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Abstract: In this work, we consider the problem of daily production optimization in the upstream
oil and gas domain. The objective is to find the optimal decision variables that utilize the production
systems efficiently and maximize the revenue. Typically, mathematical models are used to find the
optimal operation in such processes. However, such prediction models are subject to uncertainty that
has been often overlooked, and the optimal solution based on nominal models can thus render the
solution useless and may lead to infeasibility when implemented. To ensure robust feasibility, worst
case optimization may be employed; however, the solution may be rather conservative. Alternatively,
we propose the use of scenario-based optimization to reduce the conservativeness. The results of the
nominal, worst case and scenario-based optimization are compared and discussed.

Keywords: real-time optimization (RTO); uncertainty; worst case optimization; scenario tree;
gas lift optimization

1. Introduction

The offshore production of oil and gas is a complex process where a lot of decisions have to
be taken to meet the goals in the short, medium and long run, ranging from planning and asset
management to small corrective actions. Accounting for all the goals and constraints as a whole is a
very challenging and unrealistic task. Thus, the operation of an oil and gas is typically decomposed
into various decision making processes in a hierarchical fashion that reflects their short-, medium- and
long-term impact [1], as shown in Figure 1. The long-term decisions involve selecting an investment
strategy, operation model, infrastructure etc, which is typically known as asset management. Then,
there are decisions taken on a horizon of one to five years such as selecting drilling schedules and
production and injection strategies, known as reservoir management. This is followed by decisions that
have to be taken on a decision horizon, ranging from a few hours to days known as Daily Production
Optimization. This decision making step would typically constitute selecting the production target from
each well, allocation of resources among the wells such as the available gas lift, power, etc. Thus, from
a process systems perspective, this step is equivalent to real-time optimization (RTO). This is followed
by a control and automation layer that accounts for fast corrective actions. This paper is concerned
with the real-time optimization layer in this hierarchical framework.

Processes 2016, 4, 52; doi:10.3390/pr4040052 www.mdpi.com/journal/processes
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Figure 1. Typical multilevel control hierarchy in oil and gas operations as described in [1].

Daily production optimization generally seeks to maximise the oil and gas production and
reduce the cost of production by choosing optimal setpoints for well production rates, gas lift
rates, etc. A mathematical model is typically employed when optimizing the performance of the
process. To this end, a model is used to predict the outcome of the decision variables on the production,
e.g., a model may describe a production network by predicting the oil flow rate for various gas lift rates
or choke openings. Due to the complexity of the system and difficulty in modelling the multiphase
reservoir inflow and pressure drop in pipelines, models used in production optimization are inherently
uncertain and hence the model may fail to accurately predict the outcome. However, uncertainty
is simply ignored in most of the works in production optimization. The most common approach is
to solve what is known as the deterministic problem with nominal models, where all the uncertain
parameters are assumed to take their expected value. The quality of the optimal solution is heavily
affected when data and model uncertainty are disregarded, and this approach has serious flaws for
constrained optimization problems, which is the case in most real applications. Most uncertainty can
be assumed to arise from the following sources [2]:

• Model uncertainty—in which the underlying structure of the model is uncertain due to lack of
knowledge or model simplification.

• Parametric uncertainty—where the parameters are outdated or have insufficient excitation to be
determined accurately.

• Measurement error—any model to some extent relies on measured data which have a certain
degree of uncertainty.

All the above sources of uncertainty are typical to an oil and gas production network. If special
precautions are not taken, the solution to the optimization problem might be meaningless and thus has
to be disregarded. The uncertainty in the system threatens the relevance of the solution in two facets [3]:

1. The calculated optimal solution, which is thought to be feasible, might actually violate the
problem constraints and therefore be infeasible when implemented.

2. When the optimal solution is feasible, the solution may be far from the actual optimal value, and
hence is suboptimal.

In a technological survey [4], the authors state that the handling of model uncertainty is a key
challenge for the success of production optimization. This challenge is twofold. The first relates the
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need to identify and characterize the uncertainty and the second is to handle the uncertainties in the
production optimization problem. In this paper, we are concerned with the latter where we explicitly
account for the uncertainty in the production optimization problem. We employ robust worst case
optimization, which provides a robust, feasible, yet conservative solution. In order to reduce the
conservativeness without affecting the robust feasibility, we apply scenario tree-based optimization
as introduced in [5,6]. The main contribution of this paper is the control oriented modelling of a gas
lifted well production network suitable for dynamic optimization and the application and comparison
of worst case and scenario-based optimization methods for the production optimization problem
under uncertainty.

The paper is organized as follows. A brief summary of previous work is given in Section 2.
Section 3 describes the gas lifted well process considered in this paper. The optimization problem
is formalized in Section 4. The results are presented and discussed in Sections 5 and 6,
respectively. The methods and software used in this work are described in Section 7 before concluding
the paper in Section 8.

2. Previous Work

In many offshore oil and gas production networks, the production is often constrained by
processing capacity and other such processing constraints. It was pointed out in [7] that not a
lot of work has been done to provide robust procedures to formulate and solve such constrained
optimization problems. Interest in the field of optimization of such oil and gas production networks
has been steadily increasing, and many mathematical tools that assist in decision making have been
proposed. To name a few, see [8–12] and the references therein. Most of the works found in literature
only consider the deterministic problem and hence disregard any uncertainty present in the system.
There are only a very few published works that consider the problem of daily production optimization
under uncertainty. For example, Elgsæter et al. suggested a structured approach for changing the
setpoint in the presence of uncertainty [13]. Although the uncertainty was not considered directly in
the optimization problem itself, but merely to assess the solution, uncertainty was explicitly handled
in the optimization problem in [14] by formulating the optimization solution as a priority list between
the wells. A two-stage optimization formulation for production optimization under uncertainty,
which defines an operational strategy rather than a single operating point, was suggested in [15]
and was demonstrated using static models. Very recently, the production optimization problem was
reformulated as a robust optimization problem following the row-wise and column-wise framework
with cardinality constraints in [16], where a level of protection against the uncertainty is sought at the
cost of conservativeness.

However, not a lot of research has been carried out that aims to reduce the conservativeness of
the solution. Most of the works above also consider a static problem, where the system dynamics are
ignored and static models are used. Dynamic optimization using a multiple shooting algorithm and
generalized reduced gradient method was presented in [12,17]; however, uncertainty was disregarded
in both of the works. To this end, this work presents a dynamic optimization problem that explicitly
handles uncertainty in the daily production optimization problem.

In terms of modelling, gas lifted well models were developed and studied in [18–20] to name a few.
The dynamic models used in all these works are based on the mass balance between the different phases
in the well tubing and annulus. Similar models have also been used in studies for gas lift instabilities
and riser slugging [21]. However, most of these models found in literature have some minor differences
in the assumptions used to fit the purpose of the respective applications. For example, the frictional
pressure drop in pipes have been assumed to be negligible in [18], whereas some other works explicitly
include the frictional pressure drop term. Some works consider simple linear reservoir inflow models
such as in [12,20], whereas nonlinear reservoir inflow models have been used in [19]. Some works,
such as [22,23], consider partial differential equations for the pressure and flow dynamics in the pipe,
which are discretized and solved, whereas ordinary differential equations for mass balance have been
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used in many other works. Despite the minor differences, the dynamic responses of such simple
models based on mass balances have been verified and have been shown to match the results from
commercial high fidelity simulators such as OLGA (a dynamic multiphase simulation software from
Schlumberger) with sufficient accuracy (see [12,20,24]).

3. Process Description

In many oil wells, when the reservoir pressure is not sufficient to lift the fluids economically
to the surface, artificial lift methods are deployed. Gas lift is one such commonly used artificial lift
method, where compressed gas is injected at the bottom of the well via the annulus to reduce the
fluid mixture density. This reduces the hydrostatic pressure drop in the well and the pressure at the
well bottom decreases, thereby increasing the flow from the reservoir. However, injecting too much
gas increases the frictional pressure drop, which has a counter effect on the flow rate. At a certain
point, the benefit of reduced hydrostatic pressure drop is overcome by the increase in the frictional
pressure drop [25]. Hence, each well has a desirable gas lift injection rate. Additionally, there might be
constraints on the total gas available for gas lift or total produced gas capacity constraints that must
not be violated. The objective is then to find the optimal gas lift injection rates for each well such that
the total oil production is maximized.

3.1. Modelling of Gas Lifted Wells

In this section, we give a brief description of the gas lifted well model that is used in the
optimization problem. The model to describe production from each gas lifted well can be given
in four parts: (i) mass balance of the different phases; (ii) density models; (iii) pressure models and
(iv) flow models. The mass balances in each well is given by:

ṁga =wgl − wiv, (1a)

ṁgt =wiv − wpg + wrg, (1b)

ṁot =wro − wpo, (1c)

where mga is the mass of gas in the annulus, mgt is the mass of gas in the well tubing, mot is the mass
of oil in the well tubing, wgl is the gas lift injection rate, wiv is the gas flow from the annulus into the
tubing, wpg and wpo are the produced gas and oil flow rates, respectively, and wrg and wro are the gas
and oil flow rates from the reservoir.

The densities ρa (density of gas in the annulus) and ρm (fluid mixture density in the tubing) are
given by:

ρa =
Mw pa

TaR
, (2a)

ρw =
mgt + mot − ρoLr Ar

Lw Aw
, (2b)

where Mw is the molecular weight of the gas, R is the gas constant, Ta is the temperature in the annulus,
ρo is the density of oil in the reservoir, Lr and Lw are the length of the well above and below the
injection point, respectively, and Ar and Aw are the cross-sectional area of the well above and below
the injection point, respectively.
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The annulus pressure pa, wellhead pressure pwh, well injection point pressure wiv and the bottom
hole pressure pbh are given by:

pa =

(
TaR

Va Mw
+

gLa

La Aa

)
mga, (3a)

pwh =
TwR
Mw

(
mgt

Lw Aw + Lr Ar − mot
ρo

)
, (3b)

pwi = pwh +
g

AwLw
(mot + mgt − ρoLr Ar)Hw, (3c)

pbh = pwi + ρwgHr, (3d)

where La and Aa are the length and cross sectional area of the annulus, La is the length of the annulus,
Tw is the temperature in the well tubing, Hr and Hw are the vertical height of the well tubing below and
above the injection point, respectively, and g is the acceleration of gravity constant. The cross-sectional
area of the annulus and the tubing are computed using their respective diameters, Da and Dw.

The flow through the downhole gas lift injection valve, wiv, total flow through the production
choke, wpc, produced gas and oil flow rate, and the reservoir oil and gas flow rates are given by:

wiv = Civ

√
ρamax(0, pai − pwi), (4a)

wpc = Cpc

√
ρwmax(0, pwh − pm), (4b)

wpg =
mgt

mgt + mot
wpc, (4c)

wpo =
mot

mgt + mot
wpc, (4d)

wro = PI(pr − pbh), (4e)

wrg = GOR · wro, (4f)

where Civ and Cpc are the valve flow coefficients for the downhole injection valve and the production
choke, respectively, PI is the reservoir productivity index, pr is the reservoir pressure, pm is the
manifold pressure and GOR is the gas–oil ratio. Note that there is no pressure coupling between the
wells in the present formulation.

Among the several parameters that describes the production network, some may not be accurately
known. In this work, we assume that the GOR is uncertain, but their expected value E0(GOR) and the
range of values or variance σ are assumed to be known:

GOR ∈ {E0(GOR)± σ} = U . (5)

As seen from Equations (1a)–(4f), the gas lifted well is modelled as a semi-explicit index-1 DAE
(differential algebraic equation) of the form

ẋi = fi(xi, zi, ui, pi), (6a)

gi(xi, zi, ui, pi) = 0 ∀i ∈ N = {1, · · · , nw}, (6b)

where fi(xi, zi, ui, pi) is the set of differential Equations (1a)–(1c) and gi(xi, zi, ui, pi) is the set
of algebraic Equations (2a)–(4f), and the subscript i refers to any individual well from a set of
N = {1, · · · , nw} wells. Note that, for convenience, the subscript i has been removed from the
Equations (1a)–(4f), which represents the model for each gas lifted well.
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The differential states xi, algebraic states zi, decision variables ui, and the uncertain parameters pi
are then given by:

xi =
[
mgai mgti moti

]T
, (7a)

zi =
[
ρai ρmi pai pwii pwhi

pbhi
wivi wpci wpgi wpoi

]T
, (7b)

ui =
[
wgli

]T
, (7c)

pi =
[

GORi

]T
∈ Ui. (7d)

The combined system of nw wells is then denoted by:

ẋ = f (x, z, u, p), (8a)

g(x, z, u, p) = 0, ∀p ∈ U , (8b)

where the combined states x, z and control input u are described by the vectors

x =
[

xT
1 xT

2 · · · xT
nw

]T
, (9a)

z =
[
zT

1 zT
2 · · · zT

nw

]T
, (9b)

u =
[
uT

1 uT
2 · · · uT

nw

]T
. (9c)

The combined parameters and the uncertainty set p and U are given by

p =
[

pT
1 pT

2 · · · pT
nw

]T
, (10a)

U = U1 ×U2 × · · · × Unw . (10b)

Note that the dynamic models (6) and (8) could be easily written as an explicit ODE (ordinary
differential equations) by simply eliminating the algebraic variables.

4. Optimization under Uncertainty

For a production network with a set ofN = {1, · · · , nw}wells, our objective is to find the optimal
gas lift injection rate that maximizes the profit, subject to total gas capacity constraints. The profit
is computed based on the earnings from the oil production and reducing the costs associated with
compressing the gas for gas lift. The economic objective can then be written as:

Jpro f it = αo

nw

∑
i=1

wpoi − αgl

nw

∑
i=1

wgli , (11)

where αo is the price of oil, and αgl is the cost of compressing the gas for gas lift injection.
Before this can be posed as a standard optimization problem, the infinite dimensional optimal

control problem is first discretized into a finite dimensional nonlinear programming problem (NLP)
divided into N equally spaced sampling intervals in K = {1, · · · , N}. This is done using third order
direct collocation, which gives a polynomial approximation of the system (8) as shown in Figure 2.
The set of three collocation points and the initial state in each interval [k, k + 1] is denoted by the index
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c ∈ C = {0, 1, 2, 3}, and the location of these points are computed using the Radau scheme (see [26]).
The discretized states x̃ = (xk,c|k ∈ K, c ∈ C) and z̃ = (zk,c|k ∈ K, c ∈ C) are then given by:

x̃ =
[
xT

1,1 xT
1,2 xT

1,3 xT
2,1 · · · xT

N−1,3 xT
N,1 xT

N,2 xT
N,3

]T
, (12a)

z̃ =
[
zT

1,1 zT
1,2 zT

1,3 zT
2,1 · · · zT

N−1,3 zT
N,1 zT

N,2 zT
N,3

]T
, (12b)

where xk,c represents the combined states for nw wells Equation (9a) at time instant k and the collocation
point c in the interval [k, k + 1]. To ensure continuity of the states between two consecutive time
intervals, the final state variables xk,3 and the initial conditions of the next time interval x0 must be
equal, where the vector of initial states at each interval is represented by:

x0 =
[
xT

1,0 xT
2,0 · · · xT

N,0 xT
N+1,0

]T
. (13)

k k + 1

tk;0 tk;3 = tk+1;0tk;1 tk;2

k k + 1

tk;0 tk;3; tk+1;0tk;1 tk;2

xk;0

xk;1

xk;2

xk;3

x

z
zk;1

zk;2 zk;3

f(xk; zk; uk)

k k + 1

tk;0 tk+1;0tk;1 tk;2

u

Figure 2. Schematic representation of third order direct collocation using Radau scheme showing the
polynomial approximation of dynamic system (8) for a single sampling interval [k, k + 1]. Note that the
differential state has one additional collocation point at tk,0, which is used to ensure state continuity by
enforcing shooting gap constraints. The control input u is piecewise constant over the interval [k, k + 1].

The control inputs ũ = (uk|k ∈ K), which are discretized at each sampling interval, are assumed
to be piecewise constant over each interval and hence are not discretized at the collocation points:

ũ =
[
uT

1 uT
2 · · · uT

N

]T
. (14)

Note that the parameters p are assumed to be time invariant. The discretized system dynamics at
any time instant k can then be written as

F(x̃k, x0
k, z̃k, ũk, p) = 0. (15)
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Once the system has been discretized, the daily production optimization problem can be posed as
a standard NLP problem, divided into N equally spaced sampling intervals in K = {1, · · · , N} on a
prediction horizon from k = 1 to k = N. The vector of decision variables for the NLP problem over
this prediction horizon is then given by:

θ =

[
· · · xT

k,0︸︷︷︸
x0

k

xT
k,1 · · · xT

k,3︸ ︷︷ ︸
x̃k

zT
k,1 · · · zT

k,3︸ ︷︷ ︸
z̃k

uT
k︸︷︷︸

ũk

· · ·
]T

∀k ∈ K, (16)

min
θ

J = −
N

∑
k=1

Jpro f it + γ
N

∑
k=1
‖∆u‖2, (17a)

s.t.

F(x̃k, x0
k, z̃k, ũk, p) = 0 ∀k ∈ K.∀p ∈ U , (17b)

nw

∑
i=1

wpgi ≤ wgMax ∀i ∈ N , (17c)

xl ≤ xk,c ≤ xh ∀k ∈ K, ∀c ∈ C, (17d)

zl ≤ zk,c ≤ zh ∀k ∈ K, ∀c ∈ C, (17e)

ul ≤ uk ≤ uh ∀k ∈ K (17f)

∆ul ≤ ∆uk ≤ ∆uh, ∀k ∈ K (17g)

xk,3 = x0
k+1 ∀k ∈ K, (17h)

x1,0 = x0. (17i)

The objective function is comprised of the economic cost function Equation (11) and in addition
penalizes the control effort using the tuning parameter γ. The total gas capacity constraints are
implemented in Equation (17c), where wgMax is the maximum gas capacity. The discretized dynamic
model is implemented as state constraints Equation (17b). Upper and lower bound constraints
on the differential and algebraic states are implemented at each collocation point and the upper
and lower bound constraints on decision variables are implemented at each sample as shown
in Equations (17d)–(17f). Rate of change constraints on the decision variables are implemented
in Equation (17g). The shooting gap constraints to ensure state continuity are implemented in
Equation (17h). The initial conditions are enforced in Equation (17i). The uncertain parameter GOR
can take any value from a bound uncertainty set, U = {E0(GOR)± σ}.

In the nominal optimization case, the uncertainty is ignored in the optimization problem.
The uncertain parameters are assumed to take their expected values. In this case, the optimization
problem Equation (17) is solved with

GORi = E0(GORi) ∀i ∈ N . (18)

In the case of constrained optimization, the optimal solution is the one where the gas capacity
constraints are active. If the true realization of the uncertain parameters is higher than the expected
value, then the optimal solution provided by the deterministic optimization may lead to infeasibility
when implemented.

To ensure robust feasibility, the uncertain parameters may be assumed to take their worst case
realization in the optimization problem. This was first introduced in 1973 by Soyster where every
uncertain parameter in convex programming was taken equal to its worst case value within a set [27].
Since then, optimization for the worst case value of the parameters within a set has become effectively
known as Robust Optimization. A static robust optimization approach for gas lift well optimization using
the robust counterpart formulation, as described in [3], was recently presented in [16]. However, since
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the uncertainty is simple in the considered problem, the worst case can be easily determined a priori
without explicitly formulating the robust counterpart. Therefore, we do not formulate the optimization
problem using the robust counterpart, but simply take the a priori computed worst case values for
all the uncertain parameters. For the application considered in the paper, we know that the worst
case scenario occurs when the GOR of all the wells takes its maximum realization simultaneously.
Therefore, we simply choose the worst case GOR as shown in Equation (19). To avoid further confusion,
we call this approach “worst case optimization” instead of "robust optimization".

The worst case optimization problem (17) can then be solved with

GORi = ‖Ui‖∞ = E0(GORi) + σi ∀i ∈ N , (19)

since the worst case always occurs for the maximum GOR value for each individual well. However,
the robust solution will be overly conservative, since the probability that all the uncertain parameters
taking its worst case realization will be low. This leads to a suboptimal solution, since the constraints
may not be active, and thus there is spare capacity left.

4.1. Scenario Optimization

The robust formulation does not take into account the fact that new information will be available in
the future. This makes the solution conservative as illustrated in [5]. Closed loop or feedback min–max
MPC (model predictive control) scheme was proposed in [5] to overcome this problem, where the cost
function is minimised over a sequence of control policies rather than control inputs. This problem
may be rather difficult to solve due to its infinite dimension. A multistage NMPC (nonlinear model
predictive control) framework was proposed in [6], where the uncertainty is represented by a tree of
discrete scenarios as shown in Figure 3. In other words, we consider M different models, where each
model has a different value for the uncertain parameters to represent how the uncertainty influences
state propagation over time. At each sample, we assume that the uncertain parameters can take any
discrete value from this subset of M different models. We then design different control input profiles
for all the scenarios. By doing so, we explicitly take into account the fact that new information will be
available in the future and the decision variables can counteract the effect of the uncertainty.

x1;1

x2;1

x2;2

x3;1

x3;2

x3;3

x3;4

x4;1

x4;2

x4;3

x4;4
NR

N

· · ·

· · ·

· · ·

· · ·

xN;1

xN;2

xN;3

xN;4

x2;4

x2;3

Figure 3. Scenario tree representation of the uncertainty evolution with two models (M = 2) and
a robust horizon of two samples (NR = 2). The notation xk,j represents the state x at sample k
for jth scenario.

The main drawback of this approach is that the size of the problem grows exponentially over
the prediction horizon, with the number of uncertain parameters and the different values of the
uncertainties that are considered in the scenario tree design. To overcome this problem, it may be
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sensible to stop the branching of the scenarios after a certain number of samples, NR ≤ N in the
prediction horizon (known as Robust Horizon). The uncertain parameters are assumed to remain
constant after the robust horizon until the end of the prediction horizon, as depicted in Figure 3. This is
reasonable, since the far future does not have to be represented accurately because the corresponding
optimal trajectory will be refined later anyway [6].

Each path from the root node to the leaf is called a scenario and the total number of scenarios
is given by S = MNR . Therefore, the scenario-based optimization approach optimizes over all the
discrete set of scenarios S = {1, · · · , S}. In order to model the real-time decision making accurately,
the so-called non-anticipativity constraints have to be imposed on the decision variables. This is to reflect
the fact that the decision variables cannot anticipate the future, and hence the decision variables that
branch at the same node must take the same value.

Once the necessary preliminaries have been introduced, the scenario-based optimization problem
can be formalized:

min
θj

S

∑
j=1

ωj Jj, (20a)

s.t.

F(x̃k,j, x0
k,j, z̃k,j, ũk,j, pj) = 0 ∀k ∈ K, ∀pj ∈ U , ∀j ∈ S , (20b)

nw

∑
i=1

wpgi ,j ≤ wgMax ∀j ∈ S , ∀i ∈ N , (20c)

xl ≤ xk,c,j ≤ xh ∀k ∈ K, ∀c ∈ C, ∀j ∈ S , (20d)

zl ≤ zk,c,j ≤ zh ∀k ∈ K, ∀c ∈ C, ∀j ∈ S , (20e)

ul ≤ uk,j ≤ uh ∀k ∈ K, ∀j ∈ S , (20f)

∆ul ≤ ∆uk,j ≤ ∆uh ∀k ∈ K, ∀j ∈ S , (20g)

xk,3,j = x0
k+1,j ∀k ∈ K, ∀j ∈ S , (20h)

x1,0 = x0 (20i)
S

∑
j=1

χjuj = 0 ∀j ∈ S , (20j)

where S is the number of scenarios, and Jj is the cost of each scenario with its probability or
weight ωj. The cost of each scenario is given by Equation (17a) and GORj is a subset of U =

{E0(GOR)± σ} with M discrete values. Note that all the variables have an extra subscript j compared
to Equation (17), where j represents each scenario. In addition, nonanticipativity constraints are
included in Equation (20j), where χ is the non-anticipativity constraint which enforces that all
the decision variables that branch at the same parent node have to be equal. For example, the
nonanticipativity constraints for the scenario tree in Figure 3 are written as

u2,1 = u2,2 = u2,3 = u2,4 (21a)

u3,1 = u3,2 (21b)

u3,3 = u3,4 (21c)

5. Simulation Results

In this work, we consider a network of two gas lifted oil wells (nw = 2) producing to a common
manifold as shown in Figure 4. The process is assumed to be constrained by a maximum gas capacity
of wgMax = 8kg/s. Therefore, we have a DAE system with six differential Equations (1a)–(1c) and
24 algebraic Equations (2a)–(4f), two decision variables and two uncertain parameters. The parameter
values used in the simulation are summarised in Table 1.
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wgl1 wgl2

wgTot
≤ wgMax

woTot

zc1 zc2

GOR1 2 U1 GOR2 2 U2

Figure 4. Production network with two gas lifted wells producing to a common manifold.

Table 1. List of parameters and their corresponding values used in the results.

Parameter Units Well 1 Well 2 Comment

Lw [m] 1500 1500 Length of well
Hw [m] 1000 1000 Height of well
Dw [m] 0.121 0.121 Diameter of well
Lr [m] 500 500 Length of well below injection
Hr [m] 100 100 Height of well below injection
Dr [m] 0.121 0.121 Diameter of well below injection
La [m] 1500 1500 Length of annulus
Ha [m] 1000 1000 Height of annulus
Da [m] 0.189 0.189 Diameter of annulus
ρo [kg/m3] 900 800 Density of Oil

Civ [m2] 1×10−4 1×10−4 Injection valve characteristic
Cpc [m2] 1×10−3 1×10−3 Production valve characteristic
pm [bar] 20 20 Manifold pressure
pr [bar] 150 155 Reservoir pressure
PI [kg·s−1·bar−1] 2.2 2.2 Productivity index
Ta [◦C] 28 28 Annulus temperature
Tw [◦C] 32 32 Well tubing temperature
Mw [g] 20 20 Molecular weight of gas

GOR [kg/kg] 0.1 ± 0.1 0.15 ± 0.01 Gas–Oil ratio

An optimizing control structure with integrated optimization and control [28] was chosen, where
the control system uses an online dynamic optimization based on a nonlinear model of the plant and
solves for the optimal trajectory over a prediction horizon. The dynamic optimization problem in this
work was solved with a prediction horizon N = 60 and a sampling time of Ts = 300 s. The first control
input is then applied to the plant.

For the deterministic optimization case, the expected value of the GOR was used in the
optimization problem, and, for the worst case optimization, the maximum value of the GOR was used
in the optimization problem. In the case of scenario-based optimization, four different possible values
of the GOR were used in the optimization problem (see Table 2), and a robust horizon of NR = 1
was chosen.
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Table 2. GOR (Gas-Oil ratio) values used in the optimizer for nominal, worst case and
scenario-based approach.

Well Nominal Worst Case Scenario-Based

GOR well 1 0.1 0.2 0.05 0.1 0.15 0.2
GOR well 2 0.15 0.16 0.145 0.15 0.155 0.16

The optimization problem considered here computes the optimal gas lift rate for each well.
We assume that we have perfect low level controllers that adjust the gas lift choke zgl to provide
the desired gas lift rates. We also assume that perfect state feedback is available for the dynamic
optimization. These assumptions are justified, since the main focus in this work is to compare the
nominal, worst case and scenario-based optimization approaches. The control structure used in this
work is shown in Figure 5.

Optimizing

Controller

Process

~uk

p

~xk; ~zk

Figure 5. Schematic representation of the optimizing control structure. The Dynamic RTO (Real-time
optimization) for nominal, worst case or scenario-based approach computes the optimal gas lift rates
for the two wells and sets the process at each iteration.

The simulation starts with the true GOR the same as the nominal GOR. At sampling instant
N = 15, true GOR gradually increases to 0.15 and 0.155 in well 1 and well 2, respectively, and remains
constant at these values until N = 45. At sampling instant N = 45, the GOR suddenly increases to
0.2 and 0.16 (worst case realization) in wells 1 and 2, respectively. The true GOR profile is shown
is Figure 6f.

The system is first simulated for the nominal optimization case, where the optimization assumes
the GOR to be at its nominal value. When the true GOR is at its nominal value, there is no plant model
mismatch and the total gas capacity constraints are active as expected. However, when the true GOR
in the system increases, this leads to constraint violation.

Then, the system is simulated with the worst case optimization, where the optimizer assumes
GOR to take its worst case value. When the true GOR is at its nominal value, we see that the optimal
solution implemented is rather conservative. The gas capacity constraints are no longer active and
there is spare capacity that can be utilised. When the GOR increases, we see that the constraints are not
violated, even when the GOR does take its worst case value at N = 45. The solution is robust feasible
at the cost of conservativeness.

Finally, the system is simulated with the scenario-based optimization with four different GOR
values as shown in Table 2. All the scenarios are assumed equally probable and are therefore provided
with equal weights for all the scenarios. When the GOR is at its nominal value, the optimizer solves



Processes 2016, 4, 52 13 of 17

for the optimal inputs that are feasible for all the possible scenarios, and we see that the gas capacity
constraints are not active. However, the solution is less conservative than the worst case optimization.
As the GOR increases, the implemented solution proves to be robust feasible, and the constraints are
satisfied even when the GOR takes its worst case value. However, when the true GOR assumes its
worst case value, the total oil produced is less than the worst case optimization. This is due to the fact
that there is no plant model mismatch in the worst case optimization case, whereas in the scenario tree
optimization, the optimal solution is computed that maximises the oil rate for the other scenarios in
addition to the worst case scenario.
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Figure 6. Simulation results for the nominal case (dotted), worst case (dashed) and scenario-based
optimization (solid). (a) The total gas rates are shown in black and the maximum gas capacity constraint
shown in yellow, (b) the total oil rates are shown in black and the true steady-state optimum for the oil
rate is shown in yellow, (c) the gas rates from individual wells are shown in blue and red for well 1 and
well 2, respectively, (d) The oil rates from individual wells are shown in blue and red for well 1 and
well 2, respectively, (e) The gas lift rates from individual wells are shown in blue and red for well 1 and
well 2, respectively. (f) The true GOR (gas-oil ratio) realization used in the simulator are shown in blue
and red for well 1 and well 2, respectively.
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6. Discussion

The case study consists of two wells with one constraint and one uncertain parameter (GOR) with
a given nominal value and variance. In the nominal case, since well 1 has a marginally lower expected
GOR, one would prioritize well 1 over well 2 to utilise the maximum gas capacity and maximise oil
rate. In the worst case, however, since well 2 now has lower expected GOR, one would then prioritize
well 2 over well 1. This is seen in the true optimal gas lift rates in Table 3, where well 1 is prioritized
over well 2 for the nominal case and vice versa for the worst case realization. This is similar to an
observation made by [15] for a static oil production optimization case.

Table 3. Results–loss evaluations for the different scenarios for nominal, worst case and scenario-based
optimization.

Optimization
True GOR True Optimum Computed Optimum Potential Obtained Loss

Well 1 Well 2 Well 1 Well 2 Well 1 Well 2 Tot Oil Tot Oil

[kg/kg] [kg/kg] [kg/s] [kg/s] [kg/s] [kg/s] [kg/s] [kg/s] [kg/s]

Nominal case

0.05 0.145 3.337 1.5117 2.663 1.518 31.879 31.7 0.179
0.1 0.15 2.563 1.429 2.563 1.429 31.879 31.879 0
0.15 0.155 1.788 1.348 infeasible infeasible 31.879 infeasible -
0.2 0.16 1.014 1.266 infeasible infeasible 31.879 infeasible -

Worst case

0.05 0.145 3.337 1.5117 1.324 1.32 31.879 30.69 1.189
0.1 0.15 2.563 1.429 1.318 1.329 31.879 31.33 0.549
0.15 0.155 1.788 1.348 1.235 1.317 31.879 31.69 0.189
0.2 0.16 1.014 1.266 1.014 1.266 31.879 31.879 0

Scenario tree

0.05 0.145 3.337 1.5117 2.048 0.7046 31.879 31.12 0.759
0.1 0.15 2.563 1.429 2.036 0.6904 31.879 31.49 0.389
0.15 0.155 1.788 1.348 2.038 0.5616 31.879 31.67 0.209
0.2 0.16 1.014 1.266 2.007 0.2697 31.879 31.68 0.199

In the nominal optimization, when the true GOR increases, the solution imminently becomes
infeasible and violates the total gas capacity constraints. The optimizer then tries to correct and reduces
the gas lift rates for both of the wells. Once the total gas is below the constraint, the optimizer then
increases the gas lift rates for both of the wells. This is because the optimizer “thinks” the oil rate
can be maximized based on the model. The implemented solution then keeps oscillating around the
constraint. Such a behaviour is clearly unacceptable.

To ensure robust feasibility, worst case optimization was then employed. The results of the worst
case optimization shows that the robust solution is very conservative. Scenario-based optimization was
then performed to reduce the conservativeness. When the true GOR is at its nominal value, the loss for
worst case optimization is 0.549 kg/s as opposed to 0.389 kg/s for the scenario-based optimization.
This shows that when the actual GOR is far away from its worst case values, the scenario optimization
performs significantly better and is able to reduce the conservativeness of the robust solution since it
considers different possible scenarios. However, in the unlikely event that the true GOR of all the wells
approach their worst case values, the loss for the worst case optimization approaches 0 as opposed to
0.199 kg/s for the scenario-based optimization. This is due to the fact that scenario tree also considers
other scenarios in its optimization problem, whereas there is no plant model mismatch in the worst
case optimization. The steady state loss computed for the different realizations of the GOR using
nominal, worst case and scenario-based optimization is given in Table 3.

The scenario-based optimization approach presented here assumes equal weights/ probabilities
for all the different scenarios included in the optimization problem. This makes the optimal solution
balance all the possible scenarios equally. This is a viable approach if no information about the
uncertainty is known. However, as we get more measurements, information about the true uncertainty
is revealed. Updating the weights for the different scenarios based on the measurements could perhaps
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significantly improve the performance of the scenario-based optimization compared to the worst case
optimization even more.

7. Materials and Methods

The dynamic optimization problem considered in this work is discretized into an NLP problem
using a third order direct collocation scheme in CasADi v3.0.1 (an open-source tool developed at
the Optimization in Engineering Center, K.U.Leuven, Leuven, Belgium) [29] using the MATLAB
R2016a (Mathworks Inc., Natick, MA, USA) programming environment. The NLP problem is then
solved using IPOPT version 3.12.2 (an open-source tool developed at the Department of Chemical
Engineering, Carnegie Mellon University, Pittsburgh, PA, USA) [30], running with a mumps linear
solver on a 2.6 GHz workstation with 16 GB memory. The plant (simulator) was implemented in
Simulink and solved with an ode45 solver. At each iteration, the first sample of the computed optimal
solution is implemented in Simulink R2016a (Mathworks Inc., Natick, MA, USA). After the simulation
is completed, the states from the Simulink model are fed back to the optimizer, which is used as the
initial value for the next iteration. The data transfer between Simulink and the optimizer is carried out
by reading and writing data to the common MATLAB workspace.

8. Conclusions

To our knowledge, this paper is the first publication considering a dynamic scenario-based
optimization approach for the daily production optimization problem. A detailed modelling
framework for the gas lifted well system that is suitable for dynamic optimization problems was
presented. The scenario-based optimization approach was shown to reduce the conservativeness of the
solution compared to the worst case optimization while being robust feasible. However, to improve
the performance of the scenario-based approach, the weights for the different scenarios to reflect the
uncertainty realization must be included as shown in [31]. A natural further step is also to explore
systems with pressure coupling between wells and more extensive subsea completions.
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