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Abstract: Modifier adaptation with quadratic approximation (in short MAWQA) can adapt the
operating condition of a process to its economic optimum by combining the use of a theoretical
process model and of the collected data during process operation. The efficiency of the MAWQA
algorithm can be attributed to a well-designed mechanism which ensures the improvement of the
economic performance by taking necessary explorative moves. This paper gives a detailed study
of the mechanism of performing explorative moves during modifier adaptation with quadratic
approximation. The necessity of the explorative moves is theoretically analyzed. Simulation results
for the optimization of a hydroformylation process are used to illustrate the efficiency of the MAWQA
algorithm over the finite difference based modifier adaptation algorithm.

Keywords: real-time optimization; modifier adaptation; quadratic approximation

1. Introduction

In the process industries, performing model-based optimization to obtain economic operations
usually implies the need of handling the problem of plant-model mismatch. An optimum that is
calculated using a theoretical model seldom represents the plant optimum. As a result, real-time
optimization (RTO) is attracting considerable industrial interest. RTO is a model based upper-level
optimization system that is operated iteratively in closed loop and provides set-points to the lower-level
regulatory control system in order to maintain the process operation as close as possible to the economic
optimum. RTO schemes usually estimate the process states and some model parameters or disturbances
from the measured data but employ a fixed process model which leads to problems if the model does
not represent the plant accurately.

Several schemes have been proposed towards how to combine the use of theoretical models
and of the collected data during process operation, in particular the model adaptation or two-step
scheme [1]. It handles plant-model mismatch in a sequential manner via an identification step followed
by an optimization step. Measurements are used to estimate the uncertain model parameters, and the
updated model is used to compute the decision variables via model-based optimization. The model
adaptation approach is expected to work well when the plant-model mismatch is only of parametric
nature, and the operating conditions lead to sufficient excitation for the estimation of the plant outputs.
In practice, however, both parametric and structural mismatch are typically present and, furthermore,
the excitation provided by the previously visited operating points is often not sufficient to accurately
identify the model parameters.

For an RTO scheme to converge to the plant optimum, it is necessary that the gradients of the
objective as well as the values and gradients of the constraints of the optimization problem match
those of the plant. Schemes that directly adapt the model-based optimization problem by using the
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update terms (called modifiers) which are computed from the collected data have been proposed [2–4].
The modifier-adaptation schemes can handle considerable plant-model mismatch by applying bias-
and gradient-corrections to the objective and to the constraint functions. One of the major challenges in
practice, as shown in [5], is the estimation of the plant gradients with respect to the decision variables
from noisy measurement data.

Gao et al. [6] combined the idea of modifier adaptation with the quadratic approximation approach
that is used in derivative-free optimization and proposed the modifier adaptation with quadratic
approximation (in short MAWQA) algorithm. Quadratic approximations of the objective function
and of the constraint functions are constructed based on the screened data which are collected during
the process operation. The plant gradients are computed from the quadratic approximations and are
used to adapt the objective and the constraint functions of the model-based optimization problem.
Simulation studies for the optimization of a reactor benchmark problem with noisy data showed
that by performing some explorative moves the true optimum can be reliably obtained. However,
neither the generation of the explorative moves nor their necessity for the convergence of set-point
to the optimum was theoretically studied. Due to the fact that the estimation of the gradients using
the quadratic approximation approach requires more data than those that are required by using
a finite difference approach, the efficiency of the MAWQA algorithm, in terms of the number of plant
evaluations to obtain the optimum, has been questioned, in particular for the case of several decision
variables. In addition, in practice, it is crucial for plant operators to be confident with the necessity of
taking the explorative moves which may lead to a deterioration of plant performance.

This paper reports a detailed study of the explorative moves during modifier adaptation with
quadratic approximation. It starts with how the explorative moves are generated and then the
factors that influence the generation of these moves are presented. The causality between the factors
and the explorative moves is depicted in Figure 1, where the blocks with a yellow background
represent the factors. The use of a screening algorithm to optimize the regression set for quadratic
approximations is shown to ensure that an explorative move is only performed when the past
collected data cannot provide accurate gradient estimates. Simulation results for the optimization of
a hydroformylation process with four optimization variables are used to illustrate the efficiency of
the MAWQA algorithm, which takes necessary explorative moves, over the finite difference based
modifier adaptation algorithm.

Figure 1. Causality between the explorative moves and the influencing factors.
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2. Modifier Adaptation with Quadratic Approximation

Let Jm(u) and Cm(u) represent the objective and the vector of constraint functions of a static
model-based optimization problem, assumed to be twice differentiable with respect to the vector of
decision variables u ∈ Rnu

min
u

Jm(u)

s.t. Cm(u) ≤ 0.
(1)

At each iteration of the modifier adaptation algorithm, bias- and gradient-corrections of the
optimization problem are applied as

min
u

Jm(u) +
(
∇J(k)p −∇J(k)m

)T (
u− u(k)

)
s.t. Cm(u) + C(k)

p − C(k)
m +

(
∇C(k)

p −∇C(k)
m

)T (
u− u(k)

)
≤ 0.

(2)

The symbols are explained in Table 1. ∇J(k)p and ∇C(k)
p are usually approximated by the finite

difference approach

∇J(k)p ≈


u(k)

1 − u(k−1)
1 · · · u(k)

nu − u(k−1)
nu

...
...

...

u(k)
1 − u(k−nu)

1 · · · u(k)
nu − u(k−nu)

nu


−1 

J(k)p − J(k−1)
p

...

J(k)p − J(k−nu)
p

 , (3)

where nu is the number of dimensions of u, J(k−i)
p , i = 0, . . . , nu, are the plant objectives at

set-points u(k−i), i = 0, . . . , nu, and ∇C(k)
p is approximated similarly. The accuracy of the finite

difference approximations is influenced by both the step-sizes between the set-points and the presence
of measurement noise. In order to acquire accurate gradient estimations, small step-sizes are
preferred. However, the use of small step-sizes leads to a high sensitivity of the gradient estimates to
measurement noise.

Table 1. Symbols used in the modifier adaptation formulation.

Symbol Description

k Index of iteration
u(k) Current set-point
∇J(k)p Gradient vector of the plant objective function at u(k)

∇J(k)m Gradient vector of the model-predicted objective function at u(k)

C(k)
p Vector of the plant constraint values at u(k)

C(k)
m Vector of the model-predicted constraint values at u(k)

∇C(k)
p Gradient matrix of the plant constraint functions at u(k)

∇C(k)
m Gradient matrix of the model-predicted constraint functions at u(k)

In the MAWQA algorithm, the gradients are computed analytically from quadratic
approximations of the objective function and of the constraint functions that are regressed
based on a screened set (represented by U (k) at the kth iteration) of all the collected data
(represented by U). The screened set consists of near and distant points: U (k) = Un ∪ Ud,
where Un = {u : ‖u− u(k)‖ < ∆u; and u ∈ U}, and Ud is determined by
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min
Ud

∑u∈Ud
‖u− u(k)‖

θ(Ud)

s.t. size(Ud) ≥ Cnu+2
2 − 1

Ud ⊂ U \ Un,

(4)

where ∆u is sufficiently large so that Ud guarantees robust quadratic approximations with
noisy data, θ(Ud) is the minimal angle between all possible vectors that are defined by
u − u(k), and Cnu+2

2 = (nu + 2)(nu + 1)/2 is the number of data required to uniquely determine
the quadratic approximations.

In the MAWQA algorithm, the regression set U (k) is also used to define a constrained search space
B(k) for the next set-point move

B(k) : (u− u(k))T M−1(u− u(k)) ≤ γ2, (5)

where M = cov(U (k)) is the covariance matrix of the selected points (inputs) and γ is a scaling
parameter. B(k) is a nu-axial ellipsoid centered at u(k). The axes of the ellipsoid are thus aligned with
the eigenvectors of the covariance matrix. The semi-axis lengths of the ellipsoid are related to the
eigenvalues of the covariance matrix by the scaling parameter γ. The adapted optimization (2) is
augmented by the search space constraint as

min
u

J(k)ad (u)

s.t. C(k)
ad (u) ≤ 0

u ∈ B(k),

(6)

where J(k)ad (u) and C(k)
ad (u) represent the adapted objective and constraint functions in (2).

In the application of the modifier adaptation with quadratic approximation, it can happen that
the nominal model is inadequate for the modifier-adaptation approach and that it is better to only use
the quadratic approximations to compute the next plant move. In order to ensure the convergence,
it is necessary to monitor the performance of the adapted optimization and possibly to switch between
model-based and data-based optimizations. In each iteration of the MAWQA algorithm, a quality index
of the adapted optimization ρ

(k)
m is calculated and compared with the quality index of the quadratic

approximation ρ
(k)
φ , where

ρ
(k)
m = max


∣∣∣∣∣∣1− J(k)ad − J(k−1)

ad

J(k)p − J(k−1)
p

∣∣∣∣∣∣ ,

∣∣∣∣∣∣1− C(k)
ad,1 − C(k−1)

ad,1

C(k)
p,1 − C(k−1)

p,1

∣∣∣∣∣∣ , . . . ,

∣∣∣∣∣∣1− C(k)
ad,nc
− C(k−1)

ad,nc

C(k)
p,nc − C(k−1)

p,nc

∣∣∣∣∣∣
 (7)

and

ρ
(k)
φ = max


∣∣∣∣∣∣1− J(k)φ − J(k−1)

φ

J(k)p − J(k−1)
p

∣∣∣∣∣∣ ,

∣∣∣∣∣∣1−
C(k)

φ,1 − C(k−1)
φ,1

C(k)
p,1 − C(k−1)

p,1

∣∣∣∣∣∣ , . . . ,

∣∣∣∣∣∣1− C(k)
φ,nc
− C(k−1)

φ,nc

C(k)
p,nc − C(k−1)

p,nc

∣∣∣∣∣∣
 (8)

with J(k)φ and C(k)
φ are the quadratic approximations of the objective and the constraint functions.

If ρ
(k)
m ≤ ρ

(k)
φ , the predictions of the adapted model-based optimization are more accurate than that

of the quadratic approximations and (6) is performed to determine the next set-point. Otherwise,
an optimization based on the quadratic approximations is done
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min
u

J(k)φ (u)

s.t. C(k)
φ (u) ≤ 0

u ∈ B(k).

(9)

The MAWQA algorithm is given as follows:

Step 1. Choose an initial set-point u(0) and probe the plant at u(0) and u(0) + hei, where h is
a suitable step size and ei ∈ Rnu(i = 1, . . . , nu) are mutually orthogonal unit vectors. Use the
finite difference approach to calculate the gradients at u(0) and run the IGMO approach [3]
until k ≥ Cnu+2

2 set-points have been generated. Run the screening algorithm to define the

regression set U (k). Initialize ρ
(k)
m = 0 and ρ

(k)
φ = 0.

Step 2. Calculate the quadratic functions J(k)φ and C(k)
φ based on U (k). Determine the search space B(k)

by (5).
Step 3. Compute the gradients from the quadratic functions. Adapt the model-based optimization

problem and determine the optimal set-point û(k) as follows:

(a) If ρ
(k)
m ≤ ρ

(k)
φ , run the adapted model-based optimization (6).

(b) Else perform the data-based optimization (9).

Step 4. If ‖û(k) − u(k)‖ < ∆u and there exists one point u(j) ∈ U (k) such that ‖u(j) − u(k)‖ > 2∆u,
set û(k) =

(
u(j) + u(k)

)
/2.

Step 5. Evaluate the plant at û(k) to acquire Jp(û(k)) and Cp(û(k)). Prepare the next step as follows

(a) If Ĵ(k)p < J(k)p , where Ĵ(k)p = Jp(û(k)), this is a performance-improvement move.
Define u(k+1) = û(k) and run the screening algorithm to define the next regression set
U (k+1). Update the quality indices ρ

(k+1)
m and ρ

(k+1)
φ . Increase k by one and go to Step 2.

(b) If Ĵ(k)p ≥ J(k)p , this is an explorative move. Run the screening algorithm to update the
regression set for u(k). Go to Step 2.

Note that the index of iteration of the MAWQA algorithm is increased by one only when
a performance-improvement move is performed. Several explorative moves may be required at
each iteration. The number of plant evaluations is the sum of the numbers of both kinds of moves.
The next section studies why the explorative moves are required and how they contribute to the
improvement of the performance on a longer horizon.

3. Analysis of the Explorative Moves

In the MAWQA algorithm, the quadratic approximations of the objective and the constraint
functions are started once Cnu+2

2 data have been collected. It can happen that the distribution of
the set-points is not “well-poised” [7] to ensure that the gradients are accurately estimated via the
quadratic approximations, especially when the initial set-point is far away from the optimum and the
following set-point moves are all along some search direction. Interpolation-based derivative-free
optimization algorithms rely on a model-improvement step that generates additional set-point moves
to ensure the well-poisedness of the interpolation set. Although the MAWQA algorithm was designed
without an explicit model-improvement step, the generation of explorative moves can be considered
as an implicit step to improve the poisedness of the regression set for the quadratic approximations.
This section gives a theoretical analysis of the explorative moves. We start with some observations from
the simulation results in [6] and relate the explorative moves to the estimation error of the gradients.
The factors that influence the accuracy of the estimated gradients are analyzed. It is shown that the
screening of the regression set leads to very pertinent explorative moves which, on the one hand,
are sufficient to improve the accuracy of the gradient estimations, and, on the other hand, are less
expensive than the model-improvement step in the derivative-free optimization algorithms.
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The generation of the explorative moves is presented in Figure 2 where one MAWQA iteration for
the optimization of the steady-state profit of the Williams-Otto reactor with respect to the flow rate and
the reaction temperature [6] is illustrated. Here the blue surface represents the real profit mapping,
and the mesh represents the quadratic approximation which was computed based on the regression set
( : set-point moves, : measured profit values). The bottom part shows the contours of the profit as
predicted by the uncorrected model (blue lines) , the constrained search space (dash-dot line), and the
contours of the modifier-adapted profit (inside, magenta lines). Comparing the surface plot and the
mesh plot, we can see that the gradient along the direction of the last set-point move is estimated well.
However, a large error can be observed in the perpendicular direction. The gradient error propagates
to the modifier-adapted contours and therefore, the next set-point move ( ) points to the direction
where the gradient is badly estimated. Despite the fact that the move may not improve the objective
function, the data collection in that direction can later help to improve the gradient estimation.

Figure 2. Illustration of one MAWQA iteration with noisy data. Surface plot: real profit
mapping, mesh plot: quadratic approximation, : regression set-point, : not chosen set-point,

: measured profit, : next set-point move, blue contours: model-predicted profit, magenta contours:
modifier-adapted profit, dash-dot line: constrained search space.

The example illustrates how the gradient error in a specific direction may lead to an explorative
move along the same direction. In the MAWQA algorithm, the gradients are determined by evaluating
∇Jφ and ∇Cφ at u(k). In order to be able to quantify the gradient error, we assume that the screened
set U (k) is of size Cnu+2

2 and the quadratic approximations are interpolated based on U (k). In the
application of the MAWQA algorithm, this assumption is valid when the current set-point is far away
from the plant optimum. Recall the screening algorithm, U (k) consists of the near set Un and the distant
set Ud. From (4), we can conclude that the distant set Ud is always of size Cnu+2

2 − 1. Step 4 of the
MAWQA algorithm ensures that the near set Un only consists of u(k) until the optimized next move is
such that ‖û(k) − u(k)‖ < ∆u and there are no points u(j) ∈ U (k) such that ‖u(j) − u(k)‖ > 2∆u, that is,
all the points in Ud keep suitable distances away from u(k) for good local approximations. The above
two conditions imply that ‖u(k) − u∗‖ ≤ ∆u, where u∗ represents the plant optimum. As a result
of Step 4, when ‖u(k) − u∗‖ > ∆u, Un is always of size 1. For simplicity, a shift of coordinates
to move u(k) to the origin is performed and the points in U (k) are reordered as {0, ud1 , . . . , udn},
where n = Cnu+2

2 − 1.
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Let φ = {1, u1, . . . , unu , u2
1, . . . , u2

nu ,
√

2 u1u2,
√

2 u1u3, . . . ,
√

2 unu−1unu} represent a natural basis
of the quadratic approximation. Let α represent a column vector of the coefficients of the quadratic
approximation. The quadratic approximation of the objective function is formulated as

Jφ(u) = α0 +
nu

∑
i=1

αi ui +
nu

∑
i=1

αnu+i u2
i +
√

2
nu−1

∑
i=1

nu

∑
j=i+1

α2nu+I(nu ,i,j) uiuj, (10)

where I(nu, i, j) = nu(i − 1)− (i + 1)i/2 + j. The coefficients αi, i = 0, . . . , n are calculated via the
interpolation of the n + 1 data sets {u, Jp(u)}

1 0 · · · 0
1 ϕ1(u(d1)) · · · ϕn(u(d1))
...

...
...

...
1 ϕ1(u(dn)) · · · ϕn(u(dn))


︸ ︷︷ ︸

M(φ,U (k))


α0

α1
...

αn


︸ ︷︷ ︸

α

=


Jp(0)

Jp(u(d1))
...

Jp(u(dn))


︸ ︷︷ ︸

Jp(U
(k))

+


ν0

ν1
...

νn


︸ ︷︷ ︸

ν

, (11)

where ϕi(u), i = 1, . . . , n, represent the polynomial bases in φ, Jp and ν represent the noise-free
objective and the measurement noise. Assume M(φ,U (k)) is nonsingular,

α =
(

M(φ,U (k))
)−1

Jp(U
(k)) +

(
M(φ,U (k))

)−1
ν. (12)

The computed gradient vector at the origin via the quadratic approximation is

∇Jφ(0) = (α1, . . . , αnu)
T = αJp + αν, (13)

where αJp represents the noise-free estimation and αν represents the influence of the measurement
noise. From [8], a bound on the error between the noise-free estimation αJp and∇Jp(0) can be obtained
and simplified to

‖αJp −∇Jp(0)‖ ≤
1
6

G Λ
n

∑
i=1
‖u(di)‖3, (14)

where G is an upper bound on the third derivative of Jp(u), and Λ is a constant that depends
on the distribution of the regression set U (k). Note that the bound in (14) is defined for the error
between the plant gradients and the estimated gradients. It is different from the lower and upper
bounds on the gradient estimates which were studied by Bunin et al. [5]. To simplify the study of Λ,
assume ‖u(di) − u(k)‖ = ∆u. Λ is defined as

Λ ≥ max
0≤i≤n

max
‖u‖≤∆u

|`i(u)|, (15)

where `i(u), i = 0, . . . , n, are the Lagrange polynomial functions that are defined by the
matrix determinants

`i(u) =
det (M(φ,Ui(u)))
det
(

M(φ,U (k))
) (16)

with the set Ui(u) = U (k) \ {u(di)} ∪ {u}. The determinant of M(φ,U (k)) is computed as

det
(

M(φ,U (k))
)
=

∣∣∣∣∣∣∣
ϕ1(u(d1)) · · · ϕn(u(d1))

...
...

...
ϕ1(u(dn)) · · · ϕn(u(dn))

∣∣∣∣∣∣∣ . (17)



Processes 2016, 4, 45 8 of 17

Let vol(φ(U (k))) represent the volume of the n-dimensional convex hull spanned by the row
vectors of the matrix in (17), we have∣∣∣det

(
M(φ,U (k))

)∣∣∣ = vol(φ(U (k))) n!. (18)

Except the vertex at the origin, all the other vertices of the convex hull distribute on
a n-dimensional sphere with radius ∆u + ∆u2. vol(φ(U (k))) reaches its maximal value when the
vectors are orthogonal to each other. Let vi and vj represent any two row vectors of the matrix in (17).
The angle between them

cos(θv
i,j) =

vi · vj

‖vi‖‖vj‖
=

u(di)
1 u

(dj)

1 + . . . + u(di)
nu u

(dj)
nu +

(
u(di)

1 u
(dj)

1 + . . . + u(di)
nu u

(dj)
nu

)2

∆u + ∆u2 . (19)

Note that the angle θv
i,j is different from the angle θi,j between vectors udi and udj

cos(θi,j) =
u(di)

1 u
(dj)

1 + . . . + u(di)
nu u

(dj)
nu

∆u
. (20)

The relationship between θv
i,j and θi,j is illustrated in Figure 3, where the angle between

two 3-dimensional unit vectors is changed from 0 to 180 degree and the angle between the
corresponding quadratic interpolation vectors increases proportionally when θ ≤ 90 degree and
stays in an interval of [90 98] degree from 90 to 180 degree. Recall the screening for the distant set Ud
via (4), the consideration of the minimal angle at the denominator of the objective function ensures the
choosing of the best set in terms of the orthogonality of the matrix in (17) from all the collected data.
As a result of (14)–(16) and (18), the lowest bound of the error between αJp and ∇Jp(0) based on the
collected data is achieved.

0 50 100 150
θ (degree)

0

20

40

60

80

100

θ
v  (

de
gr

ee
)

Figure 3. Illustration of the relationship between θ and θv.

The error due to the measurement noise αν can be calculated by Cramer’s rule

αν
i =

det
(

Mi(φ,U (k), ν)
)

det
(

M(φ,U (k))
) =

δnoise
∆u

det
(

Mi(φ,U (k), ν̃)
)

det
(

M(φ,U (k))
) , (21)

where Mi(φ,U (k), ν) is the matrix formed by replacing the (i + 1)th column of M(φ,U (k)) by the column
vector ν , δnoise is the level of the measurement noise, νi ∈ (−δnoise,+δnoise), and ν̃ = ∆u ν/δnoise
represents the scaled vector of noises. In order to reduce αν, the value of ∆u should be large enough.
However, from (14) the error bound will increase accordingly. The optimal tuning of ∆u according to
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δnoise and G can be a future research direction. For a given distribution of Ud, the relative upper bound
of αν

i is related to the variance of the elements at the (i + 1)th column. To show that, we start from the
angle between the (i + 1)th column vector and the first column vector

cos(βi+1,1) =
∑n

j=1 u
(dj)

i

√
n + 1

√
∑n

j=1

(
u
(dj)

i

)2
, (22)

where we use β to differentiate the angle from that formed by the row vectors. The variance of the
elements at the (i + 1)th column is

Var({0, u(d1)
i , . . . , u(dn)

i }) =
∑n

j=1

(
u
(dj)

i

)2

n + 1
−

∑n
j=1 u

(dj)

i

n + 1

2

. (23)

From (22) and (23), we obtain that

cos(βi+1,1) =
∑n

j=1 u
(dj)

i

(n + 1)

√√√√Var +

(
∑n

j=1 u
(dj)

i
n+1

)2
. (24)

For the same mean value, the orthogonality of the (i + 1)th column vector to the first column
vector can be quantified by the variance of the elements at the (i + 1)th column. As discussed before,
the absolute value of the determinant of M(φ,U (k)) is influenced by the orthogonality. As a result,
to replace a column of elements with small variance leads to a higher upper bound of the error than to
replace a column of elements with large variance. Note that this is consistent with the constrained
search space which is defined by the covariance matrix of the regression set.

From (14) and (21), three factors determine the gradient estimation errors

• Distribution of the regression set (quantified by Λ and the distance to the current point)
• Non-quadratic nature of the plant (quantified by G, the upper bound on the third derivative)
• Measurement noise (quantified by δnoise).

Figure 4 depicts how the three factors influence the generation of the explorative moves.
Assume the plant functions are approximately quadratic in the region ‖u − u(k)‖ ≤ ∆u around
the current set-point and the value of ∆u is large enough, a well-distributed regression set normally
leads to a performance-improvement move. If the regression set is not well-distributed but the plant
functions are approximately quadratic, a performance-improvement move is still possible if the level of
the measurement noise δnoise is low. This is illustrated in Figure 5, where noise-free data was considered
and the MAWQA algorithm did not perform any explorative moves. The explorative moves are only
generated when either the plant functions deviate significantly from quadratic functions or the level
of the measurement noise δnoise is large. In the case shown in Figure 2, the mapping of the plant
profit is approximately quadratic but considerable measurement noise was presented. As a result,
the unfavourable distribution of the regression set leads to an explorative move.
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Figure 4. Illustration of the generation of explorative moves.

Figure 5. Illustration of one MAWQA iteration with noise-free measurements. Surface plot: real
profit mapping, mesh plot: quadratic approximation, : regression set-point, : not chosen set-point,

: measured profit, : next set-point move, blue contours: model-predicted profit, magenta contours:
modifier-adapted profit, dash-dot line: constrained search space.

Gao et al. [6] proved that the explorative moves can ensure an improvement of the accuracy of the
gradient estimation in the following iterations. As an example, Figure 6 shows the MAWQA iteration
after two explorative moves for the optimization of the Williams-Otto reactor with noisy data [6].
The mesh of the quadratic approximation well represents the real mapping (the blue surface) around
the current point which locates at the center of the constrained search space (defined by the dash-dot
line). The computed gradients based on the quadratic approximation are more accurate than those
based on the quadratic approximation in Figure 2. As a result, a performance-improvement move
(represented by ) was obtained .
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Figure 6. Illustration of the MAWQA iteration after two explorative moves. Surface plot: real profit
mapping, mesh plot: quadratic approximation, : regression set-point, : not chosen set-point,

: measured profit, : next set-point move, blue contours: model-predicted profit, magenta contours:
modifier-adapted profit, dash-dot line: constrained search space.

4. Simulation Studies

The optimization of a hydroformylation process with four optimization variables is used to
illustrate the efficiency of the MAWQA algorithm over the finite difference based modifier adaptation
algorithm. The continuous hydroformylation of 1-dodecene in a thermomorphic multicomponent
solvent (in short TMS) system is considered. This process was developed in the context of the
collaborative research centre InPROMPT at the universities of Berlin, Dortmund and Magdeburg
and was demonstrated on miniplant scale at TU Dortmund [9]. Figure 7 illustrates the simplified
flow diagram of the TMS system together with the reaction network. The TMS system consists of
two main sections: the reaction part and the separation part (here a decanter). The feed consists of
the substrate 1-dodecene, the apolar solvent n-decane, the polar solvent dimethylformamide (in short
DMF), and synthesis gas (CO/H2). The catalyst system consists of Rh(acac)(CO)2 and the bidentate
phosphite biphephos as ligand. During the reaction step, the system is single phase, thus homogeneous,
so that no mass transport limitation occurs. During the separation step a lower temperature than
that of the reactor is used and the system exhibits a miscibility gap and separates into two liquid
phases, a polar and an apolar phase. The apolar phase contains the organic product which is purified
in a down-stream process, while the catalyst mostly remains in the polar phase which is recycled.
The main reaction is the catalyzed hydroformylation of the long-chain 1-dodecene to linear n-tridecanal.
Besides the main reaction, isomerization to iso-dodecene, hydrogenation to n-dodecane and formation
of the branched iso-aldehyde take place. Hernández and Engell [10] adapted the model developed
by Hentschel et al. [11] to the TMS miniplant by considering the material balances of the above
components as follows:

VR
dCi
dt

= V̇inCi,in − V̇outCi,out + VRCcat Mcat

nreact

∑
l=1

νi,lrl (25)

VR
dCj

dt
= −ke f f (Cj − Ceq

j ) + V̇inCj,in − V̇outCj,out + VRCcat Mcat

nreact

∑
l=1

νj,lrl , (26)
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where (25) is applied to the liquid components 1-dodecene, n-tridecanal, iso-dodecene, n-dodecane,
iso-aldehyde, decane, and DMF. (26) is applied to the gas components CO and H2. The algebraic
equations involved in the model are as follows:

Ceq
j =

Pj

Hj,0exp
(
− Ej/RT

) (27)

Ccat =
CRh,precursor

1 + Kcat,1CCO + Kcat,2CCO/CH2

(28)

Ki = exp
(

Ai,0 +
Ai,1

Tdecanter
+ Ai,2Tdecanter

)
(29)

ni,product =
Ki

1 + Ki
ni,decanter (30)

ni,catalyst =
1

1 + Ki
ni,decanter. (31)

(a) (b)

Figure 7. (a) Thermomorphic multicomponent solvent (TMS) system; (b) Reaction network of the
hydroformylation of 1-dodecene. Adapted from Hernández and Engell [10].

Table 2 lists all the symbols used in the model together with their explanations. The optimization
problem is formulated as the minimization of the raw material and operating cost per unit of
n-tridecanal produced

min
u

Pr1−dodecene · F1−dodecene + PrRh · FRh + CCooling + CHeating

Ftridecanal
, (32)

where Pr1−dodecene and PrRh represent the prices of 1-dodecene and of the catalyst, F1−dodecene and
FRh are the molar flow rates, Ccooling and Cheating are the operating costs of cooling and heating, and
Ftridecanal is the molar flow rate of n-tridecanal, the vector of the optimization variables u consists of
the reactor temperature, the catalyst dosage, the pressure and the composition of the synthesis gas.
A sensitivity analysis was performed on the different model parameters and it was found that the gas
solubility and the equilibrium constants for the catalyst species have the largest influence on the cost
function. In our study of the MAWQA approach, the plant-model mismatch is created by decreasing
the Henry coefficients Hj,0 by 50% and ignoring the influence of CO on the active catalyst (Kcat,2 = 0)
in the model that is used by the optimization. Table 3 lists the operating intervals of the optimization
variables and compares the real optimum with the model optimum. In order to test the robustness
of the approach to noisy data, the real cost data is assumed to be subject to a random error which is
normally distributed with standard deviation σ.
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Table 2. Model parameters and variables.

Symbol Description

Ci Concentration of 1-dodecene, n-tridecanal, iso-dodecene, n-dodecane, iso-aldehyde, decane, and DMF
Cj Concentration of CO and H2
Ceq

j Equilibrium concentration of CO and H2 at the G/L interface
VR Reactor volume
V̇in Inflow rate
V̇out Outflow rate
Ccat Concentration of the active catalyst
Mcat Molar mass of the catalyst
νi,l Coefficients of the stoichiometric matrix [11]
rl Reaction rate of the lth reaction

ke f f Mass transfer coefficient
Pj Partial pressure
T Reaction temperature

Hj,0 Henry coefficient
CRh,precursor Concentration of the catalyst precursor

Kcat,1\2 Equilibrium constants
Tdecanter Decanter temperature
Ai,0\1\2 Coefficients regressed from experimental data [12]
ni,product Molar flows of the components in the product stream
ni,catalyst Molar flow of the components in the recycled catalyst stream
ni,decanter Molar flow of the components in the decanter inlet stream

Table 3. Operating variables and optimum.

Operating variable Operating Interval Initial Set-Point Real Optimum Model Optimum

Reactor temperature (◦C) 85∼105 95.0 88.64 85.10
Catalyst dosage (ppm) 0.25∼2.0 1.1 0.51 0.49

Gas pressure (bar) 1.0∼3.0 2.0 3.0 3.0
CO fraction 0.0∼0.99 0.5 0.55 0.61

Cost (Euro/kmol) 899.04 761.33 818.88

Simulation results of the modifier-adaptation approach using finite-difference approximation
of gradient are illustrated in Figure 8. The figures on the left show the evolutions of the
normalized optimization variables with respect to the index of RTO iterations. The small pulses,
which are superimposed on the evolutions, represent the additional perturbations required for the
finite-difference approximations of the gradients. The star symbols at the right end mark the real
optima. The figures on the right show the evolutions of the cost and the number of plant evaluations
with respect to the index of the RTO iteration. The inset figure zooms in on the cost evolution, and the
dashed line marks the real optimum of the cost. Three cases with different combinations of the step
size of the perturbation and the noise in the data are considered. In the first case a large step-size,
∆h = 0.1, is used and the data is free of noise (σ = 0.0). From Figure 8a we can see that three of the
four optimization variables are still away from their real optimal values after 16 iterations. The cost
evolution in Figure 8b shows an oscillating behavior above the cost optimum. This indicates that the
step-size is too large to enable an accurate estimation of the gradients.

In the second case a reduced step-size (∆h = 0.05) is tried. From Figure 8c we can see that the
optimization variables attain their real optimal values at the 14th iteration. However, numerical errors
of the simulation of the plant cause deviations during the following iterations. On the one hand, the
use of a small step-size reduces the error of the finite-difference approximation of the gradients. On
the other hand, the small step-size leads to a high sensitivity of the gradient approximation to errors.
This is illustrated by the third case, in which the data contains a normally distributed error (σ = 0.3).
The optimization variables do not reach the real optima (see Figure 8e,f).
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(d) ∆h = 0.05, σ = 0.0
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(e) ∆h = 0.05, σ = 0.3
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(f) ∆h = 0.05, σ = 0.3

Figure 8. Modifier-adaptation optimization of the thermomorphic solvent system using finite-difference
approximation of the gradients, the left figures show the evolutions of the normalized optimization
variables u (the additional set-point perturbations are represented by the small pulses which are
superimposed on the set-point evolutions; the star symbols at the end mark the real optima), the right
figures show the evolutions of the cost and the number of plant evaluations (the inset figure zooms in
on the cost evolution, and the dashed line marks the real optimum).

Simulation results of the MAWQA algorithm are illustrated in Figure 9. The parameters of the
MAWQA algorithm are listed in Table 4. The figures on the left show the evolutions of the normalized
optimization variables with respect to iteration. The small pulses, which are superimposed on the
evolutions, represent the additional plant evaluations, i.e., initial probes and explorative moves.
The real optima are marked by the star symbols. The figures on the right show the evolutions
of the cost and the number of plant evaluations with respect to the iterations. The inset figure
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zooms in on the cost evolution, and the dashed line marks the real optimum of the cost. In the
first 4 iterations, the modifier-adaptation approach using finite-difference approximation of gradient is
run. Afterwards, enough sampled points (here (nu + 1)(nu + 2)/2 = 15) are available for the quadratic
approximation and the MAWQA approach is run. In the case of noise-free data, the MAWQA approach
takes 8 iterations to reach the real optima approximately (see Figure 9a). The total number of plant
evaluations is 30, much less than that used in the second case of the finite-difference approximations of
gradients which requires 55 plant evaluations to reach a similar accuracy. Note that the additional plant
evaluations at the 10th iteration are attributed to the shrinking of the regression region by Step 4 of the
MAWQA algorithm. Figure 9c,d show the optimization results in the presence of noise. The MAWQA
algorithm takes 10 iterations to reach the real optima.
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(c) σ = 0.3
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Figure 9. MAWQA optimization of the thermomorphic solvent system, the left figures show the
evolutions of the normalized optimization variables (the additional plant evaluations, i.e., initial probes
and unsuccessful moves, are represented by the small pulses which are superimposed on the set-point
evolutions; the star symbols at the end mark the real optima), the right figures show the evolutions of
the cost and the number of plant evaluations (the inset figure zooms in on the cost evolution, and the
dashed line marks the real optimum).

Table 4. Parameters of MAWQA.

Description Symbol Value

Screening parameter ∆u 0.1
Search space parameter γ 3
Perturbation step size ∆h 0.1

Finally, the MAWQA algorithm was tested with different values of the parameters. For each
parameter, three values are considered and the costs after 30 plant evaluations are compared with
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the real optimum. The results are summarized in Table 5. The increase of ∆u leads to a decrease of
the accuracy of the computed optima. This is due to the fact that the true mapping is only locally
quadratic and therefore the use of too distant points can cause large approximation errors. The value
of γ influences the rate of convergence since it is directly related to the size of the search space in
each iteration. The value of ∆h determines the accuracy of the finite-difference approximation of
the gradients at the starting stage of the MAWQA approach. In the absence of noise, a small ∆h is
preferred. However, the search space is also determined by the distribution of the sampled points.
A small ∆h leads to a more constrained search space and therefore decreases the rate of convergence.
The overall influence of ∆h on the rate of convergence is a combination of both effects. Note that ∆h
does not influence the accuracy of the optima if enough plant evaluations are performed.

Table 5. Influence of MAWQA parameters.

∆u ∆h γ Cost after 30 Eval. Deviation from the True Optimum (%)

Initial 0.1 0.1 3 761.5 0.02%
↑ ∆u 0.15 0.1 3 762.5 0.15%
↑↑ ∆u 0.2 0.1 3 762.9 0.21%
↑ ∆h 0.1 0.15 3 761.4 0.01%
↑↑ ∆h 0.1 0.2 3 763.3 0.26%
↓ γ 0.1 0.1 2 763.2 0.24%
↓↓ γ 0.1 0.1 1 772.1 1.14%

5. Conclusions

This paper focuses on the explorative moves when using the MAWQA algorithm to optimize
a plant. The explorative moves are generated as a result of the estimation errors of the plant gradients.
Three factors that influence the estimation errors are analyzed: the non-quadratic nature of the plant
mappings, the measurement noise, and the distribution of the regression set. The screening algorithm
is shown to take the accuracy of the gradient estimation into consideration and to choose the best set
from the collected data. This ensures that the MAWQA algorithm takes only necessary explorative
moves to improve the gradient estimations, instead of an expensive model-improvement step as
in the derivative-free optimization algorithms. The simulation results for the optimization of the
hydroformylation process with four decision variables demonstrate the promising performance of the
MAWQA algorithm over the finite difference based modifier adaptation algorithm. Further studies
will be focused on how to implement a dual control between the performance improvement and the
explorative moves.
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