing this SCFA as an isolated species (see Figure 2). Because
the B. thetaiotaomicron reconstruction predicted synthesis of succinate rather than propionate for
sufficiently large CO2 uptake rates, we excluded CO2 uptake for B. thetaiotaomicron to favor propionate
synthesis. Figure 3A shows time profiles of the biomass, nutrient and byproduct concentrations in
the middle of the biofilm (z = 20 µm) over the first 200 h of simulation. Corresponding profiles of the
species growth, uptake and secretion rates are shown in Figure 3B. Interestingly, F. prausnitzii produced
substantially more biomass than E. coli at the low nutritional conditions that quickly developed in the
biofilm interior. Butyrate, CO2 and formate were predicted to be present at high concentrations, while
the remaining five byproducts were synthesized at much lower levels.

Predicted cross-feeding relationships were identified from the byproduct secretion and uptake
fluxes in Figure 3B. The following relationships were observed:

• Acetate: produced by B. thetaiotaomicron and E. coli; consumed by F. prausnitzii
• CO2: produced by F. prausnitzii and B. thetaiotaomicron; consumed by E. coli and F. prausnitzii
• Ethanol: produced by E. coli; consumed by B. thetaiotaomicron
• Formate: produced by E. coli and F. prausnitzii; consumed by F. prausnitzii
• Lactate: produced by F. prausnitzii; consumed by B. thetaiotaomicron and E. coli
• Succinate: produced by B. thetaiotaomicron and E. coli; consumed by E. coli

Based on the flux patterns in Figure 3B, some of these cross-feeding relationships appeared to
be more important than others. The acetate, ethanol and succinate cross-feeding relationships were
characterized by relatively large, sustained exchange fluxes. By contrast, lactate cross-feeding fluxes
were relatively large only over the first 20 h. The CO2 uptake fluxes were small but sustained over
the entire simulation. Formate uptake by F. prausnitzii was small and occurred only for the first 10 h.
The cross-feeding patterns between the three species are summarized in Figure 4 with putative formate
cross feeding neglected due to its presumed insignificance.
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Figure 3. Time profiles predicted in the middle of the multispecies biofilm with byproduct cross
feeding. (A) Biomass, nutrient and byproduct concentrations. Units are g/L for biomass and mmol/L
for the nutrients and byproducts; (B) Species growth, uptake and secretion rates. Units are h−1 for
the growth rate and mmol/gDW/h for the other rates. Uptake rates are negative and secretion rates
are positive. Amino acids: Met denotes methionine, Ser denotes serine and Trp denotes tryptophan.
Byproducts: Ace denotes acetate, But denotes butyrate, Eth denotes ethanol, Frm denotes formate,
Lac denotes lactate, Prp denotes propionate and Suc denotes succinate.
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Figure 4. Byproduct cross-feeding patterns identified from the species uptake and secretion fluxes in
Figure 3B. Formate cross feeding has been omitted due to its small magnitude and duration.

2.3. Establishing Species Coexistence in the Multispecies Biofilm

The previous dynamic simulation was performed over a short time horizon of 200 h that was
insufficient to determine if the three species would coexist over long time periods as would be required
for proper microbiome function. Therefore, we repeated the multispecies simulation over a much
longer time horizon of 10,000 h to determine if the three species community was stable. While
B. thetaiotaomicron and F. prausnitzii were able to coexist, E. coli was eliminated because its biomass
generation through growth was exceeded by its biomass removal at the biofilm–stool boundary due
to erosion. To achieve coexistence of the three species, the ATP maintenance value in the E. coli
reconstruction was decreased from the nominal value of 8.43 to 6.75 mmol ATP/gDW/h. We justified
this modification by noting that the actual gut environment is considerably more complex than reflected
in our model and that the presence of unmodeled nutrients could enhance E. coli growth relative to
the other two species. The new ATP maintenance value of 6.75 mmol ATP/gDW/h was chosen such
that the E. coli abundance averaged across the biofilm was within the range reported for healthy gut
microbiomes, as discussed below.

Figure 5A shows steady-state concentration profiles for the three species and their byproducts.
Corresponding profiles of the species growth rates and the byproduct uptake and secretion rates are
shown in Figure 5B. The reduced E. coli ATP maintenance value allowed all three species to stably
coexist. When averaged across the biofilm, the model predicted a total biomass concentration of 182 g/L
comprised of 53.9% B. thetaiotaomicron, 32.8% F. prausnitzii and 13.3% E. coli. These values are within
the large range of biomass concentrations reported for other types of bacterial biofilms [13] and the
ratio of Bacteroidetes–Firmicutes–Proteobacteria reported for healthy gut microbiomes [53]. The model
achieved coexistence by a careful balance of species growth rates across the biofilm. B. thetaiotaomicron
was predicted to have the highest growth rates in the nutrient rich region near the biofilm–stool
interface, while F. prausnitzii growth was favored in the nutrient lean region near the colon–biofilm
interface. Unlike the other two species, E. coli was not predicted to establish a particular spatial niche
that favored its metabolism but rather produced sufficiently large growth rates over the entire biofilm
to remain competitive.

The byproduct cross-feeding relationships depicted in Figure 4 also were observed in the stable
community. As before, the most important relationships appeared to be: (1) F. prausnitzii consumption
of acetate and succinate produced by B. thetaiotaomicron and E. coli; and (2) B. thetaiotaomicron
consumption of ethanol produced by E. coli. Cross feeding of CO2, formate and lactate appeared to
be less important based on the small uptake rates of these byproducts. As expected, cross feeding
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of butyrate and propionate were not predicted. The model predicted a spatially averaged SCFA
concentration of 75 mmol/L comprised of 2% acetate, 10% propionate and 89% butyrate, which was
much less acetate, much more butyrate and less propionate than commonly reported in experimental
studies [54]. Because B. thetaiotaomicron synthesizes both acetate and propionate and F. prausnitzii
converts acetate to butyrate, these results suggest that the ratio of the B. thetaiotaomicron and F. prausnitzii
was too low or that the SCFA synthesis rates were not properly balanced. While the ATP maintenance
value of each species could have been adjusted to alter the SCFA composition, we left these values
unchanged since this study was focused on community stability not SCFA synthesis.
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Figure 5. Steady-state spatial profiles predicted by the multispecies biofilm model with reduced E. coli
ATP maintenance. (A) Biomass and byproduct concentrations. Units are g/L for biomass and mmol/L
for the byproducts; (B) Species growth rates and byproduct uptake and secretion rates. Units are h−1

for growth rates and mmol/gDW/h for the other rates.

The previous simulations demonstrated that the three species cross-feeding community was stable
over long time periods with steady-state species compositions within experimentally determined
ranges for healthy gut microbiomes. When cross feeding was eliminated by removing all byproduct
uptakes from the model, the steady state consisted of just E. coli (Figure S1). This result demonstrated
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that byproduct cross feeding was necessary as well as sufficient for community stability. Furthermore,
biofilm simulations performed for all three possible combinations of two species predicted that the
B. thetaiotaomicron–F. prausnitzii and B. thetaiotaomicron–E. coli combinations would result in species
coexistence (Figure S2). By contrast, F. prausnitzii was unable to compete with E. coli, demonstrating
that B. thetaiotaomicron was necessary for F. prausnitzii to coexist in the presence of E. coli.

2.4. Identifying Cross-Feeding Relationships Essential for Community Stability

Given that byproduct cross feeding was required for community stability in both two species
and three species biofilms, we sought to determine which specific cross-feeding relationships were
required for species coexistence. Based on the relatively large magnitudes of the associated uptake
fluxes, we hypothesized that acetate, ethanol and succinate cross feeding were sufficient for community
stability while CO2, formate and lactate cross feeding were unnecessary. This hypothesis was tested by
eliminating all byproducts uptakes in the three species community except acetate and succinate by
F. prausnitzii and ethanol by B. thetaiotaomicron. We found that the community was stable with almost
the same average species abundances as predicted when all cross-feeding relationships were allowed:
53.8% B. thetaiotaomicron, 32.6% F. prausnitzii and 13.6% E. coli. These results were attributed to the
species growth rate profiles being virtually unchanged when CO2, formate and lactate cross feeding
were eliminated.

We performed additional simulations to better understand the impact of acetate, ethanol and
succinate cross feeding on community stability and species abundances. The following cross-feeding
scenarios were investigated:

1. Nominal case: acetate and succinate produced by B. thetaiotaomicron and E. coli consumed by
F. prausnitzii; ethanol produced by E. coli consumed by B. thetaiotaomicron

2. Nominal case without acetate consumption by F. prausnitzii
3. Nominal case without succinate consumption by F. prausnitzii
4. Nominal case without ethanol consumption by B. thetaiotaomicron
5. Nominal case without F. prausnitzii consumption of acetate produced by B. thetaiotaomicron
6. Nominal case without F. prausnitzii consumption of succinate produced by B. thetaiotaomicron
7. Nominal case without F. prausnitzii consumption of acetate produced by E. coli
8. Nominal case without F. prausnitzii consumption of succinate produced by E. coli
9. No cross feeding

These nine cross-feeding scenarios produced six distinct biofilm behaviors as shown in Figure 6.
The nominal case with acetate, ethanol and succinate cross feeding resulted in coexistence of the
three species (first row). The same solution was predicted when F. prausnitzii was not allowed to
consume succinate produced by E. coli, demonstrating that this specific cross-feeding relationship
was unimportant. When acetate consumption by F. prausnitzii was removed, F. prausnitzii was
eliminated due to its substantially reduced growth rate (second row). The same solution was obtained
either when F. prausnitzii was not allowed to consume any succinate or when F. prausnitzii was not
allowed to consume just succinate produced by B. thetaiotaomicron. These results demonstrated that
F. prausnitzii consumption of acetate and of B. thetaiotaomicron derived succinate were essential for
community stability.

B. thetaiotaomicron was completely eliminated and F. prausnitzii was almost entirely eliminated
when ethanol consumption by B. thetaiotaomicron was removed (third row). This cascade effect
was initiated by reduced B. thetaiotaomicron growth, which resulted in less succinate being available
to support F. prausnitzii growth. While community stability was maintained when F. prausnitzii
was not allowed to consume acetate produced by B. thetaiotaomicron, the reduced growth of
F. prausnitzii resulted in substantially increased abundances of B. thetaiotaomicron and E. coli (fourth row).
A similar but much less pronounced effect was predicted when F. prausnitzii was not allowed to
consume acetate produced by E. coli (fifth row). These results demonstrate that acetate cross feeding
from either B. thetaiotaomicron or E. coli was required to maintain species coexistence. When all
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cross feeding was removed, both B. thetaiotaomicron and F. prausnitzii were eliminated due to their
dependence on cross-fed byproducts for growth enhancement (sixth row). All these results are
summarized schematically in Figure 7.
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Figure 6. Steady-state biomass concentration (left) and growth rate (right) spatial profiles predicted
with different cross-feeding relationships. Each row represents a different cross-feeding pattern. Row 1:
Scenario 1. The same results were obtained for scenario 8. Row 2: Scenario 2. The same results were
obtained for scenarios 3 and 6. Row 3: Scenario 4. Row 4: Scenario 5. Row 5: Scenario 7. Row 6:
Scenario 9. Units are g/L for biomass and h−1 for growth rates. The average species abundances across
the biofilm are shown for each case.

Figure 7. Effect of key cross-feeding relationships on community stability. Solid lines
represent relationships required for stability: F. prausnitzii consumption of succinate produced by
B. thetaiotaomicron, F. prausnitzii consumption of acetate produced by either B. thetaiotaomicron or E. coli,
and B. thetaiotaomicron consumption of ethanol produced by E. coli. Dashed lines represent relationships
that are not required for stability but may impact species abundances.
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2.5. Robustness of the Cross-Feeding Strategy

The previous results demonstrated that cross feeding produced coexistence of the three species for
the nominal conditions investigated. We performed additional simulations to investigate robustness
of the cross-feeding mechanism to changes in biofilm and environmental conditions by varying the
biofilm thickness and bulk nutrient concentrations, respectively. In this context, robustness was
defined as the ability of the system to maintain community stability with small changes in the species
abundances as would be expected for proper microbiome function.

Five thicknesses (L = 20, 30, 40, 50, 60 µm) were simulated at the nominal nutrient concentrations
of 5 mmol/L glucose and 0.5 mmol/L each amino acid. The initial conditions corresponded to
spatially uniform biomass concentrations of 10 g/L for each species. The three species community
was predicted to be stable for all thicknesses except L = 20 µm (Figure 8), where B. thetaiotaomicron
eliminated the other two species due to relatively high nutrient concentrations across the biofilm.
For the other four thicknesses, the species abundances were predicted to remain within small ranges:
B. thetaiotaomicron: 53.9%-59.6%; F. prausnitzii: 31.2%-32.8%; E. coli: 8.6%-13.3%. The F. prausnitzii
abundance range was particularly small, while B. thetaiotaomicron abundance slightly decreased when
E. coli abundance increased. By contrast, the average biomass concentration across the biofilm exhibited
a strong decreasing trend as the thickness increased due to the lack of nutrients in the biofilm interior.
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Figure 8. Effect of the biofilm thickness L on the adundance of each species and the total biomass
concentration averaged across the biofilm.

We also performed simulations for six different nutrient levels. The community remained
stable with small variations in the species abundances for all cases except the highest nutrient levels,
where F. prausnitzii was eliminated due to its reduced competitiveness in nutrient rich environments
(Figure S3). These results further demonstrate the robustness of the putative cross-feeding strategy.

2.6. Flexibility of the Cross-Feeding Strategy

Our last set of simulations addressed the issue of system flexibility with respect to function rather
than just species abundances. In this context, flexibility was defined as the ability of the community to
adjust its SCFA production profile to meet different host demands by adjusting byproduct uptake rates.
Due to their dominant effects on community stability, acetate and succinate uptakes by F. prausnitzii
and ethanol uptake by B. thetaiotaomicron were modulated to examine their effects on total SCFA
production and the split between acetate, propionate and butyrate. The relative levels of these SFCAs
are known to vary substantially [54], and the regulation of byproduct uptake rates is one plausible
mechanism the community might employ to achieve different production profiles. For each uptake
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rate, the range of maximum uptake rate vmax values over which the SCFA profiles was most sensitive
was located by trial-and-error simulations.

First, the vmax value for F. prausnitzii acetate uptake was investigated. Our model predicted
that the SCFA profile was most sensitive over a vmax range of 6.25–7.00 mmol/gDW/h (Figure 9).
Smaller vmax values resulted in F. prausnitzii being wiped out due to insufficient growth, while larger
values produced similar results to those obtained with the nominal value vmax = 10 mmol/gDW/h.
As vmax was increased over the sensitive range, the F. prausnitzii abundance increased, the acetate level
decreased, the propionate level remained almost constant, the butyrate level increased and the total
SCFA concentration decreased. The SCFA profile was predicted to be particularly sensitive over the
vmax range of 6.25–6.50 mmol/gDW/h, where the acetate level dropped from 68% to 26% and the
butyrate level increased from 20% to 65% due to the substantial increase in F. prausnitzii abundance.
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Figure 9. Effect of the F. prausnitzii maximum acetate uptake rate vmax on (A) species abundances and
(B) acetate, propionate and butyrate levels and the total SCFA concentration.

Qualitatively similar predictions were obtained when the F. prausnitzii maximum succinate uptake
rate was modulated (Figure S4). The primary effect was to alter the F. prausnitzii abundance. When the
B. thetaiotaomicron maximum ethanol uptake rate was modulated, all three species abundances were
strongly affected (Figure S5). Collectively, these predictions suggested that the split between acetate
and butyrate could be strongly modulated through all three cross-feeding mechanisms, while the
propionate level could be more weakly affected through ethanol cross feeding. However, individual
SCFA levels were predicted to be strongly impacted only over small ranges of vmax values, suggesting
a lack of flexibility in the putative byproduct cross-feeding strategy with respect to SCFA modulation.

3. Discussion

A major challenge when developing in vitro models of natural microbial communities is to
establish culture conditions that allow coexistence of the participating species [55]. Well-mixed
suspension cultures have the disadvantage that species with widely differing growth rates cannot be
co-cultured without engineering artificial dependencies such as amino acid cross feeding between
the species [56]. Natural microbial communities have evolved numerous mechanisms for ensuring
species coexistence, most notably the biofilm mode of growth. Spatial metabolite gradients within
biofilms can allow otherwise slower growing species to establish metabolic niches favorable for
their growth [21–24]. Cross feeding of secreted metabolic byproducts is another mechanism used
by microbial communities to enhance the competitiveness of slower growing species and achieve
community stability [17–20]. The development of in vitro systems to investigate the interplay of species
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metabolism, biofilm gradients and metabolite cross feeding has the potential to provide new insights
into the stability and function of natural microbial communities. In turn, in silico modeling tools
are needed to guide in vitro system design and to computationally interrogate difficult-to-measure
behaviors such as metabolite cross feeding and long-term stability.

In this study, we developed an in silico metabolic model of a very simple community consisting
of the commensal human gut microbes Bacteroides thetaiotaomicron, Faecalibacterium prausnitzii and
Escherichia coli. These species were chosen as well studied representatives of the three most prevalent
phyla (Bacteroidetes, Firmicutes, Proteobacteria) in the healthy gut microbiome and due to the
availability of curated metabolic reconstructions. While the precise spatial organization of gut microbes
is currently unknown, the structure likely includes biofilm growth associated with host mucosa and
epithelial tissue [57]. Indeed the literature provides substantial support for the hypothesis that some
gut microbes organize into spatially structured multispecies biofilms [58,59]. We performed single
species flux balance analysis and biofilm simulations to investigate the growth characteristic and
byproduct secretion patterns of the three isolated species. The models predicted widely varying
individual species growth rates as a function of position in the biofilm and the secretion of eight
primary byproducts that served as putative cross-fed metabolites in multispecies simulations: acetate,
butyrate, CO2, ethanol, formate, lactate, propionate and succinate. The predicted byproducts secreted
by each species were in agreement with experimental observations [60–62].

We developed a general computational strategy to identify putative cross-feeding relationships in
multispecies biofilms that required no a priori assumptions about these relationships. Each species
was allowed to consume every available byproduct to increase its local growth rate within the
biofilm. The method provided an experimentally inaccessible picture of byproduct secretion and
consumption patterns with complete temporal and spatial resolution. When applied to the three
species gut microbiome system, we identified eleven distinct cross-feeding relationships involving
six different byproducts (see Figure 4). To our knowledge, none of these relationships have been
directly demonstrated through co-culture experiments with the participating species. However, the
two acetate cross-feeding relationships were expected due to the demonstrated abilities of both
B. thetaiotaomicron [60] and E. coli [62] to secrete acetate and of F. prausnitzii to consume acetate [61].

Byproduct cross feeding alone was not sufficient to achieve long-term community stability
as reflected by coexistence of the three species. However, we determined that a small decrease
in the non-growth associated ATP maintenance parameter in the E. coli metabolic reconstruction
resulted in community stability. We justified this parameter change by noting that unmodeled
nutrients in the gut environment could enhance E. coli growth relative to the other two species.
The predicted abundances of 54% B. thetaiotaomicron, 33% F. prausnitzii and 13% E. coli were
consistent with experimental studies on the prevalence of species from the Bacteroidetes, Firmicutes
and Proteobacteria phyla, respectively, in the healthy human gut microbiome [53]. While the
E. coli abundance was tuned with the ATP parameter, the relative amounts of B. thetaiotaomicron
and F. prausnitzii were natural outcomes of the model. When all cross feeding was eliminated,
the favorable metabolic niches for B. thetaiotaomicron in the nutrient rich region and F. prausnitzii
in the nutrient lean region were eliminated and E. coli wiped out the other two species. Collectively,
these results demonstrated that both biofilm formation and byproduct cross feeding were necessary
for community stability. Cross-feeding simulations with all three combinations of two species systems
showed that only the F. prausnitzii–E. coli was unstable, suggesting that F. prausnitzii coexistence in
the three species community was dependent on the presence of B. thetaiotaomicron. These predictions
on community stability and species abundances are experimentally testable through biofilm culture
experiments with two- and three-species systems.

We hypothesized that community stability could be maintained with only a small subset of
the putative cross-feeding relationships: acetate and succinate consumption by F. prausnitzii and
ethanol consumption by B. thetaiotaomicron. Multispecies biofilm simulations validated this hypothesis
and further predicted a negligible change in the three species abundances with the elimination of
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CO2, formate and lactate cross feeding. Additional simulations were performed to determine the
necessity of acetate, ethanol and succinate cross feeding on community stability and their impact on
species abundances. These simulations predicted that the following relationships were necessary and
sufficient for stability: (1) F. prausnitzii uptake of acetate produced by either B. thetaiotaomicron or E. coli;
(2) F. prausnitzii uptake of succinate produced by B. thetaiotaomicron; and (3) B. thetaiotaomicron uptake of
ethanol produced by E. coli (see Figure 7). The differential impact of F. prausnitzii acetate and succinate
uptakes was attributed to the small succinate production rates of E. coli. F. prausnitzii uptake of acetate
produced by B. thetaiotaomicron was the only relationship eliminated that maintained community
stability while substantially altering the species abundances. In principle, these model predictions
could be tested experimentally by metabolically engineering the individual species to eliminate specific
byproduct secretion and uptake capabilities. Such mutants are readily generated for E. coli [63], while
the necessary genetic engineering tools are under developed for B. thetaiotaomicron [64].

An essential capability of the gut microbiome is adaptation to widely varying nutritional
environments while avoiding community instability that results in dysbiosis [65]. We performed
biofilm simulations with the essential cross-feeding relationships for changes in the biofilm thickness
and nutrient levels to ensure that species coexistence was not an artifact of the specific conditions
chosen (see Table 1) but rather was a robust property of the cross-fed community. The in silico
community showed a high level of robustness to variations in the biofilm thickness of 30–60 µm
and nutrient levels of 1–10 mmol/L glucose and 0.1–1 mmol/L each amino acid (methionine, serine,
tryptophan). Over these ranges, the community was predicted to be stable and species abundances
varies less than 6% for B. thetaiotaomicron, 8% for F. prausnitzii and 9% for E. coli. As would be expected,
system robustness was not a global property and outside these ranges the community could be
destabilized. Biofilms of thickness 20 µm were predicted to consist of only B. thetaiotaomicron due to its
higher growth rate under nutrient rich conditions, while high nutrient levels of 20 mmol/L glucose
and 2 mmol/L each amino acid resulted in extinction of F. prausnitzii due to its lower growth rate under
nutrient rich conditions. Because dysbiosis is commonly associated with reductions in Bacteroidetes
(e.g., B. thetaiotaomicron) and Firmicutes (e.g., F. prausnitzii) abundances and increases in Proteobacteria
(e.g., E. coli) abundance [53], these results suggest that the in silico community captures the inherent
robustness of the considerably more complex gut microbiome. Our model predictions could be tested
through in vitro experiments by varying media concentrations and measuring species abundances as a
function of biofilm development time.

A primary function of the gut microbiome is to convert dietary nutrients to short chain fatty
acids (SCFAs), which are absorbed in the large intestine and used as an energy source by the human
host [28]. The relative levels of the primary SCFAs acetate, propionate and butyrate have been
shown to vary substantially depending on the prevailing state of the gut environment and of the
host [54]. We hypothesized that modulation of cross-feeding relationships between species could be
one possible strategy the microbiome employs to flexibly alter SCFA synthesis profiles to meet host
needs. To examine the efficacy of this putative strategy, we performed simulations by altering the
maximum uptake rate vmax associated with the three key cross-feeding relationships: acetate and
succinate uptake by F. prausnitzii and ethanol uptake by B. thetaiotaomicron. The model predicted
that species abundances and SCFA levels could be substantially altered only over a small range
of each vmax value. The split between acetate and butyrate could be strongly modulated through
all three cross-feeding relationships, while the propionate level could be weakly affected through
ethanol cross feeding. Given the small predicted ranges of vmax values which impacted SCFA levels,
we concluded that modulation of cross-feeding relationships might not be a very flexible strategy for
altering SCFA profiles.

Our multispecies biofilm metabolic model represents an initial step towards predicting the impact
of metabolite spatial gradients and cross feeding on the human gut microbiome. A possible limitation
of this first generation model is the lack of byproduct consumption by E. coli, which renders the growth
of E. coli largely independent of the other two species except for nutrient competition. Our initial



Processes 2017, 5, 13 15 of 23

hypothesis was that lactate produced by F. prausnitzii would be an important carbon source for
E. coli. However, the model predicted that this cross-feeding relationship had a negligible impact on
community behavior. Based on our simulation results, we hypothesize that the impact of a particular
cross-feeding relationship is partially dependent on the abundances of the two species exchanging
the byproduct. This hypothesis would rationalize why all three essential cross-feeding relationships
involved B. thetaiotaomicron, the species with the highest abundance, and the two most impactful
cross-feeding relationships involved F. prausnitzii, the species with the second highest abundance.
Our simulations were designed to mimic the healthy gut microbiome, where Proteobacteria is a
minority phylum compared to Bacteroidetes and Firmicutes. Dysbiosis associated with disease states
such as inflammatory bowel disease are characterized by a dramatic decrease in Bacteroidetes and
increase in Proteobacteria while Firmicutes are not as strongly affected [53]. In this case, the impact
of lactate cross feeding between F. prausnitzii and E. coli may be predicted to be substantially more
important while the effect of cross-feeding relationships predicted to be important for the healthy
microbiome may be less significant. We are currently working with experimental collaborators to
establish an in vitro model of the three species biofilm community to test this hypothesis as well as
other in silico predictions generated by our model.

4. Materials and Methods

4.1. Multispecies Biofilm Model Formulation

The multispecies biofilm metabolic model was formulated following our previously published
approach [66,67]. For the sake of brevity, the formulation is only briefly reviewed here with an
emphasis on the novel features introduced for the gut microbiome model. We utilized genome-scale
metabolic reconstructions for the commensal gut bacteria B. thetaiotaomicron [60], F. prausnitzii [61] and
E. coli [62] to model individual species metabolism. A synthetic media was created by combining all
the in silico nutrient requirements of the three bacteria assuming that growth was limited only by the
primary carbon source glucose and three amino acids (methionine, serine, tryptophan) essential for
F. prausnitzii.

The local concentration of each nutrient, byproduct and species biomass within the biofilm was
calculated from transport equations written for the extracellular environment. One-dimensional
diffusion in the axial direction of the biofilm was assumed to be the dominant transport mechanism
(Figure 10). Therefore, each variable changed as a function of time t and space z over a fixed biofilm
thickness L. The biomass equation for each species had the form,

∂Xi
∂t

= µiXi + DX,i
∂2Xi
∂z2 (1)

where Xi(z, t) is the local biomass concentration (g/L) of species i, µi(z, t) is the local growth rate (h−1)
calculated from the metabolic reconstruction and DX,i is a biomass diffusion coefficient. Boundary
conditions were imposed to represent zero biomass flux at the intestine–biofilm boundary (z = L) and
biomass removal by continuous erosion [68] at the biofilm–stool interface (z = 0),

∂Xi(L, t)
∂z

= 0, −DX,i
∂Xi(0, t)

∂z
= kX,i[Xb,i(0)− Xi(0, t)] (2)

where kX,i is a biomass mass transfer coefficient and Xb,i(0) is the bulk planktonic concentration of
species i in the stool, which was assumed to be zero for simplicity. Given that the biofilm thickness
was assumed to be constant, the incorporation of slow biomass diffusion through the biofilm and
transport into the planktonic stool population provided a reasonable mechanism to ensure that biomass
generation would be balanced by biomass removal such that steady-state solutions could be obtained
for mature biofilms.
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Figure 10. Schematic representation of the multispecies biofilm. Nutrients diffuse into the biofilm at the
biofilm–stool boundary and unconsumed nutrients diffuse out of the biofilm at the intestine–biofilm
boundary. Short-chair fatty acids (SCFAs) and organic acids (OAs) synthesized by the three bacteria
diffuse through the biofilm and are removed at both boundaries. Biomass slowly diffuses through
biofilm and is removed at the biofilm–stool boundary according to a continuous erosion mechanism.

The nutrient transport equations had the form,

∂Ni
∂t

=
n=3

∑
j=1

vi,jXj + DN,i
∂2Ni
∂z2 (3)

where Ni(z, t) is the local concentration of nutrient i (glucose, methionine, serine, tryptophan),
vi,j(z, t) is the uptake flux (mmol/gDW/h) of nutrient i by species j calculated from the metabolic
reconstruction, DN,i is a nutrient diffusion coefficient and n = 3 is the number of species. Boundary
conditions were imposed such that unconsumed nutrients could be removed from either boundary,

− DN,i
∂Ni(0, t)

∂z
= kN,i[Nb,i(0)− Ni(0, t)], −DN,i

∂Ni(L, t)
∂z

= kN,i[Nb,i(L)− Ni(L, t)] (4)

where kN,i is a nutrient mass transfer coefficient, and Nb,i(0) and Nb,i(L) are bulk concentrations of
nutrient i, which were assumed to be zero at both boundaries for simplicity.

The byproduct transport equations and boundary conditions had a similar form,

∂Pi
∂t

=
n=3

∑
j=1

vi,jXj + DP,i
∂2Pi
∂z2 (5)

− DP,i
∂Pi(0, t)

∂z
= kP,i[Pb,i(0)− Pi(0, t)], −DP,i

∂Pi(L, t)
∂z

= kP,i[Pb,i(L)− Pi(L, t)] (6)

where Pi(z, t) is the local concentration (mmol/L) of byproduct i (acetate, butyrate, CO2, ethanol,
formate, lactate, propionate, succinate), DP,i is a byproduct diffusion coefficient, kP,i is a byproduct
mass transfer coefficient, Pb,i(0) and Pb,i(L) are bulk concentrations of byproduct i, which were
assumed to be zero at both boundaries for simplicity. The exchange flux vi,j(z, t) (mmol/gDW/h) of
product i from species j was positive if the byproduct was secreted and negative if the byproduct
was consumed.
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Each species was allowed to consume glucose, the three amino acids and the eight metabolic
byproducts to maximized its growth rate. Uptake kinetics for each nutrient and byproduct were
assumed to follow Michaelis–Menten kinetics:

vi =
vmax,iSi

Km,i + Si
(7)

where Si(z, t) is the local extracellular concentration (mmol/L) of substrate i (includes nutrients and
byproducts) and vmax,i and Km,i are Michaelis–Menten constants. The calculated local uptake rates
vi(z, t) (mmol/gDW/h) were imposed as transport bounds in the linear program used to solve the
metabolic reconstructions. Butyrate uptake was excluded for B. thetaiotaomicron and ethanol and
propionate uptakes were excluded from F. prausnitzii because the associated reconstructions lacked the
necessary exchange fluxes.

4.2. Model Parameterization and Solution

Nominal parameter values utilized in the multispecies biofilm model (1)–(7) are shown in Table 1.
We used order-of-magnitude estimates of most parameters due to the lack of relevant data in the
literature. For the same reason, we generally assigned the same parameter values to each species and
to each metabolite rather than attempt to determine species and metabolite specific values. The biofilm
thickness L and the nutrient/byproduct diffusion coefficients DN and DP were chosen within published
ranges [13,69]. Nutrients were supplied at the biofilm–stool interface (z = 0) and removed from the
intestine–biofilm interface (z = L) assuming zero bulk concentrations Nb(L). The stool nutrient
concentrations Nb(0) and the nutrient mass transfer coefficients kN were tuned to achieve sufficient
nutrient levels within the biofilm to sustain growth. Byproducts were removed from both interfaces
assuming zero bulk concentrations Pb(0) and Pb(L). The byproduct mass transfer coefficients kP were
tuned to achieve organic acid and SCFA concentrations within published ranges [54].

The biomass diffusion coefficients were specified to be approximately four orders-of-magnitude
less than the metabolite values to reflect very slow movement of cells towards the biofilm–stool
boundary due to unmodeled biofilm expansion. Biomass was removed at this boundary assuming
negligible planktonic biomass concentrations Xb(0) to model a continuous erosion mechanism [68].
The biomass mass transfer coefficients kX(0) were tuned such that steady-state, mature biofilms
would have biomass concentrations within published ranges [13]. Due to the lack of experimentally
determined values for B. thetaiotaomicron and F. prausnitzii, glucose and amino acid maximum uptake
rates vmax reported for E. coli [70] were used for all three species. All byproducts were assumed to
have the same vmax values as glucose. Furthermore, all nutrients and byproducts were assumed
to have the same Michaelis–Menten constants Km as reported for glucose uptake in E. coli [70].
Planktonic experiments could be conducted to estimate these uptake kinetic parameters, although
different parameter values may be appropriate under biofilm conditions. Each dynamic simulation
was performed with an initial condition corresponding to a steady-state solution with spatially
homogeneous biomass concentrations X(z, 0) and spatially varying nutrient concentrations N(z, 0) and
byproduct concentrations P(z, 0) consistent with the specified X(z, 0). For each simulation, we found
that the final solution was independent of the initial condition for all initial conditions investigated.
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Table 1. Nominal parameter values for the multispecies biofilm model. For parameters that
vary at the two biofilm boundaries, “0” denotes the biofilm–stool interface and ”L” denotes the
intestine–biofilm interface.

Symbol Parameter Value Units Source

L Biofilm thickness 40 µm [13]
DX Biomass diffusion coefficients 1 × 10−10 cm2/s Specified

kX(0) Biomass mass transfer coefficients 1 × 10−7 cm/s Specified
Xb(0) Biomass bulk concentrations 0 g/L Specified

DN Nutrient diffusion coefficients 2 × 10−6 cm2/s [69]
kN Nutrient mass transfer coefficients 2 × 10−4 cm/s Specified

Nb(0) Glucose bulk concentration 5 mmol/L Specified
Amino acid bulk concentrations 0.5 mmol/L Specified

Nb(L) Glucose bulk concentration 0 mmol/L Specified
Amino acid bulk concentrations 0 mmol/L Specified

DP Byproduct diffusion coefficients 2 × 10−6 cm2/s [69]
kP Byproduct mass transfer coefficients 5 × 10−6 cm/s Specified

Pb(0) Byproduct bulk concentrations 0 mmol/L Specified
Pb(L) Byproduct bulk concentrations 0 mmol/L Specified
vmax Glucose maximum uptake rate 10 mmol/gDW/h [70]

Amino acid maximum uptake rates 1 mmol/gDW/h [70]
Byproduct maximum uptake rates 10 mmol/gDW/h Specified

Km Michaelis–Menten constants 0.5 mmol/L [70]
X(z, 0) Initial biomass concentrations 10 g/L Specified

The parameterized biofilm model consisted of a coupled set of nonlinear partial differential
equations (PDEs) with embedded linear programs (LPs). Following our previously published
approach [66,67], the spatial domain was discretized to convert each PDE into a large set of coupled
ordinary differential equations (ODEs). Both diffusion terms and first-order derivatives required to
implement boundary conditions were approximated by second-order central difference formulas.
Spatial discretization was performed with N = 25 node points to achieve a suitable compromise
between model complexity and numerical efficiency. The discretized model consisted of 375 nonlinear
ODEs describing the time evolution of the biomass, nutrient and byproduct concentrations at the
node points.

The ODE model with embedded LPs was solved using the MATLAB code DFBAlab [71].
To overcome the possibility of alternative optima in the LP problems, the DFBAlab algorithm
uses lexicographic optimization to achieve unique exchange fluxes and ensure a well defined
dynamical model. We specified the lexicographic optimization objectives as shown in Table 2.
The primary objective for each species was maximum growth, while the lower level objectives
were ordered according to the following rules: (1) secretion of experimentally observed byproducts:
B. thetaiotaomicron (acetate, propionate, succinate, CO2) [60], F. prausnitzii (butyrate, formate, lactate,
CO2) [61], E. coli (acetate, ethanol, formate, lactate, succinate, CO2) [62]; (2) uptake of putative
cross-fed byproducts: B. thetaiotaomicron (ethanol, formate, lactate), F. prausnitzii (acetate, succinate),
E. coli (butyrate, propionate); and (3) uptake of supplied nutrients (glucose, methionine, serine,
tryptophan). All objectives were specified as maximization, which translated to maximization of
secretion fluxes due to their positivity and minimization of uptake fluxes due to their negativity.
In some cases, the objectives within a particular group were ordered to generate specific byproduct
uptake and secretion patterns. For B. thetaiotaomicron, succinate secretion was placed above
propionate secretion to obtain a mixture of these two byproducts instead of only propionate
and lactate was placed as the highest ranked byproduct uptake so lactate uptake was observed.
For F. prausnitzii, lactate was placed as the highest ranked secretion so lactate secretion was observed.
The B. thetaiotaomicron model had only 11 objectives due to the lack of butyrate uptake, while the
F. prausnitzii model had only 10 objectives due to the lack of ethanol and propionate uptakes.
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Table 2. Lexicographic optimization objectives.

Level B. thetaiotaomicron F. prausnitzii E. coli

1 Biomass Biomass Biomass
2 Acetate Lactate Acetate
3 Succinate Butyrate Ethanol
4 Propionate Formate Formate
5 CO2 CO2 Lactate
6 Lactate Acetate Succinate
7 Ethanol Succinate CO2
8 Formate Glucose Butyrate
9 Glucose Methionine Propionate

10 Methionine Serine Glucose
11 Serine Tryptophan Methionine
12 Tryptophan Not specified Serine
13 Not specified Not specified Tryptophan

Due to the use of lexicographic optimization, 36 LPs were solved at each node point. Therefore,
the complete discretized model consisted of 375 ODEs and 900 LPs. We used Gurobi 6.0 for LP
solution, the stiff MATLAB solver ode15s for ODE integration and DFBAlab running in MATLAB
8.5 (R2015a). DFBAlab is freely available for both education and nonprofit research purposes from
https://yoric.mit.edu/dfbalab. The MATLAB simulation codes for the multispecies biofilm model can
be downloaded from www.ecs.umass.edu/che/henson_group/downloads.html.

Supplementary Materials: The following are available online at www.mdpi.com/2227-9717/5/1/13/s1.
Figure S1: Time profiles predicted in the middle of the multispecies biofilm without byproduct crossfeeding. Units
are g/L for biomass, h−1 for growth rates and mmol/L for the byproducts. Figure S2: Steady-state spatial profiles
predicted by two species biofilm models. (A) B. thetaiotaomicron–F. prausnitzii biofilm. (B) B. thetaiotaomicron–E. coli
biofilm. (C) F. prausnitzii–E. coli biofilm. Units are g/L for biomass and h−1 for growth. Figure S3: Effect of the
bulk nutrient concentrations on the abundance of each species and the total biomass concentration averaged
across the biofilm. Glc denotes glucose and AA denotes each amino acid. Figure S4: Effect of the F. prausnitzii
maximum succinate uptake rate vmax on (A) species abundances and (B) acetate, propionate and butyrate levels
and the total SCFA concentration. Figure S5: Effect of the B. thetaiotaomicron maximum ethanol uptake rate vmax
on (A) species abundances and (B) acetate, propionate and butyrate levels and the total SCFA concentration.
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Ace Acetate
BT B. thetaiotaomicron
But Butyrate
FBA Flux balance analysis
EC E. coli
Eth Ethanol
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Frm Formate
Glc Glucose
Lac Lactate
LP Linear program
Met Methionine
OA Organic acid
ODE Ordinary differential equation
PDE Partial differential equation
Prp Propionate
Ser Serine
SFCA Short chain fatty acid
Suc Succinate
Trp Tryptophan
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