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Abstract: Despite continuous research effort, patients with type 1 diabetes mellitus (T1D) experience
difficulties in daily adjustments of their blood glucose concentrations. New technological developments
in the form of implanted intravenous infusion pumps and continuous blood glucose sensors might
alleviate obstacles for the automatic adjustment of blood glucose concentration. These obstacles consist,
for example, of large time-delays and insulin storage effects for the subcutaneous/interstitial route.
Towards the goal of an artificial pancreas, we present a novel feedback controller approach that
combines classical loop-shaping techniques with gain-scheduling and modern H∞-robust control
approaches. A disturbance rejection design is proposed in discrete frequency domain based on the
detailed model of the diabetic Göttingen minipig. The model is trimmed and linearised over a large
operating range of blood glucose concentrations and insulin sensitivity values. Controller parameters
are determined for each of these operating points. A discrete H∞ loop-shaping compensator is
designed to increase robustness of the artificial pancreas against general coprime factor uncertainty.
The gain scheduled controller uses subcutaneous insulin injection as a control input and determines
the controller input error from intravenous blood glucose concentration measurements, where
parameter scheduling is achieved by an estimator of the insulin sensitivity parameter. Thus, only
one controller stabilises a family of animal models. The controller is validated in silico with
a total number of five Göttingen Minipig models, which were previously obtained by experimental
identification procedures. Its performance is compared with an experimentally tested switching
PI controller.

Keywords: blood glucose control; type 1 diabetes mellitus; discrete control; robust control;
loop-shaping; disturbance rejection

1. Introduction

Diabetes mellitus collectively denotes a group of metabolic diseases with a worldwide increasing
prevalence over the last decades. Diabetes is characterised by abnormally high blood glucose
concentrations (hyperglycaemia) resulting from a dysfunction of insulin secretion, insulin action,
or both [1]. In diabetes, hyperglycaemia is typically characterised by blood glucose concentrations
beyond 126 mg/dL (7 mmol/L) in fasting state or beyond 200 mg/dL (11.1 mmol/L) in oral glucose
tolerance tests and by increased HbA1c fraction (glycated haemoglobin >6.5%). According to a study
on global estimates of diabetes prevalence [2], 382 million people in 130 countries had diabetes in 2013.
This number is estimated to increase to 592 million people by 2035. A subgroup of diabetes mellitus is
type 1 diabetes mellitus (T1D), which is characterised by the destruction of pancreatic β-cells (in healthy
state about 65% to 80% of the islets of Langerhans) and a subsequent lack of the hormone insulin,
which is important in the blood glucose regulation. About 10% of all diabetic patients are patients with
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T1D [3]. Diabetes might induce long term secondary diseases that may affect heart, vascular system,
peripheral nervous system, and can lead to blindness, heart disease or limb amputation.

To this day, manual control has to be used for patients with T1D to reduce increased blood glucose
levels to the normophysiological range. This is achieved by (a) a measurement of the blood glucose
concentration; (b) the determination of an appropriate size of subcutaneously injected insulin bolus;
and (c) the subcutaneous insulin injection. An overview of the feedback control system is presented
in Figure 1. The patient can be seen as a feedback controller acting on its own metabolic dynamics.
However, manual control of blood glucose bears several severe disadvantages. The glucose metabolic
system is subject to external disturbance and internal dynamics, which affect the blood glucose level
after insulin bolus application. Blood glucose predictions that are made by the patients rely heavily on
expert knowledge and on sparsely available blood glucose measurements. In practice, the manual
blood glucose control often leads to so-called hypo- or hyperglycaemic events. In both conditions, too
low or too high blood glucose concentrations, respectively, can lead to acute problems due to too low
or too high blood glucose levels.

A continuous research effort towards an automatic control of blood glucose, the so-called artificial
pancreas (AP), was initiated in the early 1970s. The AP consists of three main components: (i) an insulin
infusion pump; (ii) a blood glucose sensor; and (iii) a feedback control algorithm that computes insulin
infusion rates based on glucose sensor measurements.

Glucose
sensor Controller

r(t)

Infusion
pump

Patient

Dist.
dynamics d(t)

−

Glucose concentration Insulin injection

Artificial pancreas

Figure 1. Overview of the artificial pancreas components with reference r(t) and disturbance d(t).

Note that other additional measurements such as meal size or physical activity might be measured
and integrated into the control algorithm. An overview of the history of the AP is, for example, given in [4].
First approaches relied on intravenous blood glucose measurements and insulin application, where
the main challenge is the necessary catheterisation. More recently, the subcutaneous-to-subcutaneous
AP have led to a tremendous increase in research. However, this approach is associated with multiple
challenges, where it is commonly agreed that a large additional time-delay in the process dynamics is
most prominent. Moreover, insulin storage in the subcutaneous compartment and sudden release is
associated with a variable time-delay and the risk of severe hyperinsulinaemia by some researchers [4].
A first promising scenario for the application of AP might therefore be the intensive care unit with
respect to central venous catheterised patients with blood glucose imbalances [5].

Over the last three decades, a number of AP approaches were proposed by different research
groups. A recent review on the state-of-the-art T1D control strategies is presented in [6]. Early controllers
used, for example, proportional-integral-derivative (PID) strategies. An example is a nonlinear
PD-type controller presented by Clemens [7], which was extended by moving average filtering
of the measured blood glucose. However, Hernjak and Doyle [8] concluded that a simple PD
controller structure is not able to stabilise the blood glucose level around a tight operating point as the
nonlinear, time-varying metabolic system is subject to external disturbances. More recent approaches
to AP rather focus on modern optimal or robust control methodologies [9], model predictive control
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(MPC) [10] or the combination of feedback and feedforward control [11,12] (which is sometimes called
two-degrees-of-freedom control).

An AP should reliably stabilise the blood glucose concentration while rejecting physical activity
and meal uptake metabolic disturbances with satisfactory performance. The controlled system is
nonlinear, has time-varying dynamics and shows intra-individual and inter-individual parameter
uncertainties. In this article, we present a novel controller design procedure that is fully discrete.
In contrast to [9], our controller design procedure combines the advantages of classical frequency
domain techniques with fixed structure controllers with modern internal model-based procedures for
robust control, for exampleH2- or H∞-design procedures. The central controller design is basically a
discrete frequency domain disturbance rejection procedure. The design is conducted at a large number
of operating points of the linearised process models. Gain scheduling of the discrete controllers
is proposed on the measured blood glucose concentration and the estimated insulin sensitivity,
thus guaranteeing an adaption to changing process conditions. The classical controllers are finally
robustified by the discrete version of the Glover–McFarlaneH∞-loop-shaping procedure [13].

The AP approach in this paper is model-based and tested in an extensive in silico validation
procedure with n = 5 Göttingen Minipig models that were obtained from previously conducted animal
experimental studies:

• In Section 2, we briefly describe the mathematical model of a Göttingen Minipig, which is based
on the Sorensen model [14] and has already been published [15,16].

• The controller design procedure is based on the Göttingen Minipig model and is introduced in
Section 3.

• Section 4 describes the animal experimental study and the results of the model identification
procedure that is the basis for the controller validation.

• In Section 5, the controller performance is evaluated in silico by means of the identified animal
models and compared to the performance of a structural switching P/PI-controller that was
validated in vivo [17].

• Discussion of the results and a summary are given in Section 6.

2. Göttingen Minipig Model

The metabolic model of a Göttingen Minipig was adopted from the Sorensen model [14,16].
An overview of the model is presented in Figure 2. The model consists of three main subsystems: the
blood circulation, the interstitium and the gastro-intestinal tract.

InterstitiumUsc Blood
circulation

Gastro-intes-
tinal tract

Doral Div

Gp

Glucose
metabolism

rISC

rGGA

Uiv

SΓ

Figure 2. Göttingen Minipig model block diagram.

The models of the interstitium and the gasto-intestinal tract are interconnected via the
subcutaneous insulin appearance rate rISC(t) and the intravenous glucose appearance rate rGGA
in a forward manner, respectively. External inputs to the model can be grouped into disturbances
and manipulated variables. Disturbances that enter the model are the pancreatic glucagon infusion
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rate SΓ(t) = rN
PΓP(t)r

B
PΓP = rPΓP(t) and orally and intravenously applied glucose rates, denoted by

Doral(t) and Div(t), respectively. The glucagon production rN
PΓP(t) is normalised to the basal rate by

rB
PΓP. Manipulated variables are the subcutaneous Usc(t) or the intravenous Uiv(t) insulin infusion

rates. Gp(t) denotes the blood glucose concentration that is measured in the plasma.

2.1. Nonlinear State Space Model

The Göttingen Minipig model consists of nx = 16 first-order ordinary differential equations.
The control and disturbance inputs are subsequently grouped as u(t) = [Usc(t), Uiv(t)]T ∈ R2 and
d(t) = [Doral(t), Div(t), DΓ(t)]T ∈ R3, with external glucagon infusion rate DΓ(t). With the state
vector x(t) ∈ Rnx and the blood glucose concentration y(t) = GP(t) ∈ R as system output, the
nonlinear state space model is given by

ẋ(t) = f(x(t), t) + Bu(t) + Ed(t),

y(t) = cTx(t),
(1)

where f(·) : Rnx × R+ → Rnx is a nonlinear smooth vector field. c, B and E are linear mappings
with according dimensions. As further simplifications, we assume that only subcutaneous insulin
is available as a control input, that is Uiv(t) = 0. Moreover, only oral glucose disturbance Doral(t) is
regarded in the controller design; therefore, Div(t) = 0 and DΓ(t) = 0.

2.2. Model Structure

The equations of the model are derived on the basis of a compartmental modelling approach.
Figure 3 gives an overview depicting an interaction diagram of a general compartment i of the model.

Compartment i

(V) Vascular blood space

XiV(t), VX
iV

(I) Interstitial fluid space

XiI(t), VX
iI

QX
i , Xin(t) QX

i , XiV(t)

rout(t) rin(t)

TX
i

Figure 3. Basic compartment i of the blood glucose model illustrating mass exchange of substance X.

The mass exchange takes place between a vascular (blood) compartment V and an interstitial
(bloodless) compartment I. The mass exchange in compartment i can be described by two coupled
first-order differential equations

VX
iV ·

dXiV(t)
dt︸ ︷︷ ︸

mass change

= QX
i · (Xin(t)− XiV(t))︸ ︷︷ ︸

convection

−
VX

iI
TX

i
· (XiV(t)− XiI(t))

︸ ︷︷ ︸
diffusion

,

VX
iI ·

dXiI(t)
dt︸ ︷︷ ︸

mass change

=
VX

iI
TX

i
· (XiV(t)− XiI(t))

︸ ︷︷ ︸
diffusion

+ (rin(t)− rout(t))︸ ︷︷ ︸
mass in- and outflow

,

(2)

where X(t) denotes the mass distribution of a particular substance in the corresponding space.
In Equation (2), QX

i denotes the blood stream, TX
i is a time constant associated with mass diffusion and

additional mass inflow and outflow are denoted by rin(t) and rout(t), respectively. The compartment i
is coupled to other compartments by the mass concentration in the inflowing blood stream Xin(t) and
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the mass concentration in the outflowing blood stream XiV(t). The blood circulation equations of the
Göttingen Minipig model and corresponding parameters are not provided in this paper. Instead, the
reader is referred to [15].

The dynamics of orally uptaken glucose Doral(t) are described by a second-order model as also
presented by Hovorka et al. [18]. By denoting ṀG

ing,1 and ṀG
ing,2 the solid and the liquid glucose mass

flow in the stomach and the intestine, respectively, the equations are given by

dṀG
ing,1(t)

dt
=

1
Ting,1

( Doral(t)− ṀG
ing,1(t)),

dṀG
ing,2(t)

dt
=

1
Ting,2

( ṀG
ing,1(t)− ṀG

ing,2(t)),

rGGA(t) = fG ṀG
ing,2(t).

(3)

In Equation (3), Ting,1 and Ting,2 are time constants and fG is the bioavailability of glucose in the blood.
Similar to the model of the gastro-intestinal tract, the interstitium model consists of two coupled

linear differential equations of the first-order. The mass flows of nonmonomeric (inactive) insulin
and monomeric (active) insulin are denoted by ṀI

sc,1(t) and ṀI
sc,2(t), respectively. Equations for these

mass flows, that have been applied subcutaneously, are given by

dṀI
sc,1(t)
dt

=
1

Tsc,1

(
(1− xU)Usc(t)− ṀI

sc,1(t)
)

,

dṀI
sc,2(t)
dt

=
1

Tsc,2

(
ṀI

sc,1(t) + xUUsc(t)− ṀI
sc,2(t)

)
,

rISC(t) = ṀI
sc,2(t),

(4)

where Tsc,1 and Tsc,1 are suitable time constants and xU is a fractional parameter that is used to describe
the partially activated insulin.

Note that model nonlinearities are mainly due to hyperbolic functions and bilinearities with
respect to certain states [14]. In the case of the time-varying parameter insulin sensitivity kIS(t),
the glucose concentration in the interstitium GMI(t) is influenced by the glucose consumption rate
rMGC(t), which is given by

rMGC(t) = kIS(t)
(

V I
MI IMI(t)

)
, (5)

where V I
MI denotes the interstitial space for insulin and IMI(t) denotes the interstitial insulin

concentration. The mass balance for GMI(t) is given by

VG
MI

dGMI(t)
dt

=
VG

MI

TG
M

(GMV(t)− GMI(t))− rMGC(t), (6)

with VG
MI the interstitial balance volume for glucose, TG

M the diffusion time constant and GMV(t) the
glucose concentration in the muscle and adipose tissue. A change in kIS(t) affects the rate of glucose
consumption and increases or decreases the process gain of the blood glucose controlled plant (from
Usc(t) to Gp(t)).

3. Controller Design

The controller design presented in this section is based on a model linearisation, a model reduction
and a discretisation. The novel design procedure consists of a classical loop-shaping design and
a subsequentH∞-loop shaping robustification. To form a gain scheduling controller by lookup table
interpolation, the classical loop-shaping design is presented as an automatic procedure over a large
number of operating points.
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3.1. Model Linearisation

The nonlinear state space model given in Equation (1) is trimmed and linearised with a first-order
Taylor approximation. External disturbances and the full input vector are used in the trimming
procedure. However, corresponding entries are neglected in the linearisation procedure. The trimmed
dynamics result in

0 = f(xeq, t) + Bueq + Edeq,

y = cTxeq,
(7)

where the linearised state space model with state vector ∆x, no external disturbances d = 0 and
an input consisting only of subcutaneous insulin ∆u is given by

S :

{
∆ẋ = Aeq∆x + b∆u, ∆x(0) = ∆x0,

∆y = cT∆x,
(8)

with the initial state vector ∆x0 and (Aeq, b, c) given by the corresponding Jacobians. The model
is trimmed over a range of blood glucose operating points Gp and insulin sensitivity values kIS. The set
of blood glucose operating points is given by Gp ∈ [50 + i · 20] mg/dL, i ∈ [0, nG − 1] ⊆ X ⊂ N0.
Insulin sensitivities were varied in kIS ∈ [0.4 + j · 0.2] mg/(min mU), j ∈ [0, nk − 1] ⊆ Y ⊂ N0. X and
Y denote the integer sets of blood glucose and insulin sensitivity operating points, respectively. A total
of 256 models are linearised for nG = 16 and nk = 16, which are collected in set of plants

P =
{
Sij : i ∈ X , j ∈ Y

}
. (9)

From the trimming procedure, the disturbance dynamics are obtained by linearisation around the
same operating points. The linearised state space model with state ∆xd is given by

Sd :

{
∆ẋd = Ad,eq∆xd + e∆d, ∆xd(0) = ∆xd,0,

∆yd = cT
d ∆xd,

(10)

which are collected in the set of disturbance dynamics

Pd =
{
Sd,ij : i ∈ X , j ∈ Y

}
. (11)

3.2. Discrete Controller Design Prerequisites

In the first step, the set of plants P and Pd are discretised at a sampling time of Ts = 15 min.
A block diagram showing the loop structure is given in Figure 4.

Note that Ts is chosen in accordance to the animal experimental study presented in Section 4.
With respect to the linearised state space models given in minimum realisation

G(s) s
=

[
Aeq b
cT 0

]
, Gd(s)

s
=

[
Ad,eq e

cT
d 0

]
, (12)

the discrete realisation of the plant is given by

G(z) = H0Gz(z) =
z− 1

z
Z

{
G(s)

s

}
, (13)
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where H0 = H denotes a zero-order hold element (Figure 4) and Z {·} is the z-transform Z {·} of the
δ-sampled impulse response series

Z {·} = Z
{

L −1 {·}|t=kTs

}
, (14)

with the inverse Laplace-transform L −1 {·}. The disturbance transfer function is discretised by
applying the z-transform to the impulse response of the disturbance dynamics

Gd(z) = Z
{

L −1 {Gd(s)}|t=kTs

}
, (15)

which corresponds to an impulse-invariant discretisation. After obtaining the discretised state space
realisations G(z) and Gd(z), the orders are subsequently reduced. Towards this end, G(z) and Gd(z)
are brought to a balanced realisation by employing the state transformation x̄ = Tx [19], with respect
to the discete-time controllability Wc and observability Wo gramians

W̄c = T−1WcT−T , W̄o = TTWo, T, (16)

where T is chosen such that
W̄c = W̄o = Λ. (17)

In Equation (17), Λ denotes a diagonal matrix filled with (positive) square roots of the eigenvalues
of WcWo

Λ = diag
{

λ1/2
j (WcWo)

}
. (18)

Consequently, balanced realised systems Ḡ(z) and Ḡd(z) are reduced to Ĝr(z) and Ĝr
d(z),

respectively, by truncation of all states that do not correspond to the maximum eigenvalue in Λ.
The resulting discrete transfer functions are given by

Ĝr(z) = − b0

z− a0
, Ĝr

d(z) =
bd,0

z− ad,0
, (19)

with positive constants b0, a0, bd,0 and ad,0. Figure 5 shows a comparison of the linearised and
discretised full order systems Ḡ(z) and Ḡd(z) and the reduced order systems Ĝr(z and Ĝr

d(z).
The systems correspond to a blood glucose concentration of Gp(t) = 50 mg/dL and an insulin
sensitivity of kIS(t) = 0.4 mg/(min mU).

G(s)

Gd(s)

y(t)H(s)C(z)

d(t)

r(kTs)

Ts

Continuous
dynamics

u(t)u(kTs)

y(kTs)

−

Figure 4. Block diagram of the discrete disturbance rejection controller C(z) with hold transfer function
H(s) and δ-sampler in the feedback branch.
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Figure 5. Frequency response of the plant and the disturbance dynamics, comparing full order models
Ḡ(z) and Ḡd(z) and reduced order models Ĝr(z and Ĝr

d(z).

3.3. Disturbance Rejection Design

This section presents the classical loop-shaping controller for disturbance rejection design.
The presented procedure consists of three design stages, which are automatically computed over
a large operating range of linearised and discretised models. A series interconnection of controllers
C1(z), C2(z) and C3(z), as a result of the three design stages, forms the classical loop-shaping controller.

3.3.1. Initial Controller Gain for Disturbance Rejection

The controller is designed for disturbance rejection. Therefore, the reference input is set to zero,
r(kTs) = 0 (see Figure 4). Remaining control loop inputs and outputs are scaled with respect to their
maximum possible (expected) magnitudes [20]. Scaling factors are introduced for the error de = emax,
the process input du = umax and the disturbance input dd = dmax. The scaled and discretised plant of
reduced order Gr

d(z) and the scaled and discretised disturbance process of reduced order Gr
d(z) are

then given by
Gr(z) = d−1

e Ĝr(z)du, Gr
d(z) = d−1

e Ĝr
d(z)dd. (20)

With respect to the discrete time disturbance signal d(z) and the error of the control loop
e(z) = y(z), the objective of the controller is

∣∣∣e(ejωTs)
∣∣∣ < 1, assuming

∣∣∣d(ejωTs)
∣∣∣ < 1, ∀ ω ∈

[
0,

ωs

2

]
, (21)

with ωs = 2π/Ts. Assuming a worst case disturbance of |d(ejωTs)| = 1 for some frequency ω, one
can obtain ∣∣∣S(ejωTs)Gr

d(e
jωTs)

∣∣∣ < 1, ∀ ω ∈
[
0,

ωs

2

]
, (22)

which can be rewritten by introducing the sensitivity transfer function as S(z) = 1/(1 + L(z)), with
L(z) = Gr(z)C(z). The requirement for disturbance rejection thus follows as

∣∣∣1 + L(ejωTs)
∣∣∣ >

∣∣∣Gr
d(e

jωTs)
∣∣∣ , ∀ ω ∈

[
0,

ωs

2

]
. (23)
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For frequencies ω with |Gr
d(e

jωTs))| > 1, it follows that |L(ejωTs))| & |Gr
d(e

jωTs))|. The initial
controller should, therefore, satisfy the following gain requirement

∣∣∣C1(ejωTs)
∣∣∣ ≥

∣∣∣Cmin(ejωTs)
∣∣∣ ≈

∣∣∣∣∣
Gr

d(e
jωTs)

Gr(ejωTs)

∣∣∣∣∣ . (24)

It follows from Equation (19) that the initial controller is given by

C1(z) = −
bs

d,0

bs
0

z− a0

z− ad,0
, (25)

where the superscript s denotes the parameters of the scaled transfer functions.

3.3.2. Integral Action

In the second design phase, the initial controller is extended with integral action to reduce the
remaining steady-state error of the disturbance rejection. A PI-controller C(s) = Kp + Ki/s with
proportional gain of Kp = 1 is discretised by using the Tustin approximation. With s ≈ 2

Ts
z−1
z+1 , the

discrete PI-controller is given by

C2(z) =
(1 + Ki

2 Ts)z +
KiTs

2 − 1
z− 1

. (26)

The value of Ki is determined by employing the phase margin. Candidate integral gains Kin are
obtained in the log space by the set

K =

{
Kin : 10y, y =

n1 − n0

N − 1
n + n0, n ∈ [0 . . . (N − 1)]

}
, (27)

with the initial, possibly negative exponent n0 ∈ Z, the maximum exponent n1 ∈ Z and the number
N ∈ N+ of candidate integral gains to be evaluated. The phase margin PMn is then determined over
the set of candidate gains K for the full order open-loop compensated plant

PMn = ∠ G(ejωPMTs)C1(ejωPMTs)C2(ejωPMTs)
∣∣∣
Kin∈K

+ 180◦, (28)

where the largest gain Kin with a minimum phase margin of PMn > 30◦ was chosen. The resulting
controller has a relatively large bandwidth but an insufficiently low gain margin.

3.3.3. Lead–Lag Compensator

The third and final step of the classical loop-shaping procedure therefore consists of the design
of a lead-lag compensator to increase the phase margin. A Tustin approximated lead-lag discrete
compensator is used that has the form

C3(z) =
(2τLL + Ts)z + (Ts − 2τLL)

(2τLG + Ts)z + (Ts − 2τLG)
. (29)

Time constants τLL and τLG correspond to the lead and the lag pole, respectively. By denoting
the frequency of the previously determined phase margin of Equation (28) ωPM, the time-constant
of the lead part is set τLL = 1/(0.7ωPM). Furthermore, the time-constant of the lag part is set to
τLG = 2 ∗ τLL. The maximum phase increase occurs at ωPM with a positive phase of ≈ 19.4◦. Note that
the phase margin is increased by this value. However, the GM is reduced by the additional increase
in gain. The classical loop-shaping procedure is repeatedly executed over the whole set of plants P
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and Pd. Hence, the total number of 256 controllers for each C1(z), C2(z) and C3(z) are determined
automatically over the whole range of sampled operating points.

3.4. Robust Loop-ShapingH∞-Controller

The robust loop-shaping H∞-controller follows the approach of Walker [13] and increases the
robustness of the shaped loop with regard to discrete, not further specified, right coprime factor
uncertainty. Given the discrete compensated plant in a normalised right coprime factorisation

L(z) = G(z)C1(z)C2(z)C3(z) = N(z)M−1(z), (30)

a family of coprime factor uncertain plants can be described by

Pε =
{
(N(z) + ∆M(z))(M(z) + ∆N(z))−1 : ‖∆M(z) ∆N(z)‖∞ < ε

}
, (31)

where [∆M ∆N ] provide a fairly general type of dynamic uncertainty, which allows both poles and
zeros to cross out of the unit circle in the z-domain. For the generalised plant P(z) given in the form of
a normalised left coprime factorisation

P(z) =

[
P11(z) P12(z)
P21(z) P22(z)

]
=

[
0 M−1(z) M−1(z)
1 N(z)M−1(z) −N(z)M−1(z)

]
, (32)

the application of the small gain theorem (see for example [21])

∥∥∥(M(z) + K(z)N(z))−1[−K(z) − 1]
∥∥∥

∞
≤ 1

ε
(33)

ensures robust stability with respect to the normalised coprime factor perturbed family of plants Pε.
Here, the optimal achieved performance by the H∞-norm γ = 1/ε provides a measure of tolerable
right coprime factor with respect to Equation (31). An internally stabilising controller is obtained
given a minimal discrete state space realisation of P(z) and the solution of an indefinite discrete time
algebraic Riccati equation. The central loop-shaping H∞-controller K(z) is employed in the overall
mixed classical-robust controller

C∞(z) = C1(z)C2(z)C3(z)K(z). (34)

Figure 6 presents a bode plot comparing the open compensated loop with the classical controllers
L(z) from Equation (30) and the compensated loop with the robust controller L∞(z) = G(z)C∞(z).
It can be clearly seen that the gain and phase margins are increased from GM|L(z) = 12.4 dB
and PM|L(z) = 45.3◦ with the classical loop-shaping controller to GM|L∞(z) = 16.1 dB and
PM|L∞(z) = 66.2◦ by the robustifying approach, respectively.

This corresponds to a reduction of peak sensitivity measure MS = ‖S(z)‖∞, with S(z) = 1/(1 + L(z)).
The peak sensitivity measure is reduced from MS|L(z) = 4.7 dB to MS|L∞(z) = 2.28 dB. An ε = 0.5235
was accomplished by the the robustification procedure.

Note that only one robustH∞-compensator is designed. For the design, a model at an operating
point corresponding to a blood glucose concentration of Gp(t) = 130 mg/dL and an insulin sensitivity
of kIS(t) = 2.0 mg/(min mU) is chosen. Stability is determined by analysing classical gain and
phase margin, as well as sensitivity peak measure MS at every operating point of P . The resulting
minimum gain and phase margin are computed as GM|L∞(z),min = 14.2 dB and PM|L∞(z),min = 63.6◦.
The maximum sensitivity peak was determined as MS|L∞(z) = 3.1 dB. As a consequence, it is
concluded that only oneH∞-compensator is enough to robustly stabilise the set of plants P . Note that
an additional sensor time-delay of about 2 min was neglected in the control design prodecure, as it
was considered to be sufficiently small in comparison to the sampling time of 15 min. The additional
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time-delay is due to the time it takes from withdrawing venous blood until a sensor value is obtained.
At the crossover frequency of the compensated open-loop of 0.02 rad/min, the time-delay leads to
an additional phase lag of −2.3 deg.
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Figure 6. Frequency response of the compensated open loop (OL) L(z) with classical controller and
compensated loop L∞(z) with the robust controller.

4. Animal Experimental Study and Model Identification

4.1. Experimental Animal Study

To identify a realistic process and for the first test of a switching PI controller, an experimental
animal study was conducted (the experimental study was approved by the State Agency for Nature,
Environment and Consumer Protection, North Rhine-Westphalia, Germany) with Göttingen minipigs.
A total number of eight animals were included in the study that were aged 2–3 years and weighted
40–70 kg upon arrival [17]. The animals were acclimatised to standardised conditions of the animal
housing in the first three weeks. Each animal was equipped with two central venous lines (Cavafix
Certo 475, B.Braun Melsungen AG, Melsungen, Germany), which were implanted into the right jugular
vein. An acute diabetes was induced according to the protocol of Strauss et al. [22]. During this
procedure, the β-cell toxin streptozotocin (#S0130, Sigma-Aldrich, St. Louis, MO, USA or #572201
Streptozotocin, Merck Millipore, Darmstadt, Germany) was applied to the animals followed by
an intensive care phase of 36 h. After 10 additional days of convalescence, glucose and insulin tolerance
tests were conducted. During glucose control tests, blood glucose was measured intravenously
with a minimum time interval of Ts. For this, 1 mL blood with no pre-treatment was withdrawn
from the venous line and applied to a blood gas analyser (ABL 810 Flex, Radiometer Medical ApS,
Herlev, Denmark). Short acting insulin (Humalog 100 U/mL, Lilly, Bad Homburg, Germany) was
applied subcutaneously with a commercially available insulin pump (AccuCheck Combo Spirit,
Roche Diagnostics, Rotkreutz, Switzerland). After euthanization, the pancreas was removed from the
animals and histologically analysed by means of standard haematoxylin-eosin immunohistochemistry.
An anti-insulin antibody (#IR002, Polyclonal Guinea Pig Anti-Insulin, Dako, Germany) was applied
showing that only a small number of β-cells survived (5–50 cells per standardised area), compared to
the reference pig (600–2800 cells per standardised area).
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4.2. Model Identification

For each of the five minipigs, one parameter set could be identified, resulting in five individualised
mathematical minipig models. Details on the model adaption are given in [16]. Parameters of the
minipig model are partially transferred from the Sorensen model, in cases where human and animal
metabolism is similar. However, a remaining set of 14 parameters was determined in a mathematical
identification procedure. These parameters were determined from the minimisation of the cost function J

J = min
p

√∫ tend

t0

e2(p, τ)dτ, (35)

where the error e(p, t) = GP,sim(p, t)− GP,meas(t) is computed from a comparision between in silico
GP,sim(p, t) and in vivo GP,sim(p, t) blood glucose values. p ∈ R14 denotes the parameter vector.
To reduce the parameter space, the parameter vector is divided into five subgroups p = [pT

1 , . . . , pT
5 ]

T ,
the values of which were determined according to Equation (35). The corresponding experimental
tests included intravenous and oral glucose applications, intravenous and subcutaneous insulin
injections, and glucose concentration measurements. The identification process was implemented
in MATLAB using the Levenberg–Marquardt optimisation algorithm (lsqnonlin, Optimisation Toolbox,
The MathWorks, Natick, MA, USA). Figure 7 shows a comparison of in vivo data with results of the
model identification procedure.
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Figure 7. Comparison of minipig #4 in vivo measurements to in silico results of the identification
procedure with individualised Göttingen Minipig data set. The orange triangle indicates a carbohydrate
(CHO) uptake of 16 g a the beginning of the experiment. Indicated in the figure is a ±10% confidence
interval by the red area.

In the experiment, intravenous glucose was administered at t = 0 min followed by two consecutive
intravenous insulin impulses at t = 210 min and t = 334 min. In silico results evidently capture the
real-life dynamics with high accuracy with respect to ±10% relative sensor error (red area in the
figure). Similar results were obtained with other minipig models [15].

5. In Silico Feedback Control Study

In this section, the robust disturbance rejection control is implemented as a gain scheduled
controller and tested in silico with the five minipig models. The controller performance is compared
against the performance of a classical switched PI-controller that has already been tested in vivo with
the diabetic Göttingen Minipigs [17].
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5.1. Controller Implementation

The blood glucose controller is implemented as a gain scheduling controller. For each of the
scheduled controller parameters, a lookup-table procedure with linear interpolation and clipping
at table endpoints is used. The scheduling variables are computed by a state observer that is based
on a nonlinear reduced-order version of the Göttingen Minipig model. The state observer model is
subsequently augmented with the insulin sensitivity as a state. For this, an Extended Kalman Filter
(EKF) is used that is based on the augmented nonlinear minimal realisation of the Göttingen Minipig
model [23]. The gain scheduled controller is presented in Figure 8. Based on the control input signal
and the measured blood glucose concentration, discrete time updates of the estimated parameter

vector θ(kTs) =
[

Ĝp(kTs) k̂IS(kTs)
]T

are computed for scheduling. It should be mentioned that the
EKF does not include the disturbance dynamics of a meal uptake. Instead, the EKF is driven by
forward dynamics of the gastro-intestinal tract, which is not shown in Figure 8. To simulate blood-gas
sensor behaviour, normally distributed (Gaussian) noise was added at the blood glucose concentration
output, given by N (0, 0.01).

G(s)

Gd(s)

y(t)H(s)C(z, θ)

d(t)

r(kTs)

Ts

State
observer

θ(kTs) =

[
Ĝp(kTs)

k̂IS(kTs)

]

Continuous
dynamics

u(t)u(kTs)

y(kTs)

−

Figure 8. Block diagram of the discrete disturbance rejection controller C(z, θ) implementation with
gain scheduling depending on estimated process parameters insulin sensitivity k̂IS(kTs) and blood
glucose concentration Ĝp(kTs).

5.2. Disturbance Rejection Performance

To validate the performance of the controller, disturbance rejection tests are conducted with the
full-order nonlinear minipig model and the reduced-order EKF estimator. The model is initialised
with glucose concentrations of 327 mg/dL in all glucose compartments, a glucagon concentration
ΓN

0 = 1.32 [-], f2,0 = 0.1396 [-] and WHGP,0 = 2.237 [-] (the reader is referred to [15] for more details).
All other states of the model are initialised to zero. An example of a meal disturbance rejection
of the gain scheduled controller is shown in Figure 9. The controller and the EKF are switched on
simultaneously at time t = 0 h and receive intravenous blood glucose samples every 15 min. After a
transient response of ∆t = 1 h, the EKF reliably estimates the insulin sensitivity k̂IS(kTs).

The controller is able to reduce the high initial blood glucose level within less than two hours with
an undershoot to absolute glucose concentration of 77 mg/dL. In addition, the controller is able to keep
the blood glucose below 150 mg/dL and above 95 mg/dL after a oral glucose uptake of Doral(t) = 50 g
at t = 15 h.

The disturbance rejection performance is furthermore compared with the PI-controller that has
been successfully implemented under in vivo test conditions in the Göttingen Minipig study. Figure 10
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shows the comparison of the disturbance rejection performance to a meal consisting of 50 g oral
glucose update.
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Figure 9. Controller disturbance rejection test with nonlinear minipig model #2. 50 g CHO are given to
the minipig at 15 h, indicated by an orange triangle.
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Figure 10. Comparison of controller disturbance rejection test with nonlinear minipig model #4. In this
figure, 50 mg CHO are given to the minipig at 15 h, indicated by an orange triangle.

Orally uptaken glucose is applied to the model over the course of 1 min simulation time.
This disturbance is given to the closed-loop control system with previously converged dynamics.
A lower constant insulin sensitivity of kIS ≈ 1.175 mg/(min mU) is set-up in the model. Note that this
PI-controller had already been tested successfully in experiments with diabetic Göttingen Minipigs.
From Figure 10, it can be seen that both controllers provide good disturbance rejection. However, the
system response to the PI-controller action is more oscillatory.
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To investigate the effects of changing process dynamics, the insulin sensitivity kIS(t) is changed
in a sinusoidal manner in the full order model. Figure 11 presents the results of the in silico test with
the tested PI-controller and the newH∞-controller.

0

50

100

150

200
G

P

[ m
g

d
l

]

Reference
Hinf-controller
PI-controller

0

20

40

60

80

100

U
s
c

[ m
U

m
in

]

Hinf-controller
PI-controller

10 15 20 25 30 35
1

2

3

4

Time [h]

k
I
S

[
m
g

m
in

m
U

] Real kIS
EKF kIS

Figure 11. Comparison of controller disturbance rejection test with nonlinear minipig model #5 and
time-varying insulin sensitivity kIS(t). 50 mg carbohydrates (CHO) are given to the minipig at 15 h,
indicated by an orange triangle.

The disturbance rejection response of the classical PI-controller is oscillatory, as the controller is
not adapted to the current process dynamics. On the contrary, the gain scheduled H∞-controller is
adapted online to the process. Since the increase in insulin sensitivity leads to an increase in process
gain, the resulting controller, obtained from the automatic tuning procedure presented in Section 3, has
a reduced gain. Moreover, the PI-controller shows severe undershoot after disturbance rejection with
minimum blood glucose Gp(t) = 59 mg/dL. On the contrary, the undershoot of the gain scheduled
H∞-controller is bounded by a minimum value of Gp(t) = 80.25 mg/dL. The disturbance rejection
performance is not oscillatory. The EKF is able to track the insulin sensitivity over a large range of
insulin sensitivity kIS(t) = [1.35 . . . 3.4] mg

min·mU .
The gain scheduledH∞-controller was tested for all five animal models that were obtained from

the model identification procedure of Section 4.2. Only one gain schedulingH∞-controller was used.
The controller provided stable results with sufficient performance in disturbance rejection, while
time-varying effects of changing insulin sensitivity were included in the process model. A comparison
with the classical PI-controllers, which were obtained for each of the Göttingen Minipigs individually,
underlined the advantages of the proposed strategy. In some of the in silico tests, the classical
PI-controller showed strong oscillations while rejecting meal disturbances containing cases with
dangerously low blood glucose concentrations of below 60 mg/dL.

Table 1 shows an overview of the percentage of time in hyper- or hypoglycaemic conditions of
the robust gain-scheduled controller over a 36 h in silico trial with 50 mg carbohydrates meal uptake
disturbance rejection and a highly time-varying insulin sensitivity. Only one gain-scheduled controller
was employed for the family of in vivo identified plant models. The insulin sensitivity was varied in
a sinusoidal manner with a period of TIS = 24 h and a variation in amplitude of ±30%.

The percentage of time in hyperglycaemia or hypoglycaemia was determined by employing
bounds on the blood glucose concentration of 120 mg/dL and 70 mg/dL, respectively. For all
measurements, a reference value of 100 mg/dL blood glucose concentration was used. For only
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one of the Göttingen Minipig models, an episode of hypoglycaemia was obtained, where the minimum
blood glucose concentation was kept above the critical threshold of 50 mg/dL.

Table 1. Overview of achieved results for 36 h in silico trial with the robust controller (with percentage
of time of the blood glucose concentation above 120 mg/dL or below 70 mg/dL).

Göttingen Minipig Perc. Time in Hyperglycaemia Perc. Time in Hypoglycaemia

#03 5.5% 0%
#04 4.8% 0%
#05 4.1% 0%
#07 6.1% 0%
#08 6.0% 1.3%

A disturbance rejection statistics is provided in Figure 12. A single robust gain-scheduled
controller was used to stabilise the family of plants, under the assumption of fixed insulin sensitivity.
Disturbance in the experiments were 50 mg of glucose that were uptaken orally. Given in the figure
are the mean and the standard deviation that were calculated over time for all conducted experiments.
It can be seen that the controller quite well adapts to the models with individual parameter variability,
while rejecting the disturbance sufficiently fast. Furthermore, it can be seen that the blood glucose
response does not fall below 80 mg/dL.
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Figure 12. Disturbance rejection statistics with single robust gain-scheduled controller that stabilises
the family of Göttingen Minipig model. In this figure, 50 mg CHO are given to the minipig at a time
t = 900 min, indicated by an orange triangle (µ—average mean, σ—standard deviation).

6. Conclusions and Discussion

A novel discrete blood glucose control design procedure was developed that is focused on
disturbance rejection of meal uptake. The procedure combines the advantages of classical loop-shaping
control design with modern robustH∞ control design. Based on the linearisation of the detailed and
accurate minipig model, the controller design is automatically conducted for a large operating range
of trimmed models at varying blood glucose concentrations and insulin sensitivities. The family of



Processes 2016, 4, 22 17 of 18

gain scheduled controllers was then robustified with a single H∞ discrete loop-shaping controller.
Classical gain and phase margin, as well as H∞-norm peak sensitivity measures computed for the
family of linear models, indicate strong stability properties.

The gain scheduled controller was tested in silico by using the five different full order nonlinear
minipig models. Controller implementation was realised with the help of an augmented EKF that
estimates insulin sensitivity as a system state. The controller was able to robustly stabilise the family of
animal experimental models where additional uncertainty in terms of time-varying insulin sensitivity
was included. A comparison with a previously designed classical PI-controller showed superior
performance of the new control strategy.

The controller in its current form was implemented without anti-windup protection of the discrete
integrator. Moreover, the performance of the gain scheduled controller depends on the accuracy of the
insulin sensitivity estimator. As meal uptake and insulin sensitivity cannot be estimated at the same
time, due to observability problems, the size of a meal uptake is considered in the estimator by regarding
the forward dynamics. Since the subcutaneous application of insulin is considered as uncertain by
different authors, a first suitable application of the proposed discrete blood glucose controller seems to
be an intensive care unit glucose control scenario. Here, the intravenous-to-intravenous route minimises
control input uncertainties, time-delay, and blood glucose sampling time. In its current form, the
presented controller design procedure can be readily applied to this scenario, if a suitable model of the
process dynamics is available, which can be linearised over the range of blood glucose operating points
and insulin sensitivity values. Furthermore, the controller extension with a forward term regarding
meal uptake disturbance compensation like, for example, in [12] is possible. The application of the
controller in a clinical scenario will be the subject of future work.
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