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Abstract: We address in the paper the problem of designing an economic model predictive control
(EMPC) algorithm that asymptotically achieves the optimal performance despite the presence of
plant-model mismatch. To motivate the problem, we present an example of a continuous stirred tank
reactor in which available EMPC and tracking model predictive control (MPC) algorithms do not
reach the optimal steady state operation. We propose to use an offset-free disturbance model and to
modify the target optimization problem with a correction term that is iteratively computed to enforce
the necessary conditions of optimality in the presence of plant-model mismatch. Then, we show how
the proposed formulation behaves on the motivating example, highlighting the role of the stage cost
function used in the finite horizon MPC problem.

Keywords: model predictive control (MPC); real-time optimization (RTO); economic model predictive
control (EMPC); modifier-adaptation

1. Introduction

Optimization-based controllers, in general, and model predictive control (MPC) systems,
in particular, represent an extraordinary success case in the history of automation in the process
industries [1]. MPC algorithms exploit a (linear or nonlinear) dynamic model of the process
and numerical optimization algorithms to guide a process to a setpoint reliably, while fulfilling
constraints on outputs and inputs. The optimal steady-state setpoint is usually provided by an upper
layer, named real-time optimization (RTO), that is dedicated to economic steady-state optimization.
The typical hierarchical architecture for economic optimization and control in the process industries is
depicted in Figure 1. For an increasing number of applications, however, this separation of information
and purpose is no longer optimal nor desirable [2]. An alternative to this decomposition is to take the
economic objective directly as the objective function of the control system. In this approach, known as
economic model predictive control (EMPC), the controller optimizes directly, in real time, the economic
performance of the process, rather than tracking a setpoint.

MPC being a model-based optimization algorithm, in the presence of plant-model mismatch or
unmeasured disturbances, it can come across offset problems. Non-economically optimum stationary
points can also be the result of a plant-model mismatch in model-based RTO. However, as explained
later, some RTO algorithms do not use a model, i.e., extremum-seeking control [3,4], so in this case, the
mismatch issue can be associated with unmeasured disturbances. The offset correction in tracking
MPC algorithms has been deeply exploited and analyzed. Muske and Badgwell [5] and Pannocchia
and Rawlings [6] first introduced the concept of general conditions that allow zero steady-state offset
with respect to external setpoints. The general approach is to augment the nominal system with
disturbances, i.e., to build a disturbance model and to estimate the state and disturbance from output
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measurements. A recent review about disturbance models and offset-free MPC design can also be
found in [7]. Furthermore, in the RTO literature, many works are focused on plant-model mismatch
issues. RTO typically proceeds using an iterative two-step approach [8,9], namely an identification
step followed by an optimization step. The idea is to repeatedly estimate selected uncertain model
parameters and to use the updated model to generate new inputs via optimization. Other alternative
options do not use a process model online to implement the optimization [10–12]. Others utilize
a nominal fixed process model and appropriate measurements to guide the iterative scheme towards
the optimum. In this last field, the term “modifier-adaptation” indicates those fixed-model methods
that adapt correction terms (i.e., the modifiers) based on the observed difference between actual
and predicted functions or gradients [13–15]. Marchetti et al. [16] formalize the concept of using
plant measurements to adapt the optimization problem in response to plant-model mismatch,
through modifier-adaptation.

Actuators and Sensors

Distributed Control System
(PID Controls)

Advanced control systems:
MPCs

Real Time Optimization

Supply chain optimization:
planning, scheduling

(continuous)

(10-100 ms)

(30-120 s)

(1-2 h)

(1-7 days)

Figure 1. Typical hierarchical optimization and control structure in process systems.

As underlined above, the RTO and MPC hierarchical division issue has led to the increased
interest in merging the two layers. Many works in the literature consider a combination between
RTO and MPC through a target calculation level in the middle that coordinates the communication
and guarantees stability to the whole structure calculating the feasible target for the optimal control
problem [17,18]. There are also examples of integration between the modifier-adaptation technique
and MPC [19]: in this way, the input targets calculated by the MPC are included as equality constraints
into the modified RTO problem. In other cases, the target module of the MPC has been modified in
various ways, including a new quadratic programming problem that is an approximation of the RTO
problem [20].

Another area of the literature aimed at merging the two layers is the so-called dynamic real-time
optimization (D-RTO). The objective function of the D-RTO includes an economic objective, subject to
a dynamic model of the plant. The optimal control profiles are then determined from the solution of
the above dynamic optimization problem and then passed to the underlined MPC layer as trajectory
setpoints to follow. The advantages of this formulation in the presence of disturbances have been
deeply emphasized in the literature [21,22], also in the case of model-free alternatives [23]. The D-RTO
is also seen as a solution for merging economic and control layer, while advances in nonlinear model
predictive control and its generalization to deal with economic objective functions taking place [24].
In this sense, a receding horizon closed-loop implementation of D-RTO can be also referred to as
economic model predictive control [25].
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In the presence of plant-model mismatch, also EMPC can suffer from converging to
a non-economically steady-state point and also reaching a steady state different from the one indicated
by the target at the same time. The main goal of this work is to build an economic MPC algorithm
that, combining the previous ideas of offset-free MPC and modifier-adaptation, achieves the ultimate
optimal economic performance despite modeling errors and/or disturbances. In the proposed method,
there is no RTO layer because the economic cost function is used directly in the MPC formulation,
which however includes a modifier-adaptation scheme.

The rest of this paper is organized as follows. A review of the related technique used in this work
is presented in Section 2 along with a motivating example. The proposed method, with a detailed
mathematical analysis and description, is presented in Section 3. The algorithm and several variants
are then tested over the illustrative example, and the numerical results and associated discussions are
reported in Section 4. Finally, Section 5 concludes the paper and presents possible future directions of
this methodology.

2. Related Techniques and a Motivating Example

In order to propose an offset-free EMPC algorithm, a review of related concepts and techniques
is given. Then, we present a motivating example that shows how neither the standard EMPC
formulation nor an offset-free tracking MPC formulation are able to achieve the ultimate optimal
economic performance.

2.1. Plant, Model and Constraints

In this paper, we are concerned with the control of time-invariant dynamical systems in the form:

x+p = Fp(xp, u)

y = Hp(xp) (1)

in which xp ∈ Rn, u ∈ Rm, y ∈ Rp are the plant state, control input and output at a given time,
respectively, and x+p is the successor state. The plant output is measured at each time k ∈ I.
Functions Fp: Rn × Rm → Rn and Hp: Rn → Rp are not known precisely, but are assumed to be
differentiable. In order to design an MPC algorithm, a process model is known:

x+ = f (x, u)

y = h(x) (2)

in which x, x+ ∈ Rn denote the current and successor model states. The functions f : Rn ×Rm → Rn

and h: Rn → Rp are assumed to be differentiable. Input and output are required to satisfy the following
input and output constraints at all times:

umin ≤ u ≤ umax, ymin ≤ y ≤ ymax (3)

in which umin, umax ∈ Rm and ymin, ymax ∈ Rp are the bound vectors.

2.2. Offset-Free Tracking MPC

Offset-free MPC algorithms are generally based on an augmented model [5,6,26,27]. The general
form of this augmented model can be written as:

x+ = F(x, u, d)

d+ = d

y = H(x, d) (4)
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in which d ∈ Rnd is the so-called disturbance. The functions F: Rn × Rm × Rnd → Rn and H:
Rn ×Rnd → Rp are assumed to be continuous and consistent with (2), i.e., F(x, u, 0) = f (x, u) and
H(x, 0) = h(x).

Assumption 1. The augmented system (4) is observable.

At each time k ∈ I, given the output measurement y(k), an observer for (4) is defined to estimate
the augmented state (x(k), d(k)). For simplicity of exposition, only the current measurement of y(k)
is used to update the prediction of (x(k), d(k)) made at the previous decision time, i.e., a “Kalman
filter”-like estimator is used. We define symbols x̂k|k−1, d̂k|k−1 and ŷk|k−1 as the predicted estimate
of x(k), d(k) and y(k), respectively, obtained at the previous time k − 1 using the augmented
model (4), i.e.,

x̂k|k−1 = F(x̂k−1|k−1, uk−1, d̂k−1|k−1)

d̂k|k−1 = d̂k−1|k−1

ŷk|k−1 = H(x̂k|k−1, d̂k|k−1) (5)

Defining the output prediction error as:

ek = y(k)− ŷk|k−1 (6)

the filtering relations can be written as follows:

x̂k|k = x̂k|k−1 + κx(ek)

d̂k|k = d̂k|k−1 + κd(ek) (7)

where x̂k|k and d̂k|k are the filtered estimate of x(k) and d(k) in (4) obtained using measurement y(k).
We assume that Relations (5)–(7) form an asymptotically-stable observer for the augmented system (4).

Given the current estimate of the augmented state (x̂k|k, d̂k|k), an offset-free tracking MPC
algorithm computes the steady-state target that ensures exact setpoint tracking in the controlled
variable. Hence, in general, the following target problem is solved:

min
x,u,y

`s(y− ysp, u− usp) (8a)

subject to

x = F(x, d̂k|k, u) (8b)

y = H(x, d̂k|k) (8c)

umin ≤ u ≤ umax (8d)

ymin ≤ y ≤ ymax (8e)

in which `s: Rp ×Rm → R is the steady-state cost function and ysp ∈ Rp, usp ∈ Rm are the output
and input setpoints, respectively. We assume (8) is feasible, and we denote its (unique) solution as
(xs,k, us,k, ys,k). Typically, `s(·) is positive definite in the first argument (output steady-state error) and
semidefinite in the second argument (input steady-state error), and relative input and output weights
are chosen to ensure that ys,k → ysp whenever constraints allow it.



Processes 2017, 5, 2 5 of 21

Let x = {x0, x1, . . . , xN} and u = {u0, u1, . . . , uN−1} be, respectively, a state sequence and an input
sequence. The finite horizon optimal control problem (FHOCP) solved at each time is the following:

min
x,u

N−1

∑
i=0

`QP(xi − xs,k, ui − us,k) + Vf (xN − xs,k) (9a)

subject to

x0 = x̂k|k, (9b)

xi+1 = F(xi, d̂k|k, ui), i = 0, . . . , N − 1 (9c)

umin ≤ ui ≤ umax, i = 0, . . . , N − 1 (9d)

ymin ≤ H(xi, d̂k|k) ≤ ymax i = 0, . . . , N − 1 (9e)

xN = xs,k (9f)

in which `QP: Rn × Rm → R≥0 is a strictly positive definite convex function. Vf : Rn → R≥0 is
a terminal cost function, which may vary depending on the specific MPC formulation, according to
the usual stabilizing conditions [28]. Assuming Problem (9) to be feasible, its solution is denoted by
(x0

k , u0
k), and the associated receding horizon implementation is given by:

uk = u0
0,k (10)

As the conclusion of this discussion, the following result holds true [5,6,29].

Proposition 1. Consider a system controlled by the MPC algorithm as described above. If the closed-loop
system is stable, then the output prediction error goes to zero, i.e.,

lim
k→∞

y(k)− ŷk|k−1 = 0 (11)

Furthermore, if input constraints are not active at steady state, there is zero offset in the controlled variables,
that is:

lim
k→∞

y(k)− ysp = 0 (12)

2.3. Economic MPC

As can be seen from Figure 1, setpoints (ysp, usp) that enter in (8) come from the upper economic
layer referred to as the RTO. This hierarchical division may limit the achievable flexibility and economic
performance that many processes nowadays request. There are several proposals to improve the
effective use of dynamic and economic information throughout the hierarchy. As explained in Section 1,
the first approach to this merging is the D-RTO. While many D-RTO structures have been proposed
throughout the literature [23,30,31], many of the two-layered D-RTO and MPC systems proposed
are characterized by a lack of rigorous theoretical treatment, including the constraints. However,
as can be seen in the above cited literature, the D-RTO formulations still consider the presence of
both RTO and MPC in separated layers. Instead of moving the dynamic characteristic to the RTO
level, the interest here is to move economic information into the control layer. This approach involves
modifying the traditional tracking objective function in (9) and the target cost function in (8) directly
with the economic stage cost function used in the RTO layer. In this latter case, the formulation takes
the name of economic MPC (EMPC) [32]. It has to be underlined that, in this case, the economic
optimization is provided only by the EMPC layer, while the RTO one is completely eliminated.



Processes 2017, 5, 2 6 of 21

In standard MPC, the objective is designed to ensure asymptotic stability of the desired steady
state. This is accomplished by choosing the stage cost to be zero at the steady-state target pair,
denoted (xs, us), and positive elsewhere, i.e.,

0 = `QP(xs, us) ≤ `QP(x, u) for all admissible (x, u) (13)

In EMPC, instead, the operating cost of the plant is used directly as the stage cost in the FHOCP
objective function. As a consequence, it may happen that `e(xs, us) > `e(x, u) for some feasible pair
(x, u) that is not a steady state. This possibility has significant impact on stability and convergence
properties. In fact, while a common approach in the tracking MPC is to use the optimal cost as
a Lyapunov function for the closed-loop system to prove its stability, in the EMPC formulation, due to
the fact that (13) does not hold, these stability arguments fail. Hence, for certain systems and cost
functions, oscillating solutions may be economically more profitable than steady-state ones, giving rise
to the concept of average asymptotic performance of economic MPC, which is deeply developed
in [32,33]. Despite that, in the literature, there are also formulations of the Lyapunov-based EMPC by
taking advantage of an auxiliary MPC problem solution [34,35].

In this work, we assume that operating at steady-state is more profitable than an oscillating
behavior. Hence, in order to delineate the concept of convergence in EMPC, two other properties may
be useful: dissipativity [32,36] and turnpike [37,38]. These properties play a key role in the analysis
and design of schemes for D-RTO and EMPC. It is shown also that in a continuous-time form, the
dissipativity of a system with respect to a steady state implies the existence of a turnpike at this steady
state and optimal stationary operation at this steady state [39,40]. An extensive review about EMPC
control methods can be found in [41,42].

The starting EMPC algorithm considered in this work is taken from [29] and includes an offset-free
disturbance model as described in Section 2.2. Given the current state and disturbance estimate
(x̂k|k, d̂k|k), the economic steady-state target is given by:

min
x,u,y

`e(y, u) (14a)

subject to

x = F(x, d̂k|k, u) (14b)

y = H(x, d̂k|k) (14c)

umin ≤ u ≤ umax (14d)

ymin ≤ y ≤ ymax (14e)

in which `e: Rp × Rm → R is the economic cost function defined in terms of output and input.
Notice that the arguments of the economic cost function are measurable quantities. Let (xs,k, us,k, ys,k)

be the steady-state target triple solution to (14). Then, the FHOCP solved at each time is given by:

min
x,u

N−1

∑
i=0

`e(H(xi, d̂k|k), ui) (15a)

subject to

x0 = x̂k|k, (15b)

xi+1 = F(xi, d̂k|k, ui), i = 0, . . . , N − 1 (15c)

umin ≤ ui ≤ umax, i = 0, . . . , N − 1 (15d)

ymin ≤ H(xi, d̂k|k) ≤ ymax, i = 0, . . . , N − 1 (15e)
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xN = xs,k (15f)

While several formulations of economic MPC are possible, in this work, we use a terminal equality
constraint to achieve asymptotic stability [36]. We remark that the target equilibrium xs,k is recomputed
at each decision time by the target calculation problem (14).

2.4. A Motivating Example

2.4.1. Process and Optimal Economic Performance

In order to motivate this work, we show the application of EMPC formulations to a chemical
reactor to highlight how available methods are not able to achieve the optimal economic performance
in the presence of modeling errors. The chemical reactor under consideration is a continuous stirred
tank reactor (CSTR), in which two consecutive reactions take place:

A
k1−→ B

k2−→ C (16)

The reactor is described by the following system of ordinary differential equations (ODE):

ċA =
Q
V
(cA0 − cA)− k1cA (17)

ċB =
Q
V
(cB0 − cB) + k1cA − k2cB

in which cA and cB are the molar concentrations of A and B in the reactor, cA0 and cB0 are the
corresponding concentrations in the feed, Q is the feed flow rate, V is the constant reactor volume and
k1 and k2 are the kinetic constants. The feed flow rate entering the reactor is regulated through a valve,
i.e., Q is the manipulated variable. For the sake of simplicity, the reactor is assumed to be isothermal,
so the fixed parameters of the actual system are shown in Table 1.

Table 1. Actual reactor parameters.

Description Symbol Value Unit

Kinetic Constant 1 k1 1.0 min−1

Kinetic Constant 2 k2 0.05 min−1

Reactor volume V 1.0 m3

A feed concentration cA0 1.0 kmol
m3

B feed concentration cB0 0.0 kmol
m3

A price βA 1.0 e
kmol

B price βB 4.0 e
kmol

The process economics can be expressed by the running cost:

`(Q, cB) = βAQcA0 − βBQcB (18)

where βA, βB are the prices for the reactants A and B, respectively, also reported in Table 1.
Using the actual process parameters reported in Table 1, we can compute the process optimal

steady-state, by solving the following optimization problem:

min
Q

βAQcA0 − βBQcB (19a)
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subject to

Q
V
(cA0 − cA)− k1cA = 0 (19b)

Q
V
(cB0 − cB) + k1cA − k2cB = 0 (19c)

0 ≤ cA ≤ cA0 (19d)

0 ≤ cB ≤ cA0 (19e)

The result of this optimization is Qopt = 1.043 m3/min, cA,opt = 0.511 kmol/m3 and
cB,opt = 0.467 kmol/m3, which represents the most economic steady state that the actual process
can achieve.

2.4.2. Model and Controllers

The definition of the states, input and outputs is the following:

x =

[
cA
cB

]
, u =

[
Q
]

, y =

[
cA
cB

]
. (20)

For controller design, the second kinetic constant is supposed to be uncertain, i.e., the value
known by the controller is k̄2, instead of k2. With these definitions, the model equations become:[

ẋ1

ẋ2

]
=

[
u
V (cA0 − x1)− k1x1

u
V (cB0 − x2) + k1x1 − k̄2x2

]
(21)

We compare the closed-loop behavior of three EMPC algorithms, all designed according to
Section 2.3 using the same nominal model (21), cost function and a sampling time of τ = 2.0 min.
Specifically, the target optimization problem is given in (14), and the FHOCP is given in (15), where
the economic cost function is:

`e(y(ti), u(ti)) =
∫ ti+τ

ti

`(u(t), y2(t))dt =
∫ ti+τ

ti

[βAu(t)cA0 − βBu(t)y2(t)] dt (22)

We note that the use of the cost function integrated over the sampling time is necessary to achieve
an asymptotically stable closed-loop equilibrium. As a matter of fact, if the point-wise evaluation of
`(·) were used as stage cost `e(·), the system would not be dissipative [36], i.e., the closed-loop system
would not be stable. The three controllers differ in the augmented model:

• EMPC0 is the standard economic MPC and uses no disturbance model, i.e., F(x, u, d) = f (x, u)
and H(x, d) = h(x) = x.

• EMPC1 uses a state disturbance model, i.e., F(x, u, d) = f (x, u) + d and H(x, d) = h(x) = x.
• EMPC2 uses a nonlinear disturbance model [29], in which the disturbances act as a correction to

the kinetic constants, i.e., F(x, u, d) is obtained by integration of the following ODE system:

ċA =
q
V
(cA0 − cA)− (k1 + d1)cA (23)

ċB =
q
V
(cB0 − cB) + (k1 + d1)cA − (k̄2 + d2)cB

and H(x, d) = h(x) = x.
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Since the state is measured, for EMPC0, we use x̂k|k = x(k). For EMPC1 and EMPC2, we use
an extended Kalman filter (EKF) to estimate the current state x̂k|k and disturbance d̂k|k, given the
current measurement of x(k), with the following output noise and state noise covariance matrices:

Rk f = 10−8 I and Qk f =

[
10−8 I 0

0 I

]
(24)

We note that Rk f is chosen small because for simplicity of exposition, we are not including
output noise. Furthermore, the ratio between the state covariance (upper diagonal block of Qk f ) and
the disturbance covariance (lower diagonal block of Qk f ) is chosen small to ensure fast offset-free
performance [6].

2.4.3. Implementation Details

In order to proceed for further calculations, a few comments on the implementation details
are needed. The model in (21) has been discretized through an explicit fourth-order Runge–Kutta
method with M = 10 equal intervals for each time step. The FHOCP in (15) is solved with a multiple
shooting approach because it is very advantageous for long prediction horizons and enforces numerical
stability. Simulations are performed using a code developed in Python, and the resulting nonlinear
programming problems are solved with IPOPT (https://projects.coin-or.org/Ipopt) .

2.4.4. Results

Figure 2 shows the closed-loop flow rate obtained with standard EMPC0 in two cases of
uncertainty on k2. In the first case (left), k̄2 = 0.025, i.e., the controller model uses a value of k2,
which is half of the true value. In the second case (right), k̄2 = 0, i.e., the controller model ignores the
second reaction. As can be seen from these plots, in both cases, the controller is unable to drive the
flow rate to the most economic target.
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Figure 2. Closed-loop flow rate Q obtained with standard EMPC0 for two cases of uncertainty in k2:
k̄2 = 0.025 (left) and k̄2 = 0 (right).

Figure 3 shows the corresponding results obtained with EMPC1. Despite the fact that EMPC1
uses a disturbance model, which guarantees offset-free tracking, the controller is still unable to drive
the flow rate to the optimal target.

Finally, Figure 4 shows the corresponding results obtained with EMPC2. In this case, the controller
is able to drive the closed-loop system to the optimal steady state. The reason is that the augmented
model (23) asymptotically converges to the true process because the estimated disturbance d2 ensures
that k̄2 + d2 → k2. However, this approach requires to know exactly where the uncertainties are,
in order to build an ad hoc disturbance model to correct them. Hence, it cannot be used as a general
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rule. With this evidence, it is clear that, at the moment, there is no general formulation for an offset-free
economic MPC, and this is what motivates the present work. In the end, it has to be noted that the
case k̄2 = 0 falls into an unmodeled dynamics problem, i.e., the second reaction is completely ignored
by the model.
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Figure 3. Closed-loop flow rate Q obtained with EMPC1 (state disturbance model) for two cases of
uncertainty in k2: k̄2 = 0.025 (left) and k̄2 = 0 (right).
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Figure 4. Closed-loop flow rate Q obtained with EMPC2 (non-linear state disturbance model) for two
cases of uncertainty in k2: k̄2 = 0.025 (left) and k̄2 = 0 (right).

3. Proposed Method

As introduced in the previous section, we now illustrate the method developed using the
modifier-adaptation technique borrowed from the RTO literature. Before coming to the proposed
method, we give a brief introduction to this technique, referring the interested reader to [14,16] for
more details.

3.1. RTO with Modifier-Adaptation

The objective of RTO is the minimization of some steady-state operating cost function,
while satisfying a number of constraints. Finding the optimal steady-state operation point for the
actual process can be stated as the solution of the following problem:

min
u

Φp(u) (25a)
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subject to

Cp(u) ≤ 0 (25b)

In the above, Φp: Rm → R is the economic performance cost function of the process and Cp:
Rm → Rnc is the process constraint function. As explained before for the MPC case, the exact
process description is unknown, and only a model can be used in the process optimization. Hence,
the model-based economic optimization is represented by the problem:

min
u

Φ(u, θ) (26a)

subject to

C(u, θ) ≤ 0 (26b)

where Φ: Rm → R and C: Rm → Rnc represent the model economic cost function and the model
constraint function, which may depend on uncertain parameters θ ∈ Rnθ . Due to plant-model
mismatch, open-loop implementation of the solution to (26) may lead to suboptimal and even
infeasible operation.

The modifier-adaptation methodology changes Problem (26) so that in a closed-loop execution,
the necessary conditions of optimality (NCO) of the modified problem correspond to the necessary
conditions of Process (25), upon convergence of the algorithm. The following problem shows the
model-based optimization with additional modifiers [16,43]:

ūh = arg min
u

ΦM = Φ(u, θ) + (λΦ
h−1)

Tu (27a)

subject to:

CM = C(u, θ) + (λC
h−1)

T(u− ūh−1) + εC
h−1 ≤ 0 (27b)

in which:

λΦ
h−1 = ∇uΦp(ūh−1)−∇uΦ(ūh−1, θ) (28a)

λC
h−1 = ∇uCp(ūh−1)−∇uC(ūh−1, θ) (28b)

εC
h−1 = Cp(ūh−1)− C(ūh−1, θ) (28c)

In (27) and (28), ūh−1 ∈ Rm represents the operation point, calculated at the previous RTO
iteration h− 1, and the modifiers λΦ

h−1 ∈ Rm, λC
h−1 ∈ Rm×nc , and εC

h−1 ∈ Rnc are evaluated using the
information available at that point. Notice that the model parameters θ are not updated.

Marchetti et al. [16,43] demonstrated that, upon convergence, the Karush–Kuhn–Tucker (KKT)
conditions of the modified problem (27) match the ones of the true process optimization problem (25).
Hence, if second-order conditions hold at this point, a local optimum of the real plant can be found
by the problem modified as in (27). Furthermore, a filtering procedure of the modifiers is also
recommended in order to improve stability and convergence and to reduce sensitivity to measurement
noise. The filtering step is given by the following equations:

λΦ
h = (I − KλΦ)λΦ

h−1 + KλΦ(∇uΦp(ūh)−∇uΦ(ūh, θ)) (29a)

λC
h = (I − KλC )λC

h−1 + KλC (∇uCp(ūh)−∇uC(ūh, θ)) (29b)

εC
h = (I − KεC )εC

h−1 + KεC (Cp(ūh)− C(ūh, θ)) (29c)
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where KλΦ , KλC and KεC (usually diagonal matrices) represent the respective first-order filter constants
for each modifier. An alternative approach to the modifier filtering step (29) is to directly define the
modifiers as the gradient or function differences and then filter the computed inputs to be applied
to the process [44,45]. From (28) and (29), it is clear how the process gradient estimation stage is the
major requirement of this method: actually, the process gradient estimation, is hidden into both ∇uΦp

and∇uCp for calculating λΦ
h and λC

h . This is also the major and tightest constraint for this method [46].
Before presenting the proposed technique, the example in Section 2.4 is tested on the standard

hierarchical architecture RTO plus MPC. The RTO problem is modified as in Marchetti et al. [16]
as follows:

ūh = arg min
u

Φ̃M = Φ(u, y(u, θ) + ε
y
h−1 + (λ

y
h−1)

T
(u− uh−1)) (30a)

subject to

C̃M = C(u, y(u, θ) + ε
y
h−1 + (λ

y
h−1)

T
(u− uh−1)) ≤ 0 (30b)

where ε
y
h and λ

y
h are updated by the following law:

λ
y
h = (I − Kλy)λ

y
h−1 + Kλy(∇uyp(ūh)−∇uy(ūh, θ)) (31a)

ε
y
h = (I − Kεy)ε

y
h−1 + Kεy(yp(ūh)− y(ūh, θ)) (31b)

Figure 5 shows the closed-loop flow rate obtained with modified RTO problem followed by
tracking MPC with output disturbance model in two cases of uncertainty on k2. The weight values used
are Kλy = 0.2 and Kεy = 0.7, and the RTO problem is run every 20 min. As can be seen from Figure 5,
in both cases, the system achieves the optimal input value as expected by the modifier-adaptation
methodology. However, the hierarchical and multi-rate nature of the standard architecture results in
slow convergence towards the economically-optimal target.
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Figure 5. Closed-loop flow rate Q obtained with modified RTO followed by tracking MPC with the
output disturbance model for two cases of uncertainty in k2: k̄2 = 0.025 (left) and k̄2 = 0 (right).

3.2. Proposed Technique

Having shown that, in order to apply this technique to the EMPC, some work is needed. First of
all, in order to be consistent with the offset-free augmented model and to exploit its properties,
an alternative form of the modifier-adaptation technique is adopted. In this way, as illustrated in the
work of Marchetti et al. [16], a linear modification of the model output steady-state function, rather than
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of the cost and constraint functions, independently, in the optimization problem has been preferred.
To this aim, we rewrite the model constraints of the target problem (14) in a more compact form:{

xs = F(xs, d̂k|k, us)

ys = H(xs, d̂k|k)
⇒ ys = G(us, d̂k|k) (32)

in which G: Rm+nd → Rp. Then, the model output steady-state function is “artificially” modified
as follows:

Gλ(us, d̂k|k) = G(us, d̂k|k) + (λG
k−1)

T(us − us,k−1) (33)

where λG
k−1 ∈ Rm×p is a matrix to be defined later on and us,k−1 is the steady-state input target found

at the previous sampling time, k − 1. We observe that in [16], the modified output function also
includes a zero order term, which ensures that Gλ(·)→ Gp(·). However, such a term is unnecessary in
the present framework because the model output convergence is already achieved by the offset-free
augmented model formulation. Hence, only a gradient correction of G is necessary. In order to drive
the target point towards the plant optimal value, we need to calculate λG

k−1 as a result of a KKT
matching of the target optimization problem. In this way, similarly to what has been demonstrated in
the RTO literature, the necessary condition of optimality can be satisfied.

The KKT matching is developed imposing the correspondence of the Lagrangian function gradient
between the plant and model target optimization problems. The procedure is as follows.

Plant: Similarly to Model (32), a steady-state input-output map yp,s = Gp(us) can be defined also
for the actual plant (1). In this way, the plant optimization steady-state problem reads:

min
u

`e(Gp(u), u) (34a)

subject to:

umin ≤ u ≤ umax (34b)

ymin ≤ Gp(u) ≤ ymax (34c)

The Lagrangian function associated with Problem (34) is given by:

Lp(u, π1, π2, π3, π4) = `e(Gp(u), u) + πT
1 (u− umax) + πT

2 (umin − u)+ (35)

πT
3 (Gp(u)− ymax) + πT

4 (ymin − Gp(u)), (36)

then, the first-order necessary optimality KKT conditions for this problem are as follows. If u∗ is
a (local) solution to (34), there exist vectors π∗1 , π∗2 , π∗3 , π∗4 satisfying the following conditions:

∇u`e(u∗, Gp(u∗)) + π∗1 − π∗2 +∇uGp(u∗)π∗3 −∇uGp(u∗)π∗4 = 0 (37a)

u∗ − umax ≤ 0 (37b)

umin − u∗ ≤ 0 (37c)

Gp(u∗)− ymax ≤ 0 (37d)

ymin − Gp(u∗) ≤ 0 (37e)

π∗1 , π∗2 , π∗3 , π∗4 ≥ 0 (37f)

(u∗ − umax)jπ
∗
1,j = 0 j = 1, . . . , m (37g)

(umin − u∗)jπ
∗
2,j = 0 j = 1, . . . , m (37h)

(Gp(u∗)− ymax)jπ
∗
3,j = 0 j = 1, . . . , p (37i)

(ymin − Gp(u∗))jπ
∗
4,j = 0 j = 1, . . . , p. (37j)
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in which π1, π2 ∈ Rm are the multiplier vectors of the input bound constraints (34b), and π3, π4 ∈ Rp

are the multiplier vectors for output bound constraints (34c).
Model: With the modification introduced in (33), the model optimization steady-state problem

can be rewritten as:

min
u

`e(Gλ(u, d̂k|k), u) (38a)

subject to:

umin ≤ u ≤ umax (38b)

ymin ≤ Gλ(u, d̂k|k) ≤ ymax (38c)

The Lagrangian function associated with (38) is given by:

Lm(u, π1, π2, π3, π4) = `e(Gλ(u, d̂k|k), u) + πT
1 (u− umax) + πT

2 (umin − u)+ (39)

πT
3 (Gλ(u, d̂k|k)− ymax) + πT

4 (ymin − Gλ(u, d̂k|k)), (40)

then, the first-order necessary optimality KKT conditions for this problem are as follows. If u∗ is
a (local) solution to (38), there exist vectors π∗1 , π∗2 , π∗3 , π∗4 satisfying the following:

∇u`e(Gλ(u∗, d̂k|k), u∗) + π∗1 − π∗2 +∇uGλ(u∗, d̂k|k)π
∗
3 −∇uGλ(u∗, d̂k|k)π

∗
4 = 0 (41a)

u∗ − umax ≤ 0 (41b)

umin − u∗ ≤ 0 (41c)

Gλ(u∗, d̂k|k)− ymax ≤ 0 (41d)

ymin − Gλ(u∗, d̂k|k) ≤ 0 (41e)

π∗1 , π∗2 , π∗3 , π∗4 ≥ 0 (41f)

(u∗ − umax)jπ
∗
1,j = 0 j = 1, . . . , m (41g)

(umin − u∗)jπ
∗
2,j = 0 j = 1, . . . , m (41h)

(Gλ(u∗, d̂k|k)− ymax)jπ
∗
3,j = 0 j = 1, . . . , p (41i)

(ymin − Gλ(u∗, d̂k|k))jπ
∗
4,j = 0 j = 1, . . . , p. (41j)

KKT matching: To reach the KKT matching, conditions in (41) must converge to
those in (37). We recall that, due to the offset-free augmented model, upon convergence,
we have: G(u∗, d̂k|k)→ Gp(u∗). Furthermore, upon convergence from (33), we also have:
Gλ(u∗, d̂k|k)→ G(u∗, d̂k|k) and therefore Gλ(u∗, d̂k|)→ Gp(u∗). Therefore, in order for (41) to match (37),
Conditions (37a) and (41a) have to be the same:

∇uLp(u∗, π∗) = ∇uLm(u∗, π∗) (42)

where
π∗ = [π∗1 , π∗2 , π∗3 , π∗4 ].

We expand the LHS and RHS in (42) to obtain:

∇u`e(Gp(u∗), u∗) =
[

∂`e(·, u∗)
∂u

+
∂`e(Gp(·), ·)

∂Gp

∂Gp(u∗)
∂u

]T

plant (43)

∇u`e(Gλ(u∗, d̂k|k), u∗) =

[
∂`e(·, u∗)

∂u
+

∂`e(Gλ(·), ·)
∂Gλ

[
∂G(u∗, d̂k|k)

∂u
+ (λG

k−1)
T

]]T

model (44)
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Then, the KKT matching condition is:

∂Gp(u∗)
∂u

=
∂G(u∗, d̂k|k)

∂u
+ (λG

k−1)
T ⇒ (λG

k−1)
T =

∂Gp(u∗)
∂u

−
∂G(u∗, d̂k|k)

∂u
(45)

From (45), we also consider a filtering step and define the following update law for λG
k :

λG
k = (1− αs)λ

G
k−1 + αs

(
∇uGp(us,k)−∇uG(us,k, d̂k|k)

)
(46)

where αs is a scalar first-order filter constant, chosen in the range (0, 1]. In order for the update law (46)
to be applicable, we make the following assumption.

Assumption 2. The gradient of the process steady-state input-output map Gp(·) is known at steady-state points.

In general, the gradient of the process steady-state input-output map Gp(·) can be (approximately)
calculated through measurements of u and y [43,47–49]. We remark that the gradient of the model
steady-state input-output map G(·) instead can be computed from its definition (32) using the implicit
function theorem. As a matter of fact, the gradient of G(·) can be calculated as follows:

∇uG(·) = ∇xH(x, d)
[
(I −∇xF(x, u, d))−1∇uF(x, u, d)

]
(47)

Finally, from the above discussion, the following result is established.

Theorem 1. KKT matching of the target optimization problem: Let the MPC target optimization problem be
defined in (38), with λG

k updated according to (46), and let us,k be its solution at time k. Let the closed-loop system
converge to an equilibrium, with u0

s : limk→∞ us,k being the limit KKT point of the steady-state problem (38).
Then, u0

s is also a KKT point for the plant optimization problem (34).

3.3. Summary

Summarizing, the offset-free economic MPC algorithm proposed in this work is the following.
The estimation stage is taken from the offset-free tracking MPC as described in Section 2.2. Given the
current state and disturbance estimate (x̂k|k, d̂k|k), the economic steady-state target problem is modified
in this way:

min
x,u,y

`e(y, u) (48a)

subject to

x = F(x, d̂k|k, u) (48b)

y = H(x, d̂k|k) + (λG
k−1)

T(u− us,k−1) (48c)

umin ≤ u ≤ umax (48d)

ymin ≤ y ≤ ymax (48e)

in which us,k−1 is the steady-state input target found at the previous sampling time k− 1, and λG
k−1

is defined above in (46). Finally, the FHOCP solved at each time is the one defined in (15), unless
differently specified in the next section.

4. Results and Discussion

Simulation results of the proposed method applied to the reactor example illustrated in Section 2.4
are here reported. We use all simulation parameters defined in Section 2.4, and in addition, we set
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αs = 0.2 for the modifiers update law (46). The first controller that is evaluated, named EMPC1-MT,
uses the same augmented system with state disturbance model as EMPC1 and the same FHOCP
formulation (15). The target problem instead is the modified one reported in (48). The obtained
results are shown in Figure 6. As can be seen from Figure 6, the input target has asymptotically
reached the optimal value (or it is very close to it in the case k̄2 = 0). The actual input value, instead,
reaches an asymptotic value different from the optimal target. As a matter of fact, when the economic
stage cost is used in the FHOCP (15), the offset still remains, and the EMPC formulation does not
seem to have gained particular advantage from the target modification. This is also why for k̄2 = 0,
the target does not reach perfectly the optimal value: as a recursive algorithm, it is obvious how the
dynamic behavior also influences the steady-state target.
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Figure 6. Closed-loop flow rate Q obtained with EMPC1-MT (state disturbance model, modified target
problem) for two cases of uncertainty in k2: k̄2 = 0.025 (left) and k̄2 = 0 (right).

We now consider another controller, named MPC1-MT, which is identical to EMPC1-MT, but uses
a tracking stage cost in the FHOCP, i.e.,

`QP(x̂i, ui) = (x̂i − xs,k)
TQ(x̂i − xs,k) + (ui − us,k)

T R(ui − us,k) (49)

where Q ∈ Rn×n and R ∈ Rm×m are positive definite weight matrices. Results are shown in Figure 7,
from which we observe that the offset is completely eliminated since both the input target and the
actual input value go to the optimal one.The success of the tracking function can be explained by its
design: the goal is to follow the steady-state target, and with the target suitably corrected, the actual
value cannot go elsewhere in an offset-free formulation since the FHOCP cost function is positive
definite around (xs,k, us,k).
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Figure 7. Closed-loop flow rate Q obtained with MPC1-MT (state disturbance model, modified
target problem, tracking cost in the finite horizon optimal control problem (FHOCP)) for two cases of
uncertainty in k2: k̄2 = 0.025 (left) and k̄2 = 0 (right).
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Despite the fact the MPC1-MT asymptotically reaches the optimal steady state, our primary goal
is to build an offset-free economic MPC. Since now, the target problem has been adjusted by the
modifier, results seem to suggest that a similar correction should be done for the FHOCP. Specifically,
we consider the following modified FHOCP:

min
x,u

N−1

∑
i=0

`e(H(xi, d̂k|k), ui) (50a)

subject to:

x0 = x̂k|k, (50b)

xi+1 = F(xi, ui, d̂k|k) + Θx,i(xi, ui), i = 0, . . . , N − 1 (50c)

umin ≤ ui ≤ umax, i = 0, . . . , N − 1 (50d)

ymin ≤ H(xi, d̂k|k) ≤ ymax, i = 0, . . . , N − 1 (50e)

xN = xs,k (50f)

where Θx,i(xi, ui) ∈ Rn is the correction term similar to λG
k−1 for the target module. A KKT matching

performed on the FHOCP reveals that the required modification Θx,i can be approximated as:

Θx,i = (λx
k−1)

T(xi − xs,k) + (λu
k−1)

T(ui − us,k) (51)

where:

λx
k = (1− αx)λ

x
k−1 + αx

(
∇xFp(xp,s,k, us,k)−∇xF(xs,k, us,k, d̂k|k)

)
(52a)

λu
k = (1− αu)λ

u
k−1 + αu

(
∇uFp(xp,s,k, us,k)−∇uF(xs,k, us,k, d̂k|k)

)
(52b)

and xp,s,k is the process state in equilibrium with us,k according to (1). Having chosen constant values
for αx = αu = 0.1, simulation results obtained with this controller, named EMPC1-MT-MD, are shown
in Figure 8. From Figure 8, it can be seen that the offset has disappeared for both cases of uncertainty
on the kinetic constant k2.
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Figure 8. Closed-loop flow rate Q obtained with EMPC1-MT-MD (state disturbance model, modified
target problem, modified FHOCP) for two cases of uncertainty in k2: k̄2 = 0.025 (left) and k̄2 = 0 (right).

Furthermore, a time-varying simulation case is addressed, in which the true kinetic constant k2 of
the process is supposed to be varying during time following this step law:
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k2 =


0.05 if 0 ≤ t < 40

0.03 if 40 ≤ t < 100

0.05 if 100 ≤ t < 160

0.07 if 160 ≤ t < 200

(53)

The controller used for this example is the one named EMPC1-MT-MD, and the reaction scheme
it knows is still the one defined in (21) with the k̄2 value fixed. Simulation results obtained with
this step time-varying disturbance in (53) are shown in Figure 9 where it can be seen that the offset has
disappeared for both cases of uncertainty on the kinetic constant k2.
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Figure 9. Closed-loop flow rate Q obtained with EMPC1-MT-MD (state disturbance model, modified
target problem, modified FHOCP) for cases of unknown time-varying k2: the MPC model uses a fixed
value of k̄2 = 0.025 (left) and k̄2 = 0.025 (right).

In the end, it has to be noted that the majority of methods used for gradient estimation approximate
the process gradient using a collection of previous output data to do a sort of identification [43,47–49].
Similarly, under the assumption that states are measured, i.e., Hp(x) = x, gradients ∇xFp(·) and
∇uFp(·) can be calculated if Assumption 2 holds true.

Further Comments

Currently, configurations that achieve optimal asymptotic operations are:

• EMPC2 (non-linear disturbance model). However, this is sort of an unfair choice. The disturbance
has been positioned exactly where the uncertainties are, and this is cannot be considered as
a general technique.

• MPC1-MT (economic modified target with tracking stage cost). This is the best general
achievement at the moment and allows one to obtain offset-free economic performance for
arbitrary plant-model mismatch.

As a matter of fact, it has to be underlined that, at the moment, the approximated modification
term proposed in (51) works well in this example when there is no uncertainty on the first kinetic
constant k1. In other cases of uncertainty, the offset remains. Hence, further work has to be done to
build a general correction strategy for the FHOCP with economic cost. Furthermore, assumptions
made in this work deserve some comments. The strongest one is Assumption 2, which requires the
availability of process steady-state gradients. For this purpose, we remark that gradient estimation
is an active research area in the RTO literature (see, e.g., [19,43,50,51] and the references therein).
Further work will investigate these approaches. In the end, it has to be noted that the proposed
methodology does not add any computational burden compared to a conventional economic MPC



Processes 2017, 5, 2 19 of 21

algorithm. The modifiers can be updated after each optimization is concluded and inputs are sent to
the plant, and the number of optimization variables is not augmented. Therefore, computation times
are not affected.

5. Conclusions

In this paper, we addressed the problem of achieving the optimal asymptotic economic
performance using the economic model predictive control (EMPC) algorithms despite the presence of
plant-model mismatch.

After reviewing the standard techniques in offset-free tracking MPC and economic MPC,
we presented an example where available MPC formulations fail in achieving the optimal asymptotic
closed-loop performance. In order to eliminate this offset, the modifier-adaptation strategy
developed in the real-time optimization (RTO) field has been taken into consideration and reviewed.
Following this idea, a suitable correction to the target problem of the economic MPC algorithm has
been formulated in order to achieve the necessary conditions of optimality despite the presence of
plant/model mismatch. The proposed modification requires the availability of process gradients
evaluated at the steady state. We then showed that the proposed modification is able to correct the
steady-state target, but the actual closed-loop input may or may not converge to the optimal target
depending on the finite horizon optimal control problem (FHOCP) stage cost. If such a cost is chosen to
be positive definite around the target, as in tracking MPC, the optimal asymptotic behavior is achieved,
although the dynamic performance may be suboptimal. For some cases of uncertainty, we showed
that an economic stage cost can still be used by introducing a modification to the FHOCP.

Finally, we should remark about the main limitations of the current method and suggest future
developments. First of all, the availability of process gradients should be reconsidered and relaxed as
much as possible. Then, a general correction strategy for using an economic stage cost in the FHOCP,
while enforcing convergence to the targets, has to be obtained.
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