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Abstract: The process of oxygenic photosynthesis is robust and ubiquitous, relying centrally on input
of light, carbon dioxide, and water, which in many environments are all abundantly available, and
from which are produced, principally, oxygen and reduced organic carbon. However, photosynthetic
machinery can be conflicted by the simultaneous presence of carbon dioxide and oxygen through
a process sometimes called photorespiration. We present here a model of phototrophy, including
competition for RuBisCO binding sites between oxygen and carbon dioxide, in a chemostat-based
microbial population. The model connects to the idea of metabolic pathways to track carbon and
degree of reduction through the system. We find decomposition of kinetics into elementary flux
modes a mathematically natural way to study synchronization of mismatched rates of photon
input and chemostat turnover. In the single species case, though total biomass is reduced by
photorespiration, protection from excess light exposures and its consequences (oxidative and redox
stress) may result. We also find the possibility that a consortium of phototrophs with heterotrophs
can recycle photorespiration byproduct into increased biomass at the cost of increase in oxidative
product (here, oxygen).

Keywords: photosynthesis; photorespiration; chemostat model; phototroph-heterotroph consortium

1. Introduction

Life on earth, in large part, has oxygenic photosynthesis at its foundation, and much of that
photosynthesis occurs in microbes. Oxygenic phototrophic microorganisms such as cyanobacteria are
common in reliably lit environments, where impinging photons provide, often, a more than sufficient
energy source even at low intensity, and carbon dioxide (or related chemical species) provides a reliable
and abundant carbon source. When the other fundamental component of photosynthesis, water, is
also available, then phototrophic based life is likely. In many cyanobacteria, nitrogen fixation can even
be supported due to the abundance of photon energy. It is perhaps surprising, then, that the process of
photosynthetic fixation of carbon dioxide into reduced carbon suitable for biosynthesis has, seemingly,
a significant inefficiency due to the competition by oxygen for inorganic carbon binding sites, here
denoted as photorespiration.

Thus, we focus on processing of inorganic carbon, i.e., carbon fixation, a central component of
oxygenic phototrophy, and on its principle byproduct, molecular oxygen. Oxygenic phototrophy uses
photon energy to extract electrons from water and eventually apply those electrons to fix inorganic
carbon, while, in the process, oxygen is produced: electron source (effectively here, water and light)
feeds electron sink (inorganic carbon) while producing oxidative byproduct (molecular oxygen).

Processes 2017, 5, 11; doi:10.3390/pr5010011 www.mdpi.com/journal/processes
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Implicit to this assembly line is the need for extracellular, macroscale transfer of inorganic carbon and
of oxygen. Rates of macroscale transport (advective and/or diffusive) are largely beyond the control of
individual cells and thus oxygen concentration may serve as a signal of transport limitation, triggering
photorespiration. High photon flux can be an even further aggravating factor if transport of inorganic
carbon into the photosynthesizing machinery cannot keep pace.

Nevertheless, the oxygenic phototrophic “business model” is generally robust and capable
of being largely self sufficient. Strikingly, however, phototrophic organisms are often found in
multispecies consortia together with heterotrophs. It is not immediately clear why this should be
the case, as competition for resources, e.g., space or nutrients, is possible, and it seems that oxygenic
phototrophs might be expected to be able to outcompete heterotrophic neighbors for those resources.
Even so, multispecies communities are observed including in environments where heterotrophs might
not be able to persist on their own [1]. Further, there are at least some examples of communities where
resident phototrophs lack critical anabolic capabilities and must instead rely on nearby organisms
to supply them [2]. Here, we explore the possible utility of interaction via organic/inorganic carbon
exchange. Note there are other possible advantages in adding a heterotroph to the autotroph
community. For example, heterotroph-induced oxygen usage or moderation of variation in redox
potential may mitigate transport limitation.

The models presented here, both for single species (an oxygenic phototroph we call cyanobacteria)
as well as for a combined two species system (cyanobacteria plus a generic heterotroph) are based in
a chemostat platform. The chemostat serves as a simple and convenient way to mimic an environment
where, over long times, nutrient inflow and byproduct outflow occur at rates determined by external
environmental factors. From this viewpoint, a chemostat is a natural choice here due to its simplicity
and also the steady oligotrophic environment it models, and thus hopefully is a reasonable bridge
between abstract modeling and empirical observations.

In fact, comparison of population models with population scale observations has a well established
methodology in microbial ecology. Of late, however, rapidly increasing use of molecular level
technology (e.g., high throughput sequencing) has dramatically changed the nature and scale of these
observations. As a result, in principle and increasingly also in practice, detailed data describing
microbial capability and function is available. This information can and should potentially be
used to understand how microbes exploit and alter their environment. There is a substantial gap,
however, between molecular behavior at the cellular microscale and emergent community function
at the population macroscale. Intermediate between the two, progress is being made in translating
genomics information into models of cell dynamics [3]. Annotation of gene sequences into so-called
wiring diagrams is becoming increasingly reliable and automatable. These diagrams encode cell
physiology along with regulatory machinery and are accompanied by an intimidating list of unknown
rate constants. However, gene encoded functions relevant to metabolic processes are naturally
organized into gene pathways [4–6], and then, under the often reasonable assumption of steady
state, balance of influx and outflux through these pathways makes choice of individual reaction rates
within any particular pathway unnecessary, replaceable instead by a single flux through that entire
path. Regulatory function can be characterized as a management of resource allocation between
different paths and then modeled by imposing optimality criteria on that allocation [7,8]. The result is
an enormous simplification: cell function is now characterized by only a limited number of rates of
cellular inflow and outflow of substrates and byproducts together with an optimization principle to
divide them between available metabolic pathways.

Still, there are two significant though not unrelated requirements for use of such analyses.
First, despite the reduction, there remain, generally, many available and redundant metabolic flux
pathways encoded by any one genome and so, as mentioned, some principle is necessary in order
to decide how flux is to be distributed between those pathways. Second, also as mentioned, rates of
substrate flow into the cell and byproduct flow out of the cell need to be characterized. The first of
these issues couples to the second which then couples to the environment in which the cell and its
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community find themselves [9]. Conversely, though quantities on the large environmental scale are
oftened characterized by concentrations, from this point of view it seems, rather, that fluxes are natural
quantities at the cell scale. Thus, beyond the immediate aim of studying photorespiration, a further
goal of this study is to suggest ways to match models at cell and population levels.

2. Materials and Methods

2.1. Model Description

We study productivity of two interacting species, one a photoautotroph with cell density P̂1(t) and
the other a heterotroph with cell density P̂2(t), both of which are growing in a well mixed chemostat
with dilution rate D [10], exposed to photon influx, see Figure 1. For simplicity, we neglect transport
across the chemostat-air interface or suppose that such an interface does not exist, and let external
inflow and outflow of dissolved quantities be governed by the chemostat dilution rate D. Conversely,
since our aim is to study possible mutualistic or commensal effects over long times, we do not include
diel light variation effects, considering them, for such purposes, to be relatively short time phenomena
that can also be averaged out.

Figure 1. Chemostat diagram: photoautotrophic (P1) and heterotrophic (P2) microbial communities
interact in a well mixed tank, exposed to light, with constant and equal inflow and outflow. Dissolved
inorganic carbon (IC, inflow concentration IC0), organic carbon (OC, inflow concentration zero),
and oxygen (O2, inflow concentration O2,0) are also mixed throughout the tank, and in the inflow.
Transport across any fluid-air interface is neglected for simplicity.

A central element of the model is the tracking of carbon flow through a microbial communtiy.
As such it is convenient to measure all carbon carrying quantities in terms of carbon moles
(Cmoles), e.g., to measure phototroph and heterotroph populations by the total moles of carbon
they incorporate. We assume here, for convenience only, that cell sizes and densities are similar,
i.e., that the total carbon moles per microbial cell, denoted c, is a constant and is the same constant
for both phototrophs and heterotrophs. To convert populations from units of cells/volume to
units of Cmoles/volume, we change to P1(t) = cP̂1(t) and P2(t) = cP̂2(t), both with units
Cmoles/volume. In addition, we measure both dissolved component densities IC(t) (pooled inorganic
carbon, Cmoles/volume), OC(t) (organic carbon, Cmoles/volume) in Cmoles, and O2(t) (oxygen,
molecular oxygen moles/volume) in moles of molecular oxygen. In computations, we use liters as
volume units. It is assumed that oxygen concentrations always remain sufficiently low so that oxygen
remains in solution and a gas phase does not occur. Note that we use the notation O2 both to denote
molecular oxygen and its concentration. Inorganic carbon in solution, IC(t), consists of aqueous CO2
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and related dissolved forms, notably aqueous bicarbonate HCO−3 ; we do not distinguish between
the forms here, though phototrophs generally do. Organic carbon here is supposed for specificity to
consist of glycolic acid C2H4O3, a byproduct of photorespiration. Note that the term photorespiration
has been used in the literature to designate a number of different mechanisms that, effectively, oxidize
photosynthetically fixed carbon [11]. We consider here only one of those mechanisms, namely oxygenic
activity of RuBisCO (ribulose bisphosphate carboxylase) secretion from the cell of partially oxidized
organic carbon in the form of glycolic acid. For brevity, however, we will use the umbrella label
photorespiration for this single type.

For purposes of tracking carbon, we could, as is commonly done in microbial population
models, also include a microbial species Q1(t) (Cmoles/volume) consisting of inactive photoautotroph
biomaterial damaged (or killed/lysed) due to oxidative stress or in some other manner, as well as
a similar heterotroph damage species Q2(t) (Cmoles/volume). For simplicity and clarity, however,
we include oxidative damage only through its direct effect on photosynthetic machinery. Note, though,
that as a result, importance of oxidative damage and its amelioration are, if anything, likely
underestimated in the later results.

The general form of the equations used here for a chemostat with photon flux ν are

d
dt

P1 = (ηg1(IC, O2; ν)− D)P1, (1)

d
dt

P2 = (g2(OC, O2)− D)P2, (2)

d
dt

IC = −Y−1
P1,IC g1(IC, O2; ν)P1 + y−1

P2,IC g2(OC, O2)P2 + D(IC0 − IC), (3)

d
dt

OC = Y−1
IC,OC (1− η)g1(IC, O2; ν)P1 − y−1

P2,OC g2(OC, O2)P2 − D OC, (4)

d
dt

O2 = ((Y−1
IC,O2

−Y−1
OC,O2

(1− η))g1(IC, O2; ν))P1

−y−1
P2,O2

g2(OC, O2)P2 + D(O2,0 −O2), (5)

where the various subscripted Yα,β’s (associated with P1) and yα,β’s (associated with P2) are yield
coefficients, all of which are fixed by stoichiometry, with units of Cmoles of α per Cmoles of β or moles
of O2. The parameters k1 and k2 indicate specific rates of deactivation of active biomaterial and could
be functions of O2. The function η = η(IC, O2) is related to photorespiration, and will be defined later.
Terms containing rate g1 are involved in the photobiosynthesis and/or photorespiration pathways and
terms containing rate g2 are involved in the heterotrophic biosynthesis pathway. All internal metabolic
rates are fixed by the three pathway (phototroph biosynthesis, photorespiration, and heterotroph
biosynthesis) rates so that they need not be parameterized in detail except through the single rate
functions g1 and g2 together with branching parameter η: this is a consequence of the powerful
assumption of short timescale equilibration of metabolic pathways [6]. For easy reference, see Tables 1
and 2. Details for individual terms in (1)–(5) will be provided below.

Table 1. State variables (left) and key environmental parameters (right) for system (1)–(5).

STATE QUANTITIES KEY ENVIRONMENTAL PARAMETERS

Symbol Description Units Symbol Description Units

P1 Phototroph Concentration Cmol·L−1 D Dilution Rate s−1

P2 Heterotroph Concentration Cmol·L−1 ν Photon Flux µE m−2·s−1

IC Inorganic Carbon Concentration Cmol·L−1 IC0 Inflow IC Conc. Cmol·L−1

OC Organic Carbon Concentration Cmol·L−1

O2 Oxygen Concentration Omol·L−1 O2,0 Inflow O2 Conc. Omol·L−1
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Table 2. State variables (left) and key environmental parameters (right) for system (1)–(5).

RATE FUNCTIONS YIELD PARAMETERS

Symbol Description Units Symbol Description Reference

η Photorespiration Branching Function –

g1

Photosynthesis Rate
s−1 Yα,β Phototroph Yields α per βPhotobiosynthesis Rate = ηg1 see Section 2.3.1

Photorespiration rate = (1− η)g1

g2 Heterotroph Biosynthesis Rate s−1 yα,β Heterotroph Yields α per β see Section 2.4

The system energy is supplied through the photon flux ν which serves to drive carbon
reduction through photosynthesis. We assume that microbe populations are sufficiently sparse in
the chemostat so that no significant shading occurs, though one could introduce a shaded photon
flux νshade = νshade(ν, P1, P2, Q1, Q2) (note that even in the case of shading, all microbes effectively
receive the same photon flux over time due to the well mixed assumption). The other environmental
conditions included are the dissolved concentrations IC, OC, and O2. Inorganic carbon and oxygen
flow into the chemostat at concentrations IC0 and O2,0, respectively. Exchange of O2 and CO2 with the
atmosphere is neglected but inclusion would not be expected to change qualitative conclusions. The
inflow is assumed to be free of organic carbon. Note that non-negative initial conditions are required
for all quantities but have only transient influence, on a D−1 time scale, except/unless P1(0) = 0
(in which case P1(t) = 0 for all t) or P2(0) = 0 (in which case P2(t) = 0 for all t). Hence, later, we will
ignore transients and study steady states.

Photosynthesis drives ecology through conversion of photons to chemical energy (photons power
ADP→ ATP, say) but also, and possibly more importantly, through production of reducing power,
referred to here as electrons. In fact, we will not consider energy production and, rather, implicitly
track electrons through degree of reduction (see Appendix A) as the more important quantity. A key
step in oxygenic photosynthesis is the splitting of H2O into, for our purposes, a combination of O2

and reducing power. Oxygen’s importance goes beyond its role as reactant; it also is an important
contributor to degree of reduction balance of the entire oxygenic photosynthesizing system. In fact,
in the model presented here, oxygen is the only explicit quantity with negative degree of reduction and
hence, by proxy, its concentration is central to community redox state and hence to community function.

2.2. Metabolic Pathways

From an engineering point of view, organism metabolics operate somewhat like chemical
processing networks so that they and implicitly resulting ecological interactions, are conveniently
represented in terms of what are called metabolic pathways, chains of reactions that convert external
substrates into external byproducts (though cycles of internal reactions might also be considered
as pathways). Organisms themselves might be viewed as collections of such reaction chains,
interacting with each other while producing fluxes at rates which must be consistent with external flux
constraints. For example, in the case of a simple chemostat, external inflow and outflow fluxes are
set by dilution rate D. While we look here to adopt the point of view of organism metabolisms
as collections of pathways, at the same time we want a simple system able to illustrate basic
principles of a phototroph-heterotroph interactions. Thus, while detailed metabolic models exist
including for cyanobacteria [12–15] as well as for communities [16,17], we reduce system metabolics to
the interaction of three particular pathways: photosynthesis-driven biosynthesis, photorespiration
(in a restricted sense as previously noted) in the phototrophs, and aerobic respiration-driven
heterotrophic biosynthesis. Community function is determined by the rates at which these pathways
operate; the environment, through chemostat inflow and outflow, constrains community function by
constraining these rates, though the community, specifically here the photoautotrophic cyanobacteria,
have some freedom to choose them.
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There are two specific rate functions in system (1)–(5): rate of carbon fixation g1(IC, O2; ν) of the
photoautotrophs via the photosynthesis/photorespiration pathways and rate of growth g2(IC, O2)

of heterotrophs via a pathway for catabolysis of available organic carbon. In addition, there is
a branching parameter η which determines percent of fixed carbon going to photoautotroph growth
versus photorespiration. Between the three g1, g2, and η, the rates of the three pathways are determined.
In balance, there are essentially two types of constraints: (1) cellular inflow rates of photons and
inorganic carbon, with photosynthesis determined by the minimum rate of the two, as well as (2) system
inflows and outflows determined by the chemostat dilution rate D. Cells must be able to synchronize
system rates, dilution rate here, to direct pathway inputs, photon and inorganic carbon in the case of
photosynthesis, and oxygen and organic carbon in the case of heterotrophic anabolysis. In principle,
cellular outflow rates for pathway products may also constrain, but we suppose here, for the particular
pathways studied, that these rates are essentially free.

Relation to Pathway Analysis

Metabolic network analysis of a system of m metabolites with internal concentrations ci, 1 ≤ i ≤ m,
and n reactions with rates vj(c1, c2, . . . , cm), 1 ≤ j ≤ n, starts from a metabolic map that can be
represented by a set of equations of the form

dci
dt

= ∑
j

Nijvj

where Nij is a stoichiometric coefficient, possibly negative, for production of metabolite i via reaction
j. A rate vj can be determined as a function of the concentrations ci and is parameterized by rate
constants. These rate constants are often unknown, but if steady state is assumed then the problem
reduces to characterization of the null space

Nv = 0 (6)

of the m× n stoichiometric matrix N in a useful way by somehow identifying important pathway
vectors v from this null space. (Precisely, a pathway consists of the reactions corresponding to non-zero
entries in a pathway vector v; a pathway vector encodes the flux through each of those reactions.)
Note that knowledge of rate constants is unnecessary to solve the steady state Equation (6) and thus
also unnecessary to determine pathway vectors, though steady state internal concentrations ci cannot
be computed without these rate constants.

One objective here is to proceed a further step by connecting internal metabolic activity, as encoded
by those distinguished pathways, to community dynamics, e.g., connecting information extracted
from (6) to the community model, as stated in (1)–(5). To do so, we use the (significantly) reduced
metabolic maps as shown in Figure 2, explained in detail later. The interiors of the dashed domains
in Figure 2 correspond to the interiors of the circled objects P1 and P2 of Figure 1. Circled objects in
Figure 2 are generalized metabolites and arrowed curves are generalized reactions. Metabolites that are
associated with reactions exiting a dashed domain are “seen” by the environment and hence explicitly
tracked in the model (1)–(5); other metabolites are internal (in this case, only electrons e) so not directly
observed in the environment and thus not explicit in the model, i.e., do not have tracking equations.
Interior dynamics are assumed to be at quasi-steady state, that is, are able to quickly equilibrate to
time on the community interaction time scale. Later, we will suppose a third, longer time scale on
which the community also reaches steady state.
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Figure 2. Reduced metabolic maps for phototrophic population (P1, left) and heterotrophic
population (P2, right) corresponding to the model used in Equations (1)–(5). The dashed curves
represent boundaries between cell insides and outsides. Circled quantities correspond to metabolites
(in a generalized sense): IC = inorganic carbon, O2 = oxygen, P1 = phototrophic biomass,
P2 = heterotrophic biomass, OC = organic carbon, and label e stands for electrons, see Section 2.3.1.
Arrows correspond to reactions (in a generalized sense). Some of the reaction rates are labeled. Note
that quantities P1 and P2 are turned into new cells. Also note that this representation of phototrophs
can be viewed as the “insides” of P1 in Figure 1 and, similarly, the representation of heterotrophs can
be viewed as the “insides” of P2 in the same figure.

We do not construct here the stoichiometric matrix corresponding to the metabolic network
in Figure 2, but rather proceed directly to its elementary flux modes [6] which mathematically are,
where reversible reactions are not present as is the case here, non-negative solutions of (6) for which
no other non-negative solution containing a proper subset of non-zero entries exists. That is, an
elementary flux mode is, roughly, a realizable pathway through the metabolic network that does
not contain within itself any smaller realizable pathways. Non-negative linear combinations of
the complete list of all elementary flux modes of a given network generate all allowable solutions
of (6). For the system in Figure 2, there are three elementary modes, see Figure 3, corresponding to
(1) biomass production and (2) photorespiration in the phototrophs and to (3) biomass production
in the heterotrophs. All realizable steady states of the system can be uniquely written as positive
combinations of these three elementary modes.

Figure 3. Elementary flux modes for metabolic maps in Figure 2. Left and center modes
are phototrophic biosynthesis and photorespiration, right mode is heterotrophic biosynthesis.
The phototrophic biosynthesis mode takes as inputs extracellular inorganic carbon and photons
and produces as outputs extracellular oxygen and new biomass. The photorespiration mode also takes
as inputs extracellular inorganic carbon and photons but produces extracellular oxygen and organic
carbon. The heterotrophic biosynthesis mode takes as inputs extracellular oxygen and organic carbon
and produces as outputs extracellular inorganic carbon and new biomass.
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The metabolic state of the two population of microbes is thus described by the rates of the three
elementary modes. These rates are determined by the flux rates into cells of mode inputs and out
of cells of mode outputs, all of which generally depend on external concentrations of those inputs
and outputs. Note that, for a given mode, setting any one of the input or output rates determines
all reaction rates through the entire mode due to stoichiometric constraints and the steady state
assumption. Hence, though many individual reactions are involved, each with its own rate constant,
the three modes can be described by only three rates in total (one for each).

It should be noted that, for the sake of simplicity, we in fact compromise flux mode balance in one
respect: flux balance through the phototroph electron compartment (circled e in Figure 2. left) is not
explicitly enforced in the carbon limited case when the supply of inorganic carbon is insufficient to
match the electron supply. Instead, in that particular case, some excess electrons are removed from
the system. However, we keep track of their flux implicitly through photoinhibition – those excess
electrons effectively combine with biomass and oxygen to remove some biomass. To maintain explicit
flux balance, we would need to track them say to reaction with reactive oxygen species or wherever
else they may go. As we implicitly suppose that such products leave the system, explicit tracking
would complicate the model without advantage, as particular mechanisms of excess electron removal
and damage are not the principle focus here.

The two phototroph modes operate in parallel and hence compete directly, in a sense, for inputs
(inorganic carbon and photons). They operate in series with the single heterotroph mode and interact
with it indirectly through external concentrations of dissolved quantities. In the case of a chemostat
with dilution rate D, transport in and out of the chemostat of all quantities also proceeds at rate D.
It must thus necessarily be the case that biosynthesis modes also operate at rate D (or else at rate 0)
placing two constraints on mode rates. Hence we have one remaining condition determined, that of
photorespiration. From there, concentrations of external quantities are determined by consistency with
mode rates. These external concentrations effectively determine steady state biomass concentrations.

2.3. Photosynthesis

Microbial oxygenic photosynthesis can be divided into two steps, the light reaction followed by
the dark reaction (also called the Calvin cycle), so named because photons are involved only in the
first step [11]. The entire process uses energy from incoming photons to split H2O producing O2 and
electrons, which, in the form NADPH, are used to fix CO2. The light reaction, which is the oxygenic
step, can be summarized for our purposes by

2H2O + 8 photons −→ 4H+ + 4 electrons + O2 (7)

and the dark reaction, the carbon fixation step, can be summarized, again for our purposes, by

CO2 +
1
2
(1− η)O2 + ω electrons −→ ηCH1.7O0.5N0.2 + (1− η)CH2O1.5, (8)

with both formulas balanced for carbon and degree of reduction (and only carbon and degree of
reduction, for simplicity). Note that the dark reaction also consumes energy in the form of ATP, which
may also be of importance for cellular energy balances, but ATP cycling is not considered here. Model
parameters associated with (7)-(8) are described in Table 3.

The division into two steps as formulated by (7) and (8) has important consequences. In particular,
at least within the formulation of the model, the light reaction is governed by photon supply (H2O being
assumed to be abundant) whereas the dark reaction rate is determined by both output rate of the light
reaction (in electrons) as well in inflow rate of inorganic carbon. Hence, effectively, the carbon fixation
rate function g1 is determined by the rate at which the dark reaction proceeds, which may be slower
than that of the light reaction in the case of limiting CO2 (or, for us, IC). If so, the excess electrons
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effectively recombine with oxygen or some other oxidant, but may cause inhibition of photosynthesis
in the process.

A second point of note is that photosynthesis as formulated by (7) and (8) is divided into two
separate pathways weighted by the branching function η, with 0 ≤ η ≤ 1. The valuation η = 1
corresponds to all fixed carbon being used for a growth pathway, while η < 1 indicates that some
of the fixed carbon is instead allocated to a pathway that results in secretion of organic carbon from
the cell (with η = 0 corresponding to all fixed carbon going to the secretion pathway, though this
outcome would not allow a viable population). Within the model presented here, there are seemingly
two apparent advantages to η < 1 over η = 1: first, η < 1 results in consumption of oxygen, see (8),
which may alleviate effects of oxygen oversupply, and second, η < 1 results in secreted organic carbon
which can be used to supply a population of heterotrophs which in turn produce inorganic carbon as
a byproduct. These points are discussed in more detail below, but note that we suppose here that the
value of η is subject to control by cyanobacterial cells themselves. Hence it may be that η is in some
way regulated through an optimization process.

2.3.1. Carbon Fixation

The righthand side of (8) consists of two types of fixed organic carbon, each produced as
a consequence of Calvin cycle reactions, a carboxylase reaction and an oxygenase reaction. That is,
formula (8) actually combines contributions from two pathways: production of CH1.7O0.5N0.2 via
biosynthesis, weighted by η, and production of CH2O1.5 via photorespiration, weighted by 1− η.

New biomass is approximated as CH1.7O0.5N0.2 [18]. In actuality, the dark reaction only produces
a precursor (glyceraldehyde 3-phosphate) and biosynthesis is completed elsewhere, but for purposes
of electron balance, it is convenient to use the biomass proxy formula CH1.7O0.5N0.2 as the ultimate
biomass output, see the source term in (1). CH2O1.5 (carbon-normalized glycolate) is a soluble
byproduct of photorespiration and is assumed to be excreted from the cell; we track its concentration
in the chemostat as the quantity OC(t), see (4). Recall that, for purposes of representation in terms of
carbon moles, all carbon compounds are normalized so that the number of carbon atoms is one.

Given the branching function η, described and parameterized below, then

ω = ω(η) = 4.7η + 5(1− η) = 5− 0.3η (9)

is the electron demand (emole/Cmole), the number of moles of electrons needed to fix a mole of
inorganic carbon (ω is related to carbon-oxygen-demand, a quantity sometimes used in engineering
applications). We use degree of reduction 4.7 for CH1.7O0.5N0.2 (autotroph) and degree of reduction
3.0 for CH2O1.5, see Appendix A. The coefficient in (9) of (1− η) is 5 rather than 3, though 3 is the
degree of reduction of CH2O1.5, because the left-hand side term (1/2)(1− η)O2 in (8), with degree of
reduction −2(1− η), effectively transfers to the righthand side for purposes of computing electron
demand. For reference, note that the yield coefficients of moles of molecular oxygen per fixed Cmole
are computed from (7) and (8) to be

Y−1
IC,O2

=
ω(η)

4
,

Y−1
OC,O2

=
1
2

,

with rates proportional to g1P1, see the righthand side of (5). The coefficient of the first term in the
righthand side of (5),

f (η) = Y−1
IC,O2

−Y−1
OC,O2

(1− η) =
3
4
+

17
40

η, (10)

indicates the net yield of oxygen moles per mole of photosynthetically fixed carbon and is important in
the results presented here. Note that by varying η between 0 (all fixed carbon goes to excreted, soluble
carbon) and 1 (all fixed carbon goes to new biomass), organisms vary oxygen production by about
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60%. Of course, this should be understood as at best a rough estimate, since the presented model
greatly simplifies the true biochemistry, but nevertheless the variation is potentially significant. At the
same time, electron demand is much less sensitive, varying only by about 6% as η varies between 0
and 1, so it might seem that photorespiration provides a means to reduce oxygen production without
significantly reducing capacity to process the photosynthetically driven electron stream.

Electrons are not normally free in solution but, rather, are transported by carrier compounds,
particularly NADP+/NADPH, and passed along through redox reactions [19]. As a convenience,
though, we account for electrons directly rather than track NADP+ and NADPH. Note that in
each reaction Cmoles and degree of reduction (see Appendix A) are balanced as the key governing
quantities. Other reaction components, e.g., N, are considered of secondary importance and are
not balanced. Doing so would require introduction of more reactions, obscuring the main points.
For example, protons are in excess and can be assumed to be buffered by the aqueous environment
through mechanisms not of direct importance to the modeling aims here. Note in passing, though, that
in some instances growth is limited by availability of quantities other than those tracked here, e.g., by
limitation in fixed nitrogen. We suppose that this is not the case here.

Reactions (7) and (8) together comprise the photosynthesis and photorespiration pathways
(which branch from each other in the dark reaction step), with CH1.7O0.5N0.2 being the output of
the photobiosynthesis pathway and CH2O1.5 the output of the photorespiration pathway. Excess
molecular oxygen is also an output of both. An emphasis on rate rather than concentration is key and
all internal reaction rates are effectively slaved to rates of inflow and outflow to/from the cell. The only
other needed parameters are the stoichiometric ones, which are known from the pathway descriptions,
in this case (7) and (8). Hence it is important to characterize governing rates, particularly those that
have limiting or other important roles. The principle inputs of interest to photosynthesis are photons
and CO2 (water is plentiful at least in a chemostat) and growth rate is limited by the lesser availability
of the two. We assume that the principle bottleneck for CO2 inflow is transport (more specifically, here,
transport of inorganic carbon – recall that we do not distinguish between inorganic carbon species)
from outside the cell to the photosynthetic machinery inside. As is commonly practice, e.g., [20],
we approximate this transport rate by a Michaelis-Menten function of the form

δ(IC) = rIC
IC

KIC + IC
(time−1) (11)

where rIC and KIC are, respectively, maximal transport rate and half-saturation of cross-membrane
transport, see Appendix B. There are a number of mechanisms cells can use to influence transport,
notably carbon capturing and active transporters [11,21]. From our point of view, carbon capturing
effects can, roughly, be replaced by decrease in the inverse specificity factor γ1 defined below, and active
transporters can influence parameters rIC and KIC. Ultimately transport rate of inorganic carbon into
cells over time is limited by concentrations outside of the cell and, more particularly, transport rates of
inorganic carbon into and out of the local environment.

Rate δ then needs to be compared to the rate at which the dark reaction (8) can use the electrons to
match with the inflowing inorganic carbon. The light reaction (7) provides that electron supply. Photons
flow through the chemostat with constant flux ν (photons/area·time) set externally as a parameter,
but in actuality enter photosynthesis machinery at an effective rate νeff = Aαν (photons/cell·time)
where A is cell cross-section (area/cell) and 0 ≤ α ≤ 1 is an efficiency factor (unitless), see Appendix
B. The parameter alpha accounts for photons that impact the cell but do not result in oxygen and
electron production, either because they do not enter the photosynthetic process at all or because
their end impact is shunted to non-photochemical quenching precesses such as Mehler reactions.
These latter mechanisms may have other outcomes such as ATP generation which are supposed here to
be non-limiting (though can have negative impacts at high enough levels) so are not considered. Note
that alpha can be scaled into nu, so changing efficiency is equivalent, in the model, to changing light
intensity. Note that α in fact measures of the efficiency of the process of electrons impacting the cell all
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the way to production of electrons and reductant, and in principle may be a function of conditions such
as photon flux, oxygen concentration, etc., though we do not try to model these effects here. The light
reaction component of photosynthesis then produces electrons at rate Yννeff (electrons/cell·time),
with yield Yν = 1/2 electron/photon. Electron production rate by the light reaction, per Cmole of
biomass, is thus

e =
Yννeff

c
=

Aαν

2c
(emole/Cmole · time) (12)

(recall that c is the number of Cmoles per cell). The dark reaction then processes these electrons
together with inorganic carbon. Note however, from (8) and (9), that this processing depends on
the division of output between biomass and soluble inorganic production. Hence the rate at which
electrons are actually consumed by the dark reaction (at least if inorganic carbon supply is not limited)
is

ε =
e
ω

(time−1), (13)

which can be understood as the maximum rate at which photon flux can drive carbon fixation through
combined photobiosynthesis and photorespiration.

In fact, reduction of inorganic carbon proceeds by matching, in a sense, incoming inorganic carbon
with incoming electrons, with rates set by δ(IC) and ε, respectively. Since δ(IC) 6= ε in general, then in
fact reduction can proceed at best at rate min(δ, ε). In the spirit of rate-based modeling, we suppose
this minimum to largely govern the actual reduction rate, so that photosynthesis rate, more particularly,
the dark reaction rate, is

g1(IC, O2; ν) =

{
ε ε− δ ≤ 0 (light limited)
δI ε− δ > 0 (carbon limited)

(14)

where I = I(ε− δ, O2) is a photoinhibition function, defined below, of excess electrons should there be
any. Note that O2 dependence in g1 arises from O2 dependence in ω and I.

Table 3. Key photosynthesis-related functions and parameters.

Symbol Description Units Definition

A Average cell cross-sectional area µm2 Appendix B
c Carbon moles per cell Cmole/cell Appendix B
e Electron production rate by the light reaction emole/Cmole·s Equation (12)
f Net oxygen per photosynthetically fixed carbon Omole/Cmole Equation (10)
I Photoinhibition function – Equation (15)
α photosynthesis efficiency factor – Equation (12)

γ1 inverse specificity factor Cmole/Omole Equation (16)
γ2 excess electron capacity s/Omole Equation (15)
ε Maximum electron consumption rate 1/s Equation (13)
η RuBisCO inorganic carbon binding probability – Equation (16)
ν environmental photon flux µE/m2·s –
ω Electron demand: emoles needed to fix a cmole emole/Cmole Equation (9)

2.3.2. Photoinhibition and Oxidative Stress

In the case that ε > δ, i.e., the rate of the normalized electron production is greater than the
rate of inorganic carbon inflow, excess electron production can lead to inhibition of photosynthesis
machinery and other apparatus via saturation of electron transport structure and consequent formation
of harmful radical oxygen species as well as other undesirable effects [11,22]. These effects have been
modeled with an inhibition function [23,24] which allows for removal of excess electrons without
detriment, to a point, after which reduction in growth rate occurs [22,25]. These inhibition models,
however, are generally functions only of photon flux rate and not, for example, dependent on IC and
O2 concentrations or transport rates, though such dependence is likely important, at very least through
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any mismatch of electron production rate with inflow rate of electron donors, and is certainly central
to the model presented here. Thus, we define a photoinhibition function to take account of electron-IC
mismatch of the form

I(ε− δ, O2) =

{
1 ε− δ ≤ 0
(1 + γ−2

2 (ε− δ)2O2
2)
−1 ε− δ > 0

(15)

where γ2 is an excess capacity coefficient. (Note, from (14) that only the ε − δ > 0 definition is
relevant.) The quadratic dependencies on O2 and ε− δ are ad hoc forms meant to model the capacity
for cells to avoid or repair damage of small mismatches; small values of ε− δ and O2 do not result in
significant net damage whereas large values might. The parameter γ2 is chosen to provide a reasonable
high light/oxygen cutoff on growth. As a consequence of the degree of arbitrariness in form and
parameterization of I, we avoid conclusions which would appear to rely on its particulars beyond
a general tendency to inhibit growth in carbon limited conditions.

We note here that at moderately high concentrations O2 & 5 · 10−4 Omoles/L, oxygen may come
out of solution, providing effectively a method for limiting effects of oxygen stress. Such critical
oxygen concentrations are not reached in computations shown here, but can occur at environmentally
reasonable light intensities in some situations.

2.3.3. Photorespiration

A key step in dark reaction carbon fixation is binding of CO2 to the enzyme RuBisCO. However,
as it happens, O2 competes for the same binding site as CO2, and when a molecule of O2 does in fact
bind then glycolate (CH2O1.5, degree of reduction +3) is produced in the stead of further reduced
biomaterial (CH1.7O0.5N0.2, degree of reduction +4.7 for phototrophs). We refer to this process as
photorespiration (though as noted earlier, photorespiration can be used as an umbrella term for
a number of re-oxidixing processes). We denote the probability of CO2 binding to RuBisCO by η, with

η =
acIC

acIC + aoO2
=

1

1 + γ1
O2
IC

(16)

where ac, ao are binding affinities and γ1, the ratio of those affinities, is the inverse specificity factor
(with respect to IC versus O2). Recall that we confuse inorganic carbon concentration IC here with
CO2 concentration, supposing that inorganic carbon in forms other than CO2 can readily be converted
into CO2 via carbonic anhydrase enzymes.

Effectively, η is a branching function of O2 and IC that determines how much photosynthetic
product goes to synthesis of new biomaterial and how much to synthesis of soluble, excretable, organic
carbon. Phototrophs may have a degree of control over the value of η either directly through the
structure of RuBisCO itself [26,27] or through indirect machinery such as carbon capture mechanisms,
so we treat γ1 as a tunable parameter and study effects of its variation.

The purpose of photorespiration (oxygenase activity of RuBisCO, to be precise), if there is one,
is uncertain. It is sometimes argued to be wasteful, e.g., [20], and possibly a relic of early earth history
when levels of CO2 were much higher than today, and levels of O2 lower, so that the the ratio O2/CO2

was presumably small. However, observations suggest it is not superfluous [28] and the orders of
magnitude variability of γ across different species [11,26,27] suggests that there may be selective
pressure at work. Photorespiration diverts carbon fixing power away from new biomass, but also note
in fact the following: though glycolate has a lower degree of reduction (+3) than biomaterial (+4.7),
its production requires 1/2 O2 mole per Cmole of glycolate and hence, balancing electrons, also removes
an additional two electrons per glycolate. Thus, effectively, each Cmole of glycolate produced removes
5 electron moles from the system, more than the 4.7 electron moles removed per Cmole of biomaterial
produced. Thus photorespiration serves to reduce electron pressure, particularly when oxygen pressure
is high. At the same time, oxygen pressure is reduced. Also, photorespiration produces a supply of
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dissolved, reduced organic carbon, allowing the possibility of supplying a heterotroph population.
Hence, accidental or not, photorespiration may have significant effects on population dynamics.

2.3.4. Fixation Stability

As a technical point that will be repeatably useful below but also seems reasonable biologically,
we impose the condition

ηICg1,O2 − ηO2 g1,IC ≥ 0 (17)

(with subscripts IC and O2 denoting partial derivatives with respect to those quantities)) which, with
η as in (16), reduces to IC g1,IC ≥ −O2 g1,O2 . (In fact we will only really require (17) to hold at steady
state.) This condition can be appreciated through linearization of the carbon fixation process applied
to inorganic carbon and oxygen, i.e., linearization of the subsystem

d
dt

IC = −Y−1
P1,IC g1(IC, O2; ν)P1

d
dt

O2 = f (η)g1(IC, O2; ν)P1

around a state (P1, IC, O2), with associated Jacobian matrix

J =

(
−Y−1

P1,IC g1,ICP1 −Y−1
P1,IC g1,O2P1

( f g1)ICP1 ( f g1)O2P1

)
.

The eigenvalues of J have non-positive real part as long as derivatives with respect to IC are
non-negative, derivatives with respect to O2 are non-positive, and condition (17) holds. In the case
that (17) is false, then J has an unstable eigendirection that corresponds to an instability in the fixation
process: a simultaneous increase in IC and O2 levels can lead to simultaneous decrease in net fixation
rate and in photorespiration, thus further amplifying IC and O2 levels, etc. Such dynamics are
unsustainable. Equivalently, it can be seen that, if (17) is false, then an increment in available inorganic
carbon actually reduces photosynthesis rate, see Appendix C.

Condition (17) is satisfied for reasonable choices of η and g1, with one caveat, see below. We divide
into two cases based on (14). In the light limited regime,

ηICg1,O2 − ηO2 g1,IC = ηICεO2 − ηO2 εIC = 0,

satisfying (17). In the carbon limited regime

ηICg1,O2 − ηO2 g1,IC = ηIC(δI)O2 − ηO2(δI)IC = ηICδIO2 − ηO2(δI)IC (18)

The first term on the far right hand side is generically non-positive, while the second is generically
non-negative. Note the key controlling function, IO2 , indicates the rate at which increasing oxygen
levels increases oxidative stress; only if this rate is too large can (18) be negative. Otherwise, fixation
stability condition (17) also holds in the carbon limited regime.

2.4. Heterotrophic Biosynthesis

The third pathway in the model system is a simplified heterotrophic anabolysis described by

2CH2O1.5 + 0.475O2 −→ CH1.7O0.5N0.2 + CO2, (19)

with stoichiometry constrained to balance carbon and degree of reduction (using degree of reduction
of (CH1.7O0.5N0.2) = +4.1 for heterotrophs, see Appendix A). As with the photosynthesis pathway,
oxygen and nitrogen are not balanced; to do so would require introduction to the model of new
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details of secondary interest. Note that the stoichiometry determines yield coefficients yP2,OC = 1/2,
yP2,O2 = 4/1.9, and yP2,IC = 1 in Equations (3)–(5).

Reaction (19) indicates that organic carbon in the form of glycolate is further reduced to
biomaterial. The increased degree of reduction is accomplished by sacrificing some of the glycolate for
its electrons, a portion of which go to biomaterial and a portion of which are shunted off to carbon
dioxide to maintain carbon balance.

The rate at which (19) proceeds is given by g2(OC, O2) as

g2(OC) = rh min
(

OC
KOC + OC

,
O2

KO2 + O2

)
, (20)

based on the assumption that the rate of biosynthesis is controlled by the minimum rate at which
biosynthesis components can be transported to biosynthesis machinery. Note as well that as a result of
reaction (19), a source term for P2 appears in (2) and sink terms for OC and O2, appear in (4) and (5).

2.5. Equations

Pathway stoichiometry can now be incorporated into Equations (1)–(5). Yields Yα,β parameterize
autotroph pathways (and damage) and yields yα,β parameterize the heterotroph pathway (and damage).
In units of Cmoles and oxygen moles, YP1,Q1 = yP2,Q2 = 1 (see Section 2.3.2), YP1,IC = 1 (see Section 2.3).
Also, yP2,IC = 1, yP2,OC = 1/2 (see Section 2.4), and YIC,OC = YOC,O2 = 2 (see Section 2.3.3). Altogether

d
dt

P1 = (ηg1(IC, O2; ν)− D)P1, (21)

d
dt

P2 = (g2(OC, O2)− D)P2, (22)

d
dt

IC = −g1(IC, O2; ν)P1 + g2(OC, O2)P2 + D(IC0 − IC), (23)

d
dt

OC = (1− η)g1(IC, O2; ν)P1 − 2g2(OC, O2)P2 − D OC, (24)

d
dt

O2 =

(
3
4
+

17
40

η

)
g1(IC, O2; ν)P1 −

1.9
4

g2(OC, O2)P2 + D(O2,0 −O2). (25)

We track two key quantities, carbon and electrons, through the system. Set

C = P1 + P2 + IC + OC

to be total Cmole concentration in the chemostat to obtain

d
dt

C = D(IC0 −C), (26)

with solution C(t) = IC0 + C(0)e−Dt. So, after a chemostat turnover time D−1 or so, C(t) approaches
the constant value C = IC0, the inflow Cmole concentration, to exponentially small error in time.
Effectively, thus, the chemostat conserves total Cmoles. Similarly, set the total degree of reduction
(DoR) of the system to be

DoR = (4.7 emole/Cmole)P1 + (4.1 emole/Cmole)P2

+(0.0 emole/Cmole)IC + (3.0 emole/Cmole)OC− (4.0 emole/mole)O2,

Note that
d
dt

DoR = −D(4O2,0 + DoR), (27)
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with solution DoR(t) = −4O2,0 + DoR(0)e−Dt, and thus, after a chemostat turnover time or so,
DoR(t) = −4O2,0, the degree of reduction of the inflow, to exponentially small error in time. Hence,
effectively, the chemostat conserves DoR.

In a chemostat, degree of reduction (at least as calculated here) is dictated by the inflow
environment, since all reactions conserve it in detailed balance and since all material flows out
of the chemostat at the same rate. This contrasts with a biofilm or sparged system where insoluble,
soluble, and volatile material may leave the system at different rates. Note that a biofilm can thus have
some local control over DoR.

3. Results

3.1. Single Species Chemostat Community

To begin, we consider first the case of a chemostat community of phototrophs only,
i.e., P2(t) = P2(0) = 0. Note that the complementary case of a community of heterotrophs only,
i.e., P1(t) = P1(0) = 0, is not sustainable: P1 = 0 has the consequence that soluble organic carbon OC
is not produced which results in OC(t)→ 0 which, in turn, results in g2(t)→ 0 and hence, from (2),
P2(t)→ 0.

In the phototrophic (only) community case, Equations (21)–(25) reduce to

d
dt

IC = −g1P1 + D(IC0 − IC), (28)

d
dt

OC = (1− η)g1P1 − DOC, (29)

d
dt

O2 = f (η)g1P1 + D(O2,0 −O2) (30)

d
dt

P1 = (ηg1 − D)P1, (31)

with f (η) = 3/4 + (17/40)η being the net yield of oxygen per carbon fixed, see (10). The coefficients
3/4 and 17/40 arise from degree of reduction details. Note that the equation order has been changed
from earlier; the population equation is now listed after the chemical concentration equations for
reasons of convenience in the following. The first term in (28) measures usage rate of inorganic
carbon in photosynthesis, which produces new biomass (first term of (31)) and soluble organic carbon
(first term of (29)) as well as oxygen, some of which is consumed, however, in the production of soluble
organic carbon (first term of (30)). Terms involving D measure rates of wash in or out of the chemostat.
Note that organic carbon (OC) decouples from the other quantities— the dynamics of IC, O2, and
P1 are all independent of OC. Hence, system (28)–(31) is effectively three dimensional. We keep OC,
though, because of its importance in the two species community dynamics to follow, and also because
of its place in conservation of carbon and of degree of reduction.

3.1.1. Steady States

Our interest is in the role of photorespiration in long time community behavior. As is often the
case in chemostat models, long time behavior reduces here to the study of steady state solutions.
Equations (28)–(31) have two possible types of steady states: (1) the washout solution P1(t) = 0 with
IC(t) = IC0, OC(t) = 0, and O2(t) = O2,0, which exists for all parameter choices though is not always
stable, and (2) the viable solution P1(t) = P∗1 > 0 with IC(t) = IC∗, OC(t) = OC∗, and O2(t) = O∗2 .
For a viable solution, (31) requires that

η(IC, O2)g1(IC, O2) = D (32)

have a nonnegative solution (IC∗, O∗2) indicating that biomass production rate balance with washout.
Also, by combining Equations (28) and (30), a second equation,
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f (η)(IC0 − IC) = O2 −O2,0 (33)

is obtained relating IC∗ and O∗2 . Equation (33), an equilibrium relationship constraining the ratio of
surplus O2 to IC deficit, is a consequence of carbon fixation stoichiometry combined with degree
of reduction balance. If (32) and (33) can be solved with non-negative values IC∗ and O∗2 then the
remainder of a viable state steady state is given by

P∗1 = η(IC0 − IC∗), (34)

OC∗ = (1− η)(IC0 − IC∗), (35)

using (28) and (29).
Thus, existence and uniqueness of viable solutions reduces to existence and uniqueness of

solutions to (32) and (33). This appears to provide two conditions for viability; in fact, though, (32)
and (33) can be solved under the single condition that η(IC0, O2)g1(IC0, O2) = D has a solution with
O2 > O2,0, that is, under the condition that the organism-free (P1 = 0, IC = IC0) chemostat is capable
of supporting growth under its given dilution rate D and ambient oxygen level O2.0. For the particular
choices of g1, f , and η made here, either one or no viable solutions exist, depending on choice of
environmental conditions IC0, O2,0, and D. See Appendix C for details.

3.1.2. Stability of Steady States

To characterize stability, we add a small pertubation to a steady state solution and then watch
ensuing dynamics. We summarize results here; see Appendix D for details. Generally, any component
of a perturbation to a steady state that introduces excess or deficient total carbon or degree of
reduction is washed out of the system on the chemostat turnover time scale D−1. Thus understanding
perturbation dynamics of the four dimensional system (28)–(31) reduces to understanding dynamics
on a two dimensional subsystem, in fact a system that can be interpreted as the phototroph flux mode
space and is spanned by the vectors

EFM1 =


−1

0
4.7/4

1

 , EFM2 =


−1

1
3/4

0

 ,

that encode the two phototroph elementary flux modes. Recall Figure 3: perturbation of the
viable steady state by increasing or decreasing flux through the photosynthesis-driven biosynthesis
mode corresponds to perturbation of the viable steady state solution in the direction EFM1

(one Cmole biomass and 4.7/4 Omoles produced per Cmole inorganic carbon consumed) and, likewise,
perturbation of the viable steady state by increasing or decreasing flux through the photorespiration
mode corresponds to perturbation of the viable steady state solution in the direction EFM2 (one Cmole
organic carbon and 3/4 Omoles produced per Cmole inorganic carbon consumed). Stability in this
flux mode space will be discussed for particular steady states below.

Washout State (One Species System). The washout state (P1 = 0) is stable or unstable depending
on sign of the quantity λ = η(IC0, O2,0)g1(IC0, O2,0)− D. If negative then the steady state is stable,
i.e., phototrophs cannot invade, while is positive, then invasion can occur. Note that λ is the net
intrinsic biomass production rate at inflow conditions. When a small quantity of phototrophs are
added to the system, in the unstable case λ > 0 dynamics of the linearized system effectively reduce
to exponential growth on the one dimensional space η EFM1 + (1− η) EFM2, indicating that the
linearized growth dynamics occurs, as to be expected, as a combination of the photosynthesis mode
and the photorespiration mode weighted by the branching parameter η(IC0, O2,0).

Viable State (One Species System). For the viable state (P1 > 0), dynamics are again
characterized by the basis formed by the two mode vectors EFM1 and EFM2 and in this case are
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always stable (i.e., perturbations decay) under the assumptions that derivatives with respect to IC
are non-negative, derivatives with respect to O2 are non-positive, and condition (17) holds. That is,
the viable state is stable under the conditions that we consider biologically reasonable.

3.1.3. Viability and Light-Limited Ranges

We suppose that the RuBisCO inverse specificity factor γ1, see Section 2.3.3, is subject to some
influence by the organism itself, at least adaptively if not through direct regulation, leading to some
control over the branching function η. Recall

η =
1

1 + γ1
O2
IC

(36)

and note that γ1 = 0 would correspond to the extreme of η = 1 (all fixed carbon goes to biosynthesis)
and that γ1 = ∞ would correspond to η = 0 (all fixed carbon goes to photorespiration). Increasing
inverse specificity γ1 corresponds to increasing, relatively speaking, RuBisCO oxygen affinity and
hence increasing photorespiration rates. So then which factors might determine, or at least influence,
the value of γ1?

We show in Appendix E that, for the single species solution as described above (including the
assumption (17)), the choice γ1 = 0 is favored in the following sense: for any fixed, positive value
of γ1 and the resulting steady state population P∗1(γ1) > 0, it is in fact the case that (d/dγ1)P∗1 < 0.
That is, the autotroph population decreases with increasing inverse specificity factor, see, e.g., Figure 4,
left panel, for example. Hence, as a larger affinity factor corresponds to increased photorespiration,
in the single species, static chemostat environment the autotrophs are always disadvantaged by
photorespiration in terms of total biomass.

However, maximizing biomass is not necessarily the only consideration. Another important factor
might be viability range—solar light intensity varies significantly over the course of a day (or a year)
so that capacity to efficiently function over a wide range of photon flux intensities may also be valuable.
High light can cause damage and hence require extra resources, and thus is desirable to avoid or
mitigate. In this context, non-zero inverse specificity has competing impacts. First, larger inverse
specificity increases, per unit inorganic carbon, the usage of photosynthetically generated electrons
and oxygen, thus decreasing rate of damage. Second, larger inverse specificity diverts more fixed
carbon from biomass, thus decreasing growth rate. Note though that decreased growth rate leads to
reduced population biomass and hence increased available inorganic carbon—a smaller population
can be a healthier one. Altogether, then, photorespiration can be expected to shift upwards in both
the lower and upper photon intensity viability bounds. To understand how, see Figure 4 right panel,
a central result of this study, which presents results of a number of solutions of the steady state
Equations (32)–(35). Computations used parameters as described in Appendix B and in the caption.

Minimum Photon Flux. The lower-most curve in Figure 4, right panel, shows, as a function of
γ1, the minimum photon flux necessary for a viable population. This curve was computed analytically
by using condition (32) to determine photon flux ν as a function of γ1 at ambient inorganic carbon and
oxygen levels IC=IC0 and O2=O2,0, the limiting viability concentrations. (It was also checked against a
numerical computation of minimum ν for viability as a function of γ1.) Its form is easily understood in
terms of the non-dimensional number γ1O2,0/IC0 which measures the ratio of likelihoods of O2 versus
IC RuBisCO binding in relation to ambient or near-ambient conditions, The ambient ratio O2,0/IC0 we
use is 0.05 Omole/Cmole, i.e., 20 times more inorganic carbon than oxygen as measured in carbon
and oxygen moles. Thus, for γ1 less than approximately 20 Cmole/Omole, binding site competition is
unimportant at ambient conditions and hence no penalty, at least with respect to minimum photon flux
for viability, is paid. However, as γ1 increases beyond 20, the minimum photon flux rapidly increases,
see Figure 4, right panel.
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Figure 4. Plots of various steady state quantities arising from solutions of (32)–(35) as functions
of inverse specificity γ1 (Cmoles/Omoles) with D = 10−4 s−1, and other fixed parameters are as
described in Appendix B. Increasing γ1 corresponds to increasing importance of photorespiration.
Left. Steady state biomass P∗1 (in Cmoles/L) versus inverse specificity γ1, with ν = 50 µE. Biomass
decreases monotonically with increasing inverse specificity. The kink at γ1 ∼= 10−2 occurs where
the steady state transitions from carbon limitation to light limitation. Right. Solid curve (bottom):
minimum photon intensity ν (µE) for population viability as a function of inverse specificity γ1. Solid
curve (top): maximum photon intensity for population viability as a function of inverse specificity
γ1. Dashed curve: boundary photon intensity separating light-limiting conditions (below the curve)
from carbon limiting conditions (above the curve). Horizontal dotted line: boundary photon intensity
asymptote (in large inverse specificity limit). Vertical dotted line (left): the inverse specificity value
γ1 = IC1/O2,1 beyond which the light-limiting range significantly expands. Vertical dotted line (right):
the inverse specificity value γ1 = IC0/O2,0 below which photorespiration does not significantly reduce
the minimum range of light intensities that allow population viability. Note that, for larger γ1, steady
state biomass drops off, see left plot. Note that for the chosen set of parameters, washout occurs beyond
inverse specificity of approximately 230 Cmoles/Omoles for all light intensities. Measured values of
inverse specificity in a variety of organisms lie in the approximate range 10−2–100 [11,26,27], delimited
in the plot by the thick bars.

To summarize, the bottom solid curve in Figure 4, right panel, is important in that it shows
minimum photon intensity for community viability as a function of γ1. This curve is, roughly,
described by two parameters: (1) the photon intensity at γ1 = 0, which is determined by details of
photosynthesis rate function g1 as well as choice of chemostat turnover rate D, and more importantly
(2) the value of γ1 = IC0/O2,0 (right-most dotted vertical line) above which significant increase in
photon intensity is required for viability.

A similar discussion applies for the upper-most curve in Figure 4, right panel, which shows
as a function of γ1 the maximum photon flux allowable for a viable population. Again, IC ∼= IC0,
O2 ∼= O2,0, at the viability boundary so that the viability photon flux upper bound is only weakly
dependent on γ1 for γ1O2,0/IC0 noticeably less than 1, i.e., γ1 noticeably less than about 20
Cmole/Omole.

Light-Limited to Carbon-Limited Transition. The dashed curve in Figure 4, right panel,
computed numerically, measures as a function of inverse specificity the boundary light intensity
between light-limited (region below the curve) and carbon-limited (region above the curve) intensities.
In the carbon-limited region, i.e., where photons are sufficiently abundant so that photosynthesis
is limited by access to inorganic carbon rather than light, excess electrons are present leading to
photoinhibition (recall (14)). The cross-over from light limitation to carbon limitation occurs when
ε = δ, i.e., when electron production rate as measured in capability to process inorganic carbon is
equal to cellular inflow rate for inorganic carbon. The right asymptote (γ1 → max(γ1)), shown as
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the horizontal line in Figure 4 is well approximated by setting γ1 = ∞ and solving ε = δ at IC = IC0,
O2 = O2,0, the viability values. More importantly„ though, we can understand the small γ1 behavior of
this curve as follows. If γ1 = 0 then η = 1 so g1 = D and thus D = g1 = ε = δ which, upon solving
for IC and O2, results in values IC1, O2,1, the γ1 = 0 boundary concentrations. When γ1O2,1/IC1 is
significantly less than one, i.e., γ1 noticeably less than IC1/O2,1 photorespiration remains relatively
insignificant at cross-over and hence cross-over is only weakly dependent on γ1. For the parameters
used here, IC1/O2,1

∼= 8 · 10−4, see left-most vertical dotted line in Figure 4, right panel. For larger
values of γ1, the range of light-limiting photon intensities expands significantly.

Summary. We summarize Figure 4, right panel, as follows.

• Setting γ1 = 0, i.e., turning photorespiration off entirely, results in only a single light intensity
with a viable, non carbon-limited steady state population. However, at ambient O2 and IC
concentration levels, competition for RuBisCO binding is insignificant for inverse specificities
γ1 < IC0/O2,0. Hence, from the point of view of population viability at least, there is no penalty
for allowing RuBisCO oxygenase activity over this inverse specificity range.

• On the other hand, inverse specificities such that IC1/O2,1 < γ1 result in significantly enlarged
light-limited intensity range, so that large enough inverse specificities may have some advantage.

• Assembled, the inverse specificity interval

IC1

O2,1
< γ1 <

IC0

O2,0
,

for parameters used here (based on best approximations in comparison to known data) agrees
well with measured values of inverse specificity [11,26,27].

It should be noted that while the upper bound IC0/O2,0 is a function of ambient IC and O2 levels
and is thus is somewhat context-independent at least in the absence of other organisms, the lower
bound IC1/O2,1 does depend on specifics of the system like dilution rate D and hence may vary
under different conditions. More particularly, IC1 is found by equating δ = D. For δ as defined here,
the resulting concentration IC1 is given by

IC1 =
D

rIC − D
KIC. (37)

Generally speaking, though, the solution of δ = D will result in a value of IC1 as a function of some
external rate of transport of IC in comparison to internal, cellular transport mechanisms. Given IC1

then O2,1 is determined stoichiometrically from (33). Hence the ratio IC1/O2,1 is essentially determined
by properties of transport of IC to RuBisCO (relative to the rate of transport of IC into the system),
with increased rates corresponding to smaller ratio and hence larger favorable inverse specificity range.
Carbon concentration mechanisms, though not included here, might have a similar impact.

Altogether, then, the model suggests that there is possible advantage in the form of redox and
oxygen stress control by allowing photorespiration with inverse specificity within the range (37),
the lower bound of which is under some internal control. In particular, an expanded range of
light-limiting photon intensities may result. This may be important as, typically, photon flux varies
considerably over time. (It should be noted that our observation is based on steady state results in
a time-independent model, though it seems possible that the idea extends to periodically varying
systems.) Note that increased photorespiration results in reduced biomass, which may be considered
a disadvantage. However, it is in part because of reduced biomass that the range of light-limiting
photon intensities increases, as reduction in biomass is accompanied by increase in IC availability.

From the point of view of flux mode modeling, photorespiration provides a sort of rate
synchronization mechanism; biosynthesis (left mode in Figure 3) is required to produce biomass, i.e.,
P1, at rate dictated by chemostat dilution while photon input is independently, and likely conflictingly,
determined by photon inflow rate, both of which are not controlled by the phototrophs themselves
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(IC input rate can be controlled by the organisms including through varying total biomass). Biomass
production rate must match chemostat dilution rate, however, so if the dilution and photon inflow
rates differ then, in the absence of a photorespiration mode, excess electrons will be produced leading
to damage. Presence of a photorespiration mode (center mode in Figure 3), however, allows some of
those excess electrons to be shunted away in the form of reduced OC.

Note that biology-related parameters vary in value between different cyanobacterial species and
even within the same species under different environmental conditions, e.g., [29]. We do not see
this variability as a critical problem here, however, as our aim is to explore qualitative behavior of
community interactions as inverse specificity varies from low (low photorespiration levels) to high
(high photorespiration levels), regardless of parameter choices. The forms of the curves in Figure 4 are
expected to hold under reasonable choices. In particular we are least confident about choices related
excess electron damage, effecting mostly height of the top solid curve, Figure 4 right, and photon usage
efficiency, effecting mostly height of the horizontal dotted curve Figure 4 right. The left vertical dotted
curve in Figure 4 right, which indicates the approximate value of γ1 above which photorespiration is
significant, is dependent on properties of inflow of inorganic carbon about which we are also relatively
uncertain, but because of the log scale used is unlikely, in our view, to move a lot under reasonable
choice of parameters.

3.2. Two Species Community

Having explored the effects of photorespiration on steady state phototroph behavior in the one
species model, we now add a second species, a heterotroph, in order to see if its addition, despite the
resulting (indirect) competition for carbon, can in fact lead to an increase in phototroph steady state
biomass. Heterotrophs offer two apparent direct benefits to phototrophs: (1) they use oxygen, thus
reducing oxidative stress, and (2) they produce carbon dioxide, thus increasing the local inorganic
carbon pool. The price paid is that the cyanobacteria must feed these heterotrophs as they cannot
utilize inorganic carbon as a food source. Photorespiration provides a means to do so through
production and secretion of soluble organic carbon, thus perhaps providing an additional advantage
to its existence. Further, though secretion of organic carbon comes at the price of reduced production
of new cyanobacterial biomass, doing so via photorespiration also provides additional control of redox
balance through lowering net degree of reduction of the fixed carbon. In this section, then, we consider
these combined effects, focusing on steady state cyanobacterial biomass as a metric.

The equations for the two species community are as in (21)–(25), rewritten as

d
dt

IC = −g1(IC, O2; ν)P1 + g2(OC, O2)P2 + D(IC0 − IC), (38)

d
dt

OC = (1− η)g1(IC, O2; ν)P1 − 2g2(OC, O2)P2 − D OC, (39)

d
dt

O2 =

(
3
4
+

17
40

η

)
g1(IC, O2; ν)P1 −

1.9
4

g2(OC, O2)P2 + D(O2,0 −O2), (40)

d
dt

P1 = (ηg1(IC, O2; ν)− D)P1, (41)

d
dt

P2 = (g2(OC, O2)− D)P2. (42)

These equations are the same as the single species ones (28)–(31) except with the addition of
source/sink terms proportional to g2P2 in each of (38)–(40) as well as the new Equation (42) describing
heterotroph biomass. In effect we are adding the third elementary flux mode, recall Figure 3, into the
system, with all of its component reactions occuring at rate g2.
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3.2.1. Steady States and Stability

Equations (38)–(42) have three types of steady state solutions: the washout solution with
P1 = P2 = 0, the single species solution with P1 > 0, P2 = 0, and the coexistence solution P1, P2 > 0.
Note that a fourth type of steady state with P1 = 0, P2 > 0 is not possible; if P1 = 0 then the
heterotrophs will be washed out of the system. We consider first the washout and single species
states, each with P2 = 0, and report results of stability analysis here, again referring to Appendix D for
details. The coexistence steady state, with P2 > 0, is explored numerically later. Note that if P2 = 0
then (38)–(41) reduce, essentially, to (28)–(31), so that steady states for the washout and single species
systems are the same as previously (with the addition that P2 = 0).

Generally, as before, any component of a perturbation to a steady state that introduces excess or
deficient total carbon or degree of reduction is washed out of the system on the chemostat turnover
time scale D−1. Thus, understanding perturbation dynamics of the five dimensional system (38)–(41)
reduces to understanding dynamics on a three dimensional subsystem, now spanned by all three of
the elementary flux modes, given in vector form by

EFM1 =


−1

0
4.7/4

1
0

 , EFM2 =


−1

1
3/4

0
0

 , EFM3 =


1
−2

−1.9/4
0
1

 ,

see Figure 3. Perturbation by increasing or decreasing flux through the photosynthesis-driven
biosynthesis mode corresponds to perturbation in the direction EFM1 (one Cmole biomass and
4.7/4 Omoles produced per Cmole inorganic carbon consumed) and perturbation by increasing or
decreasing flux through the photorespiration mode corresponds to perturbation in the direction EFM2

(one Cmole organic carbon and 3/4 Omoles produced per Cmole inorganic carbon consumed). The
new vector EFM3 corresponds to perturbation that increases or decreases flux through the heterotroph
biosynthesis mode (one Cmole biomass and 1 Cmole inorganic carbon produced per two Cmoles
organic carbon and 1.9/4 Omoles consumed).

Washout State (Two Species System). The two species washout state (P1 = P2 = 0) is, as in the
one species washout case, unstable if λ = ηg1 −D is positive and stable if λ is negative. As before, λ is
the net intrinsic phototroph biomass production rate at inflow conditions. Also as before, when a small
quantity of phototorphs are added to the system, in the unstable case λ > 0, dynamics of the linearized
system effectively reduce to exponential growth on the one dimensional space η EFM1 + (1− η) EFM2,
indicating that the linearized growth dynamics occurs, as to be expected, as a combination of the
photosynthesis mode and the photorespiration mode weighted by the branching parameter η(IC0, O2,0).
Note that the heterotroph cannot invade as it requires an already established population of phototrophs
(with corresponding finite supply of organic carbon) before it can become viable.

Single Species State: Invasion (Two Species System). We consider for several purposes the
single species state (P1 > 0, P2 = 0). Note that this solution is identical to that in the single species
case as discussed in Section 3.1.2 and Appendix C except with the additional component P∗2 = 0.
We assume that this state is linearly stable to perturbations that do not introduce heterotrophs and ask
what happens if a small amount of heterotrophs are added. In other words, how does the otherwise
stable heterotroph-free system respond to a perturbation including heterotrophs? This is the invasion
problem. In the case that invasion occurs, obviously there is some benefit from the phototrophic
population to the invading, heterotrophs as they cannot survive in the chemostat by themselves. Linear
analysis can provide some information on the specifics of this advantage.

A key observation here is that the five dimensional system (38)–(42) essentially reduces to the
single species, four dimensional one (28)–(31) when P2 = 0. In this four dimensional reduced system,
dynamics of the single species state are stable, so that the full invasion dynamics are effectively
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restricted to a complementary one dimensional space. This space is necessarily a linear combination
of the three mode vectors EFM1, EFM2, and EFM3. Notably, in the case of large g2(OC∗, O∗2),
instability dynamics are dominated by the heterotrophic growth mode EFM3. When growth is
not as dominant, the role of phototroph flux modes in maintaining carbon and DoR balance is more
evident. The governing quantity is λ = g2 −D; if λ > 0 then heterotroph invasion occurs, and if λ < 0
then heterotrophs are unable to invade.

An interesting question here is whether perturbations that include introduction of heterotrophs,
i.e., positive perturbation of P2, result in both successful invasion of heterotrophs as well as,
simultaneously, increase in phototroph biomass. We consider this question in the case of large
g2(OC∗, O∗2), see Appendix F for details. Note that, as dynamics are dominantly in the direction
of EFM3, then the P1 component of the perturbation dynamics is small. It is, however, positive
as in this case the intuition that addition of heterotrophs, at least initially, increases inorganic
carbon concentration and decreases oxygen concentration is correct. Hence, the immediate effects of
heterotroph invasion on the phototrophs are mildly positive. Of course, the more important question
is of long time effects, which will be considered next.

3.2.2. Two Species Consortium Steady State

We rely on numerical computations to investigate two species steady states. Parameters are as
used previously for single species computations with the addition of parameters connected to the
heterotrophic biomass mode, see again Appendix B. See Figure 5 for a typical numerical comparison
of the single species steady state biomass (as in Figure 4, left panel) and two species steady state
biomasses, as functions of inverse specificity. As in Figure 4 left panel, photon intensity is held at a fixed
represntative level of 50 µE. For the parameters chosen, steady state conditions are carbon-limited for
inverse specificity smaller than, approximately, 10−2, and light-limited for larger inverse specificity.
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Figure 5. Steady state biomass (Cmoles/L) versus inverse specificity γ1 (Cmoles/Omoles). Increasing
γ1 corresponds to increasing importance of photorespiration. D = 10−4 s−1, and other fixed parameters
are as described in Appendix B and in Figure 4. Solid: steady state biomass P∗1 , single species community
(P2 = 0). Dashed: steady state biomass P∗1 , two species community. Dotted: steady state biomass
P∗2 , two species community. The kinks at γ1 ∼= 10−2 occur where the steady state transitions from
carbon-limitation to light-limitation. Note that steady state phototroph biomass increases with addition
of heterotrophs.
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Note that phototroph biomass is larger in the two species community than in the one species
community for all values of inverse specificity that allow a viable population. This can be understood
as resulting from reconversion of some of the dissolved organic carbon back to inorganic form through
heterotroph respiration, recall (19), where it is available for photosynthesis, as opposed to the single
species system where all dissolved organic carbon is flushed from the chemostat. Increase in biomass
is most noticeable in the interval corresponding to actual measured environmental values of γ1 where,
in the model results, light is limiting and heterotroph biomass is largest.

Intuition might suggest that introduction of heterotrophs into a phototoph population would
result in increase in IC and decrease in O2, both as a consequence of respiration. And indeed, such
may initially be the case, see the invasion discussion above. However, for later times numerics suggest
otherwise near steady state. Dissolved carbon and oxygen, for the same computation, are shown
in Figure 6, left and middle respectively. Dissolved inorganic carbon levels are similar for both one
and two species communities, with consequently matching protection from photorespiration against
high light intensity in both communities. The similarity as well in inorganic carbon concentrations
is a consequence of the steady state rate constraint ηg1 = D, see (41); in the small γ1 carbon limited
regime, η ∼= 1 so IC is determined by δ = g1

∼= D independent of presence or absence of heterotrophs,
while in the light limited regime for relatively large γ1 heterotroph population is low so has little effect
and in the light regime with relatively low γ1, g1 is largely independent of IC and O2 so that η must
be approximately constant, again independently of presence or absence of heterotrophs, see Figure 6
right panel. Note that ∣∣∣∣ ηIC

ηO2

∣∣∣∣ = ∣∣∣∣O2

IC

∣∣∣∣ .

so that in this range, η sensitivity to change in IC is much larger than sensitivity to change in O2. Hence
steady state IC is largely unchanged between the one and two species communities. Dissolved organic
carbon, however, is largely absent from the two species community, in contrast to the single species
one, as organic carbon is limiting for heterotroph biomass production at all values of inverse specificity
and thus is depleted in the two species community. This is perhaps the most dramatic change in
chemical environment between the one species and two species environments.
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Figure 6. Steady state values versus inverse specificity γ1 (Cmoles/Omoles) corresponding to the
computations shown in Figure 5. Left: carbon concentrations (Cmoles/L) with (solid) single species
community inorganic carbon IC, (dash) two species community inorganic carbon IC, (dash-dot) single
species community organic carbon OC, (dot) two species community organic carbon OC. Middle:
oxygen concentrations (Omoles/L) with (solid) single species community oxygen O2 (dash) two
species community oxygen O2. Right: branching function probability η for (solid) the one species
community and (dash) the two species community.

Interestingly, oxygen concentration levels are actually somewhat higher for the two species
community, see Figure 6 middle panel, despite oxygen usage via heterotroph respiration. Higher
oxygen concentrations can be understood to be a consequence of carbon fixation—increase in reduced
carbon in the form of biomass and hence increase in net degree of reduction DoR must be balanced



Processes 2017, 5, 11 24 of 40

by something. In this model, the only possibility is oxygen. Thus, oxygen concentration increases
if biomass does so. This is a generally applicable observation: photosynthetically fixed carbon will
be accompanied by more material with low degree of reduction. In an ideal chemostat environment,
this balance must be maintained. In other environments, biofilms for example, it may be possible for
byproducts like excess oxygen to be transported out of the system while fixed carbon in the form of
biomass remains behind.

Note that, in the two species community, as virtually all dissolved carbon goes to biomass for
smaller values of γ1, then in fact two species oxygen levels are approximately independent of inverse
specificity γ1 and this remains so up until the point that γ1 becomes sufficiently large that significant
amounts of inorganic carbon go unutilized. Only then does oxygen concentration significantly decrease
as a function of γ1, though it always remains larger than the corresponding concentration in the one
species community.

4. Discussion

The one species model. We observe, in the model, that photorespiration shunts reduced carbon
away from biomass production and into dissolved, secreted organic carbon, resulting, at least in
a single species oxygenic phototroph population, in three principle effects:

1. decrease in population biomass,
2. increase in population light tolerance,
3. and decrease in oxygen concentration.

The first two are connected through inorganic carbon concentrations: decrease in population
results in decrease in inorganic carbon demand resulting in increase in inorganic carbon concentration
resulting in reduced inorganic carbon limitation at high light intensities. Decrease in oxygen
occurs for two reasons: (1) reduced phototrophic biomass results in reduced oxygen production,
and (2) photorespiration product is less reduced than biomaterial, so its production results in less
oxygen as a consequence of degree of reduction balance.

The increase in light tolerance and decrease in oxygen concentration suggests an advantage to
photorespiration. However, reduction in population size suggests the possibility of fitness deficit in
comparison to a population that does not photorespire. We have not modeled such a competition here.
However, it should be noted that we impose constant light intensity, and that it is not clear what effects
variable light intensity, particularly transient peaks in intensity, might have on a competition of two
species, one of which grows more efficiently in low light conditions and the other of which is better
protected in high light conditions.

In our set-up, RuBisCO oxygenase activity (which we identify with photorespiration) can serve
as a differential of sorts able to synchronize influx of photons with influx of inorganic carbon.
Using estimates of parameters, we find an interval of values of the inverse specificity γ1 which,
on the one hand, result in population levels for which, over an increased range of photon intensities,
light is limiting but also for which, on the other hand, biomass synthesis is not excessively quenched to
the point of reducing the photon intensity range of viability. Though biomass is decreased, the increase
in range of “healthy” light intensities might suggest more resilience to light intensity variations, i.e.,
increased ecological structural stability [30]. The upper bound on γ1 is related to background inorganic
carbon and oxygen concentrations (IC0 and O2,0 here) and thus may be relatively independent of
model details. The lower bound on γ1 is related to organismal transport rates for inorganic carbon and
is perhaps more model dependent, though also allows the possibility of organismal control. In any
case, the optimal interval we find for inverse specificities seems to be consistent with measured values
over a range of organisms.

The two species model. A steady source of photorespiration-derived organic carbon begs the
introduction of a heterotroph population to consume it, so we also modeled a phototroph-heterotroph
consortium. Obviously, the heterotroph population benefits from the interaction as it cannot survive in
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the model chemostat without the organic carbon supplied by the phototrophs. The phototrophs, on
the other hand, retain their added tolerance to light intensity but see three principle new effects:

1. biomass increase,
2. reduction in dissolved organic carbon,
3. and oxygen concentration increase.

Biomass increase occurs because of increased inorganic carbon availability as a consequence of
heterotroph respiration. Note that organic carbon, here glycolate, could have inhibitory effects, so its
consumption by heterotrophs might also potentially increase growth rates, though this effect has not
been included in the model. Increase in oxygen concentration is somewhat surprising as heterotrophs
consume oxygen during respiration, but occurs again as a consequence of reduction balance: overall
increase in reduced biomass must be balanced within the model by increase in oxygen. More directly,
the increase in phototroph biomass leads to increased oxygen production. This may be, at least to
an extent, an artifact of model simplicity. A more complex model could retain reduction balance
through oxidized material other than oxygen. Also, simplicity of the chemostat itself requires that all
material be washed out at the same rate whether reduce or oxidized. A more complex system might
do otherwise, for example removing dissolved oxygen (e.g., gas sparging that removes O2) faster than
particulate biomass (e.g., biomass fixed in a biofilm).

The phototroph-heterotroph consortium is a more efficient consumer of inorganic carbon than the
photorespiring phototroph population alone, and presence of organic carbon suggests that heterotrophs
could be expected to join a photorespiring phototroph population. Hence, it may be that the question
of competing photorespiring vs. non-photorespiring phototrophs may be the wrong one. Rather,
non-photorespiring phototrophs should be asked to compete against a combined photorespiring
phototroph-heterotroph consortium.

Connecting flux mode models to population scale models. Mathematically and physically, rates
are natural quantities at the flux mode level whereas concentrations, including biomass, are natural at
the population and environmental level. We find here that rate functions (in the population model)
serve to translate cell scale flux modes into the larger scale population level, where they then determine
external concentrations in combination with large scale transport constraints. Flux modes themselves
naturally appear, mathematically, in near-steady state dynamics and are relatable to eigenvectors which
in turn are natural structures for dynamics. The process of converting flux modes to rate functions is
in principle automatable and should be a part of the overall program of extracting information from
’omics data.

Conversely, the mathematical issues involved in the inverse process of determining how large
scale effects influence flux mode regulation are interesting ones and only addressed indirectly here.
Generally speaking, microbial communities can have metabolic capabilities available to organisms and
to the overall community. This raises the question—how can these capabilities be best deployed to
utilize available resources? Rate and stoichiometric constraints still apply, and steady states or, more
generally, asymptotic states, can be computed though likely not in a unique way. However, there may
be many branching type parameters over which the community has at least some control. Optimality
becomes a question of distribution of resource flow (here carbon and electrons) between available
pathways in the most efficient manner. Even in the system studied here, with a small number of well
defined pathways and a relatively simple physical environment, the effects of that environment on
pathway optimization are subtle and influential. The environment imposes rates at steady state and it
also determines response to perturbation. These constraints as well as those arising from community
ecology may easily be overlooked without considering the physical context of the biological system.
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Appendix A. Degree of Reduction

Degree of reduction of an atom or molecule is, roughly, the number of electrons that atom or
molecule is apt to give away in a chemical reaction [31]. We use degree of reduction (DoR) here,
essentially, as a convenient proxy for redox potential. Degree of reduction is computed using the
values DoR(C) = +4, DoR(H) = +1, DoR(O) = −2. For nitrogen, we use DoR(N) = 0 for
cyanobacteria (assuming nitrogen is extracted from N2) and, effectively, DoR(N) = −3 for heterotrophs
(assuming nitrogen is extracted from an organic source) [18]. This dichotomy for N is somewhat at
odds with the definition given just above, but maintains consistency of degree of reduction balance by
accounting for differences in biomaterial formation as explained below.

Degree of reduction for a molecule is estimated by summing degree of reduction of that molecule’s
individual atoms. Then the degrees of reduction for inorganic carbon (assumed of the form carbon
dioxide CO2), organic carbon (assumed of the form glycolate CH2O1.5) and biomass (assumed for both
autotrophs and heterotrophs to be of the form CH1.7O0.5N0.2) are estimated to be

DoR(CO2) = +0

DoR(CH2O1.5) = +3

DoR(CH1.7O0.5N0.2) = +4.7 (autotroph)

DoR(CH1.7O0.5N0.2) = +4.1 (heterotroph)

These are computed simply by adding values of the component atoms, though the nitrogen
contribution introduces a small complication. Note that electrons have degree of reduction +1. Also
note that, although the degree of reduction of glycolate is +3, in the context of the simplified model
used here of photorespiration, (1/2)O2 is removed from the system for each photorespiration reaction
with the context that the degree of reduction of the entire system is increased by +2. Hence, effectively,
formation of a unit of CH2O1.5 has the effect of changing the overall cell degree of reduction by +5.
Biomass, represented by CN1.7O0.5N0.2, comes with a DoR value of 4.7 computed on the basis of
construction from molecular oxygen, hydrogen, carbon dioxide, and also molecular nitrogen (N2),
indicating that 4.7 moles of electrons are required to synthesize a mole of biomass, roughly. However,
assuming heterotrophs are able to use an organic source of hydrogen, e.g., ammonia, rather than
molecular nitrogen, then only approximately 4.1 electron moles are needed per biomass mole.

Appendix B. Parameter Estimation

Carbon moles per cell. We apply the following estimates for microbial cells:

wet mass/volume ∼= 1.1× 106g/m3,

volume/cell ∼= 5× 10−18m3,

dry Cmass/wet mass ∼= 1/10,

where the last estimates carbon as comprising 10% of cells by mass. Using the fact that the mass of
1 carbon mole (Cmole) is 12 g, then the conversion parameter c = Cmoles per cell can be approximated
to be

c =
(

Cmole
dry Cmass

)(
dry Cmass
wet mass

)(
wet mass

cell volume

)(
cell volume

cell

)
∼= 4.6× 10−14 Cmole/cell.

Effective photon absorption rate. Approximating the volume of a cyanobacterial cell as a cylinder
of radius 1 µm and length 4 µm, and assuming the cylinder to be randomly oriented with respect
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to the direction of light (or, alternatively, supposing light to be well scattered), then A, the average
cross-sectional area exposed to light, is

A ∼= (cylinder width)(average cylinder projected length)

= (1 µm)
∫ π/2

−π/2
`(θ)P(θ)dθ

= (1 µm)
∫ π/2

−π/2
(4 cos θ µm)(cos θ)/2dθ

= π µm2

where `(θ) = 4 cos θ µm is the projected length of a cylinder of length 4 µm and angle θ from
transverse, and P(θ) = (1/2) cos θ is the probability of angle θ. This approximation underestimates
slightly the contribution from the cylinder cap at the end of the cylinder pointing towards the light and
overestimates slightly the contribution from the other cap. Note that assuming a cylindrical geometry
(as opposed to a spherical one) may be an effective strategy to reduce light exposure in some situations.

Inorganic carbon transport parameters. We use values for Synechocystis sp. PCC6803, based on
CO2 and HCO−3 uptake rate and half-saturations from [32] which reported the values of maximum
inorganic carbon transport rate VIC

∼= 391 micromoles per milligram of chlorophyll per hour and
approximately 1.03 × 10−9 milligrams chlorophyll per cell (Synechocystis) [32]. Converting, then,
we obtain

VIC
∼= 391

µmol CO2

mg Chl h

=
391× 1.03× 10−9

3600
µmol IC

cell s

= 1.12× 10−16 Cmol
cell s

.

Then

rIC =
Vtrans

c

=
1.12× 10−16

4× 10−14
1
s

= 2.80× 10−3 1
s

.

Also, from [32], KIC
∼= 8.0× 10−5 in Cmoles. Note, perhaps as another indicator of the importance

of community interactions and local environment, there is wide variation in mechanisms for inorganic
carbon transport even among cyanobacteria [33], so that these parameters can be expected to vary
between species.

Other parameters. Other parameter values used for numerics are tabulated below, together
with literature references when appropriate. Yield parameters are fixed by stoichiometric
and similar considerations. Inflow concentrations are estimated using Henry’s law at standard
atmospheric conditions. The true value of the photosynthetic efficiency parameter α is uncertain
(though photosynthetic efficiencies have been estimated at the community level, e.g., [34], it is
somewhat unclear how to translate to the cellular level) so we set α = 1. Note that α can effectively be
scaled into the photon flux, which is treated as an independent variable for computational purposes,
so does not have independent effect on qualitative conclusions. Inflow concentrations IC0, OC0,
and O2,0 representative of environmental conditions are chosen. Background concentrations of these
quantities can vary from one environment to another, but results are fairly insensitive to reasonable
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variations. Photon flux is given in terms of microeinsteins with 1 microeinstein = 1 µE = 10−6 moles
of photons.

Symbol Name Unit Value Reference
γ1 Inverse specificity Cmol·Omol−1 0.01–1 [11,26,27]
γ2 Excess elec. rate capacity s−1 – –
rh Maximal transport rate s−1 0.0225 Measured

rtrans Maximal transport rate s−1 1.24× 10−3 [32]
Ktrans Half saturation Cmol·L−1 3× 10−6 [29]
KO2 Half saturation Omol L−1 8.1253× 10−10 [35,36]
Koc Half saturation Cmol·L−1 4.6022 [37]
ν Photon flux µE·m−2·s−1 0–2000 [38]
α Efficiency - 1 –

IC0 Inflow IC concentration Cmol·L−1 2.6× 10−4 –
OC0 Inflow OC concentration Cmol·L−1 0 –
O2,0 Inflow O2 concentration Omol·L−1 1.3× 10−5 –

D Chemostat turnover rate s−1 various –

Yic Yield Cmol·cell−1 z Yield
Yoc Yield Cmol·cell−1 z Yield
Yo21 Yield Omol·ph−1 1/8 Yield
Yo22 Yield Omol·cell−1 z/2 Yield
Yo23 Yield Omol·cell−1 1.9 z/4 Yield
Yo24 Yield Omol·electron−1 z/4 Yield

Ylight Yield Electron·ph−1 1/2 Yield

Appendix C. Existence and Uniqueness of Single Species Viable State Solutions

First we show that Equations (28)–(31) either have a unique steady state solution (IC∗, OC∗, O∗2 , P∗1)
with IC∗, OC∗, O∗2 ≥ 0 and P∗1 > 0 (a viable solution) or no steady state solution with P∗1 > 0 at all,
depending on choice of parameters IC0, O2,0 and D. The argument depends on the forms of rate
function g1(IC, O2) and branching function η(IC, O2). Specific forms for η and g1 are supplied in (14)
and (16), but for generality we will only require here that

1. η and g1 are smooth.
2. Monotonicity in O2: for fixed value of IC, g1(IC, O2) is monotonically non-increasing in O2 with

values decreasing from g1(IC, 0) to 0 as O2 varies from 0 to ∞, and η(IC, O2) is monotonically
decreasing in O2 with values decreasing from 1 to 0 as O2 varies from 0 to ∞. Roughly
speaking, increasing oxygen concentration if anything inhibits photosynthesis and always shifts
photosynthetic product from biosynthesis to photorespiration.

3. Monotonicity in IC: for fixed value of O2, g1(IC, O2) is monotonically non-decreasing in IC
with values increasing from 0 to g1(IC0, O2) as IC varies from 0 to IC0, and η(IC, O2) is
monotonically increasing in IC with values increasing from 0 to η(IC0, O2) as IC varies from 0
to IC0. (In fact, η should tend to 1 as IC→ ∞). Roughly speaking, increasing inorganic carbon
concentration if anything promotes photosynthesis and always shifts photosynthetic product
from photorespiration to biosynthesis.

4. Fixation stability: we assume that condition (17), namely ηICg1,O2 − ηO2 g1,IC ≥ 0, holds.
5. Note as well that the function f (η) is necessarily a linear function with parameterization

determined by stoichiometry and degree of reduction values. In fact, for the particular choices we
use, f (η) = (3/4) + (17/40)η, however we here need only suppose that f (η) = a + bη for some
a, b > 0.
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We consider Equations (28)–(31) in steady state, i.e.,

0 = −g1P1 + D(IC0 − IC), (A1)

0 = (1− η)g1P1 − DOC, (A2)

0 = f (η)g1P1 + D(O2,0 −O2), (A3)

0 = (ηg1 − D)P1, (A4)

A viable steady state requires that equation

η(IC, O2)g1(IC, O2) = D (A5)

have a nonnegative solution (IC∗, O∗2). By combining Equations (28) and (30), a second equation,

f (η)(IC0 − IC) = O2 −O2,0, (A6)

is obtained relating IC and O2. As a consequence of Cmole conservation, see (26), it is evident that the
steady state value IC∗ is bounded from above by IC0, i.e., 0 ≤ IC∗ ≤ IC0. Note that (A6) has a unique
positive solution O2(IC) for each value IC in the interval [0, IC0], with in fact O2(IC) ≥ O2,0. Hence,
any viable solution (IC∗, O∗2) to Equations (A5) and (A6) must lie in the infinite half-strip solvability
region 0 ≤ IC∗ < IC0, O∗2 ≥ O2,0. (If IC∗ = IC0, then, from (A1), necessarily P∗1 = 0). In the case
that (A5) and (A6) have a solution (IC∗, O∗2), then P∗1 and OC∗ can be recovered as

P∗1 = η(IC0 − IC∗), (A7)

OC∗ = (1− η)(IC0 − IC∗),

with η evaluated at (IC∗, O∗2). Thus, the problem essentially reduces to solving (A5) and (A6) for IC
and O2.

Note that, as a consequence of monotonicity and smoothness, the maximum value of g1 for
O2 ≥ 0 and 0 ≤ IC ≤ IC0 is g1(IC0, 0). Recalling 0 ≤ η ≤ 1, if D > g1(IC0, 0) then (A5) has no solution.
If D ≤ g1(IC0, 0) then, under the assumptions made on g1 and η, there is a value 0 < ÎC ≤ IC0 with
g1(ÎC, 0) = D, η(ÎC, 0) = 1, and (A5) has a one parameter set of solutions (IC, O2) = (IC, h(IC))

over ÎC ≤ IC ≤ IC0 where h is non-decreasing with h(ÎC) = 0. Since ∇(ηg1), by the requirements
above, lies in the fourth quadrant (IC component is positive, O2 component is negative) then the
tangent to the curve (IC, h(IC)) in the increasing IC direction lies in the first quadrant. Also, since
η(IC0, O2)g1(IC0, O2) = D has a finite solution, then the curve (IC, h(IC)) appears as one of the forms
in Figure A1. If this curve has no segment in the half-strip solvability region (lower curve), then there
is no viable solution. Conversely, if there is a segment in the solvability region (upper curve), then we
will show that, under the above requirements, there is a unique viable solution.
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Figure A1. Two different possible curves (IC, h(IC)), where η(IC, hIC)g1(IC, hIC) = D. The upper
curve, which intersects the half-strip 0 ≤ IC < IC0, O2 ≥ O2,0, allows a viable solution; the lower curve
does not.

Consider lines of the form
C(IC0 − IC) = O2 −O2,0, (A8)

cf. (A6), where C is a constant within the range fmin ≤ C ≤ fmax, with fmin = f (min(a + bη)) = f (a),
fmax = f (max(a + bη)) = f (a + b). These are lines with slopes −C and O2-intercepts (0, O2,0 + CIC0)

that all intersect at the single point (IC0, O2,0), see Figure A2. Note that lines with larger C have larger
O2-intercept than lines with smaller C, i.e., lines move upward with increasing C. In the case that
the curve (IC, h(IC)) intersects the viable region, then it must also intersect each of the lines (A8)
exactly once. Since the lines correspond to f |η=0 running to f |η=1, then there must be at least one
intersection point where both (A5) and (A6) are simultaneously satisfied. Each such point provides a
solution (IC∗, O∗2).

Figure A2. Illustration of the intersection of allowable lines of the form C(IC0 − IC) = O2 −O2,0 with
the curve (IC, h(IC)) on which ηg1 = D is satisfied.

It is not clear that such a solution (IC∗, OC∗) would be unique in general. However, stability
requirement (4) above is sufficient to guarantee uniqueness, argued as follows. The lines (A8)
correspond to increasing η moving from bottom to top. Under the given requirements above,
requirement (4) in particular, we claim that the value of η is non-increasing along the curve (IC, h(IC))
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in the increasing IC direction. That is, when moving along the curve (IC, h(IC)) in the increasing IC
direction, the left-hand side of (A6) decreases and the right-hand side increases. Hence there can be no
more than one intersection point where both (A5) and (A6) are simultaneously satisfied.

Proof of claim. First, note that∇η,∇g1, and∇(ηg1) all lie in the fourth quadrant of the (IC,O2) plane.
Further, the normal to the ηg1 = D, i.e., to the curve (IC, h(IC)), given by ∇(ηg1) = η∇g1 + g1∇η

is a positive linear combination of ∇g1 and ∇η, so in fact lies between ∇g1 and ∇η, see Figure A3.
Stability requirement ηICg1,O2 − ηO2 g1,IC ≥ 0 guarantees that the geometry of the three gradient
vectors is as in Figure A3 (as opposed to the one where ∇η and ∇g1 are exchanged), except in the
equality case ηICg1,O2 − ηO2 g1,IC = 0 in which case all three vectors are parallel. This shows that the
directional derivative of η is non-positive along the curve (IC, h(IC)) in the increasing IC direction,
as was claimed. Note, further, that η is constant if ηICg1,O2 − ηO2 g1,IC = 0 and strictly decreasing if
ηICg1,O2 − ηO2 g1,IC > 0.

As a side remark, reversing the geometry in Figure A3 (where ∇η and ∇g1 are exchanged)
would result in a situation such that photosynthesis rate g1 actually decreases with increasing IC.
The unlikeliness of such behavior provides another intuition for the necessity of the fixation stability
condition (17).

Figure A3. Under requirement (4), the vectors ∇(ηg1), ∇g1, and ∇η are oriented relative to each other
as shown.

Appendix D. Linearization and Stability

We consider here stability of steady states of the chemostat system, beginning with the single
species community model (28)–(31), which has two possible steady states, namely washout (P1(t) = 0)

and viable (P1(t) = P∗1 > 0). Writing IC(t) = IC∗ +
∼
IC(t), OC(t) = OC∗ +

∼
OC(t), O2(t) = O∗2 +

∼
O2(t),

P1(t) = P∗1 +
∼
P1(t), where tilded quantities are small perturbations to steady state values, then

system (28)–(31) linearizes to

d
dt


∼
IC(t)
∼

OC(t)
∼
O2(t)
∼
P1(t)

 = J(1)(IC∗, OC∗, O∗2 , P∗1)


∼
IC(t)
∼

OC(t)
∼
O2(t)
∼
P1(t)

 (A9)
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with

J(1) =


−g1,ICP1 − D 0 −g1,O2 P1 −g1

((1− η)g1),ICP1 −D ((1− η)g1),O2 P1 (1− η)g1

( f (η)g1),ICP1 0 ( f (η)g1),O2 P1 − D f (η)g1

(ηg1),ICP1 0 (ηg1),O2 P1 ηg1 − D

 , (A10)

all quantities evaluated at the steady state solution.
From (26) and (27)

d
dt

 ∼
C
∼

DoR

 =
d
dt

 ∼
IC +

∼
OC +

∼
P1

3
∼

OC− 4
∼
O2 + 4.7

∼
P1

 =

(
1 1 0 1
0 3 −4 4.7

)
d
dt


∼
IC
∼

OC
∼
O2
∼
P1

 = −D

 ∼
C
∼

DoR



Hence, for any perturbation, its component normal to the null space of

A =

(
1 1 0 1
0 3 −4 4.7

)
(A11)

is damped (eventually) as e−Dt. That is, excess or deficience in the initial perturbation of total carbon
and degree of reduction is removed from the system through outflow on the chemostat turnover time
scale. In fact, the row vectors of A are eigenvectors of the transpose of J(1) with eigenvalue −D and so
−D is a multiplicity 2 (at least) eigenvalue of J(1). Note, thus, that we can therefore characterize the
dynamics described by the four dimensional system (A9) if we can characterize the dynamics on a two

dimensional subspace consisting of the null space of A, i.e., the subspace defined by
∼
C = 0,

∼
DoR = 0

(no net perturbation of total carbon or degree of reduction).
In fact, the null space of A can be interpreted as the phototroph flux mode space and is spanned

by the vectors

EFM1 =


−1

0
4.7/4

1

 , EFM2 =


−1

1
3/4

0

 ,

that encode the two phototroph elementary flux modes, recall Figure 3, with vector entries describing
changes to concentrations of the corresponding external quantities. Perturbation of the viable
steady state by increasing or decreasing flux through the photosynthesis-driven biosynthesis mode
corresponds to perturbation of the viable steady state solution in the direction EFM1 (one Cmole
biomass and 4.7/4 Omoles produced per Cmole inorganic carbon consumed) and, likewise,
perturbation of the viable steady state by increasing or decreasing flux through the photorespiration
mode corresponds to perturbation of the viable steady state solution in the direction EFM2 (one Cmole
organic carbon and 3/4 Omoles produced per Cmole inorganic carbon consumed).

The two eigenvalues of J(1)|P1>0 that correspond to eigenvectors in the null space of A are given by

λ2,3 =
1
2
((( f g1)O2 − g1,IC)P1 − 2D + ηg1) (A12)

±1
2

[
((( f g1)O2 − g1,IC)P1 + ηg1)

2 − (4ηIC − 3ηO2)g2
1P1 −

17
10

(ηICg1,O2 − ηICg1,O2)g1P1

]1/2

and will be discussed for particular steady states below.
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Washout State (One Species System). For the washout state (P1 = 0), (A10) becomes

J(1)|P1=0 =


−D 0 0 −g1

0 −D 0 (1− η)g1

0 0 −D f (η)g1

0 0 0 ηg1 − D

 (A13)

with g1 and η evaluated at IC = IC0 and O2 = O2,0. Note that (A13) has eigenvalues λ1 = −D < 0
with multiplicity 3 and λ2 = ηg1 − D, seen directly or by setting P1 = 0 in (A13). Hence the washout
state is stable if λ2 < 0 and unstable if λ2 > 0. Note that λ2 = η(IC0, O2,0)g1(IC0, O2,0)− D is the net
intrinsic biomass production rate at inflow conditions.

The eigenspaces for (A13) are

E0
1 = span




1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0


 , E0

2 = span



−1

1− η

f (η)
η


 ,

with η = η(IC0, O2,0), where superscript 0 indicates the washout state, and subscript j indicates
eigenvalue λj. Perturbations of dissolved chemical concentrationss only, i.e., perturbations contained
in the eigenspace E0

1, decay at rate D since they are simply washed out of the chemostat. We can
call E0

1 the washout space. When a small quantity of cyanobacteria are added to the system, in the
unstable case λ2 > 0, dynamics of the linearized system thus effectively reduce to exponential
growth on the one dimensional space E0

2, with P1, OC, and O2 growing and IC decaying, in relative
ratios as indicated by the entries of the eigenvector v2 for λ2, where v2 is the basis vector shown
above for R0

2. Thus, the resulting invasion of cyanobacteria is accompanied by decrease in inorganic
carbon concentration and increase in organic carbon and oxygen concentrations. Note that eigenvector
v2 = η EFM1 + (1− η) EFM2, indicating that the linearized growth dynamics occurs, as to be expected,
as a combination of the photosynthesis mode and the photorespiration mode weighted by the
branching parameter η(IC0, O2,0).

Viable State (One Species System). For the viable state (P1 > 0),

J(1)|P1>0 =


−g1,ICP1 − D 0 −g1,O2 P1 −g1

((1− η)g1),ICP1 −D ((1− η)g1),O2 P1 (1− η)g1

( f (η)g1),ICP1 0 ( f (η)g1),O2 P1 − D f (η)g1

(ηg1),ICP1 0 (ηg1),O2 P1 ηg1 − D

 (A14)

is evaluated at the viable state values of IC, O2, and P1. J(1)|P1>0 has λ1 = −D as a multiplicity 2
eigenvalue with

E1
1 = span




0
1
0
0

 ,


−g1η,O2

0
g1η,IC

(g1,ICη,O2 − g1,O2 η,IC)P1


 .

where superscript 1 refers to the viable state and subscript 1 to eigenvalue λ1. As noted previously,
dynamics of (A9) include the null space of A, recall (A11), as an invariant region, with components
of the solution outside of this region damped at rate e−Dt. Note that E1

1 ∩ null(A) = {0}; E1
1 can be

considered to be the washout space. Decomposing J(1)|P1>0 = K(1)|P1>0 − DI where K(1)|P1>0 can be
regarded as the kinetics portion of J(1)|P1>0, note that eigenspace E1

1 is the null space of K(1)|P1>0 and
can hence be interpreted as the space of community-level kinetically neutral perturbations.
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Dynamics in the null space of A are characterized by the basis formed by the two mode vectors
EFM1 and EFM2 as well as the two eigenvalues (A13). Using the viable state condition ηg1 = D,
(A13) reduces to

λ2,3 =
1
2
((( f g1)O2 − g1,IC)P1 − D)

±1
2

[
((( f g1)O2 − g1,IC)P1 + D)2 − (4ηIC − 3ηO2)g2

1P1 −
17
10

(ηICg1,O2 − ηICg1,O2)g1P1

]1/2

Note that the real parts of both λ1 and λ2 are negative under the assumptions that derivatives
with respect to IC are non-negative, derivatives with respect to O2 are non-positive, and condition (17)
holds, i.e., the viable state, when it exists, is stable under the conditions that we consider
biologically reasonable.

Next we present stability analyses for steady states of the two species system (38)–(42), which
has three types of steady state solutions: the washout solution with P1 = P2 = 0, the single species
solution with P1 > 0, P2 = 0, and the coexistence solution P1, P2 > 0. We present stability analyses
only for the washout and single species states. (The coexistence steady state was explored numerically
instead). Note that if P2 = 0 then (38)–(41) reduce, essentially, to (28)–(31), so that steady states for the
washout and single species systems are the same as previously (with the addition that P2 = 0), though
their stability status in principle might be different. System (38)–(41) linearizes to

d
dt



∼
IC(t)
∼

OC(t)
∼
O2(t)
∼
P1(t)
∼
P2(t)


= J(2)(IC∗, OC∗, O∗2 , P∗1 , P∗2)



∼
IC(t)
∼

OC(t)
∼
O2(t)
∼
P1(t)
∼
P2(t)


(A15)

In the cases under consideration of steady state solutions with P∗2 = 0, the Jacobian matrix takes
the form

J(2) =


−g1,ICP1 − D 0 −g1,O2 P1 −g1 g2

((1− η)g1),ICP1 −D ((1− η)g1),O2 P1 (1− η)g1 −2g2

( f (η)g1),ICP1 0 ( f (η)g1),O2 P1 − D f (η)g1 − 1.9
4 g2

(ηg1),ICP1 0 (ηg1),O2 P1 ηg1 − D 0
0 0 0 0 g2 − D

 =


J(1)

g2

−2g2

− 1.9
4 g2

0
0 0 0 0 g2 − D


Much of our stability results for the one species case are still of use here. Note that J(2) shares

the same eigenvalues (and multiplicities) as J(1) with the addition of an extra eigenvalue g2 − D.
Eigenvectors of J(1) are also eigenvectors of J(2), corresponding to the same eigenvalues, with a 0 in
the fifth component corresponding to P2 concentration perturbations. The only remaining item to be
determined is the eigenvector corresponding to the new eigenvalue g2 − D.
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Proceeding as in the one species case, from (26) and (27)

d
dt

 ∼
C
∼

DoR

 =
d
dt

 ∼
IC +

∼
OC +

∼
P1 +

∼
P2

3
∼

OC− 4
∼
O2 + 4.7

∼
P1 + 4.1

∼
P1



=

(
1 1 0 1 1
0 3 −4 4.7 4.1

)
d
dt



∼
IC
∼

OC
∼
O2
∼
P1
∼
P2


= −D

 ∼
C
∼

DoR



Hence, for any perturbation, its component normal to the null space of

B =

(
1 1 0 1 1
0 3 −4 4.7 4.1

)
(A16)

is damped (eventually) as e−Dt, that is, excess or deficience in the initial perturbation of total carbon
and degree of reduction is removed from the system through outflow on the chemostat turnover
time scale. Note again, thus, that we can therefore characterize the dynamics described by the five
dimensional system (A15) if we can characterize the dynamics on a three dimensional subspace

consisting of the null space of B, i.e., the subspace defined by
∼
C = 0,

∼
DoR = 0 (no net perturbation of

total carbon or degree of reduction).
Continuing to proceed as before, we note that the null space of B can be interpreted as the two

species flux mode space and is spanned by the vectors

EFM1 =


−1

0
4.7/4

1
0

 , EFM2 =


−1

1
3/4

0
0

 , EFM3 =


1
−2

−1.9/4
0
1

 ,

that encode the effect of the three elementary flux modes shown in Figure 3 on external concentrations.
As before, perturbation by increasing or decreasing flux through the photosynthesis-driven
biosynthesis mode corresponds to perturbation in the direction EFM1 (one Cmole biomass and
4.7/4 Omoles produced per Cmole inorganic carbon consumed) and perturbation by increasing or
decreasing flux through the photorespiration mode corresponds to perturbation in the direction EFM2

(one Cmole organic carbon and 3/4 Omoles produced per Cmole inorganic carbon consumed). The new
vector EFM3 corresponds to perturbation that increases or decreases flux through the heterotroph
biosynthesis mode (one Cmole biomass and 1 Cmole inorganic carbon produced per two Cmoles
organic carbon and 1.9/4 Omoles consumed).

Washout State (Two Species System). For the two species washout state (P1 = P2 = 0) along
with IC = IC0, OC = 0, O2 = O2,0,

J(2)|P1,P2=0 =


−D 0 0 −g1 0

0 −D 0 (1− η)g1 0
0 0 −D f (η)g1 0
0 0 0 ηg1 − D 0
0 0 0 0 −D

 (A17)
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(note from (20) that g2|OC=0 = 0) with g1 and η evaluated at IC = IC0, OC = 0, O2 = O2,0.
Note that (A17) has, in common with (A13), eigenvalues λ1 = −D < 0 (with multiplicity 4)
and λ2 = ηg1 − D. Hence, again, the washout state is stable if λ2 < 0 and unstable if λ2 > 0.
The eigenspaces for (A17) are

E0
1 = span




1
0
0
0
0

 ,


0
1
0
0
0

 ,


0
0
1
0
0

 ,


0
0
0
0
1




, E0

2 = span




−1

1− η

f (η)
η

0




.

Perturbations without introduction of phototrophs decay at rate −D. As before, when a small
quantity of phototrophs are added to the system, in the unstable case, dynamics effectively reduce to
exponential growth on the one dimensional space E0

2, with P1, OC, and O2 growing and IC decaying,
in relative ratios as indicated by the entries of the eigenvector for λ2. Note in particular that the
P2-component of the λ2-eigenvector is zero, indicating that the heterotroph is unable to invade. That is,
the heterotroph requires an already established population of phototrophs (with corresponding finite
supply of organic carbon) before it can become viable. Note as before that λ2-eigenvector can be
written η EFM1 + (1 − η) EFM2, indicating again that the linearized growth dynamics occurs as
a combination of the photosynthesis mode and the photorespiration mode weighted by the branching
parameter η(IC0, O2,0).

Single Species State: Invasion (Two Species System). The Jacobian matrix for the base steady
state is

J(2) =


J(1)|P1>0

g2

−2g2

− 1.9
4 g2

0
0 0 0 0 g2 − D

 (A18)

where J(1)|P1>0 is as given in (A14) and, in addition, g2 is evaluated at OC∗ and O∗2 . As previously, the
eigenvalues of J(1)|P1>0 are also eigenvalues of J(2) with identical eigenspaces, except with zeros in the
new, fifth component of the two species system corresponding to perturbations in the P2 component.

Hence the dynamics in those eigenspaces are independent of perturbation to
∼
P2, and, by assumption,

the dynamics on those eigenspaces are stable. The new eigenvalue is λ4 = g2 − D with eigenspace
E1

4 = span{v4}, where v4 6= 0 satisfied J(2)v4 = λ4v4. Note that v4 is necessarily a linear combination
of the three mode vectors EFM1, EFM2, and EFM3. It is easily seen in the case of large g2(OC∗, O∗2)
that v4

∼= EFM3, that is, the instability dynamics are dominated by the heterotrophic growth mode.
When growth is not as dominant, the relative role of phototroph flux modes in maintaining carbon
and DoR balance is more significant.

Appendix E. Optimization in the Single Species Chemostat With Respect to Affinity

We consider a unique, viable solution (IC∗, OC∗, O∗2 , P∗1) to Equations (A1)–(A4), under the
assumptions of Appendix C, as a function of affinity parameter γ1. In particular, we show that
(d/dγ1) P∗1 < 0 for γ1 > 0, i.e., steady state biomass increases with decreasing γ1 To do so, we compute
the variation with respect to γ1 of the solution to Equations (A5) and (A6). In particular, perturbing
γ1 → γ1 + ∆γ1, then perturbed quantities IC∗ + ˜IC ∆γ1 and O∗2 + Õ2 ∆γ1 satisfy, to linear order,(

A B
C D

)(
ĨC
Õ2

)
=

(
E
F

)
, (A19)
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where

A = (ηg1)
∗
,IC,

B = (ηg1)
∗
,O2

,

C = f ′(η∗)η∗,IC(IC0 − IC∗)− f (η∗),

D = f ′(η∗)η∗,O2
(IC0 − IC∗)− 1,

E = −η∗,γ1
g∗1

F = − f ′(η∗)η∗,γ1
(IC0 − IC∗).

Here, superscript ∗ corresponds to evaluation at IC=IC∗, O2=O∗2 .
System (A19) has solution(

ĨC
Õ2

)
=

1
AD− BC

(
DE− BF
AF− CE

)
. (A20)

Computing,

AD− BC = (η∗,O2
g1,IC − η∗,ICg1,O2 ) f ′(η∗)η∗(IC0 − IC) + g∗1( f (η∗)η∗,O2

− η∗,IC) + η∗( f (η∗)g∗1,O2
− g∗1,IC)

which, assuming stability condition (17), is strictly negative. Hence, (A20) is the unique solution
to (A19).

To compute the variation of P̃1, we take the the variation of Equation (A7) and, using
solution (A20), obtain after some computation

d
dγ1

P∗1 = (η∗,γ1
+ η∗,ICIC∗,γ1

+ η∗,O2
O∗2,γ1

)(IC0 − IC∗)− η∗IC∗,γ1

= −η∗η∗,γ1

IC0 − IC∗

AD− BC

(
g∗1,IC −

3
4

g∗1,O2
+

g∗1
IC∗ − IC0

)
< 0,

as was to be shown.

Appendix F. Invasion Eigenvector

The eigenvector v4 for the invasion dynamics matrix (A18) can be computed from row reducing
the equation J(2) − λ4 I = 0, leading to the diagonal system (solvable by back-substitution) for
v4 = (ic, oc, o2, p1, p2)

0 = (g1,ICP∗1 + g2)ic + g1,O2P∗1o2 + g1 p1 + g2 p2

0 = (((1 + η)g1)ICP∗1 + 2g2)ic + g2oc + ((1 + η)g1)O2 o2 + (1 + η)g1 p1

0 = ((Fg1)ICP1 − (19/40)g2)ic + ((Fg1)O2P∗1 − g2)o2 + Fg1 p1

0 =

(
(ηg1)ICP∗1 +

g2 − ηg1

Fg1
((Fg1)ICP∗1 − (19/40)g2)

)
ic

+

(
(ηg1)O2P∗1 +

g2 − ηg1

Fg1
((Fg1)O2P∗1 − (19/40)g2)

)
o2

with F = (11/40) + (17/40)η and all quantities evaluated at the steady state values IC∗, OC∗, O∗2 , P∗1 ,
as well as P∗2 = 0. Recall that all non-differentiated quantities are non-negative, that all derivatives
with respect to IC are non-negative (with g1,IC strictly positive) and all derivatives with respect to O2

are non-positive, and that, evaluated at the starred quantities, ηg1 = D.
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If the eigenvalue g2 − D > 0, with g2 evaluated at steady state values, then the phototroph-only
steady state is unstable to perturbations along eigenvector v. The case g∗2 � D = η∗g∗1
(with η∗ = η(IC∗, O∗2), g∗1 = g1(IC∗, O∗2), g∗2 = g2(OC∗, O∗2)), i.e., heterotroph growth time scale short
in comparison to washout time, is informative. Expanding all quantities in powers of η∗g∗1/g∗2 , e.g.,

IC(t) = IC(0)(t) +
η∗g∗1

g∗2
IC(1)(t) +

(
η∗g∗1

g∗2

)2
IC(2)(t) + . . . ,

and similarly for OC, O2, P1, and P2, we can apply standard asymptotic methods to approximate
solutions order by order. To leading order, we find

OC(0) = −2IC(0)

O(0)
2 = −19

40
IC(0)

P(0)
1 = 0

P(0)
2 = IC(0)

Note that during the transient period of the initial invasion, intuition for heterotroph benefit to
phototrophs holds: introduction of heterotrophs, i.e., P(0)

2 > 0, results in increase in inorganic carbon
concentration, i.e., IC(0) > 0, and decrease in organic carbon and oxygen concentrations, i.e., OC(0),
O(0)

2 < 0. Note that these perturbations are consistent with the stoichiometry of EFM3, and that there
is no effect of phototroph population at this order, a consequence of the g∗2 � η∗g∗1 asymptotics, but at
the next order,

P(1)
1 =

(
(η∗g∗1)IC −

19
40

(η∗g∗1)O2

)
P∗1

η∗g∗1
P(0)

2 .

so that P(1)
1 is positive if P(0)

2 > 0, i.e., phototroph population biomass increases with introduction of
heterotrophs in the transitory invasion period.
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