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Abstract: Representing the uncertainties with a set of scenarios, the optimization problem resulting
from a robust nonlinear model predictive control (NMPC) strategy at each sampling instance can
be viewed as a large-scale stochastic program. This paper solves these optimization problems using
the parallel Schur complement method developed to solve stochastic programs on distributed and
shared memory machines. The control strategy is illustrated with a case study of a multidimensional
unseeded batch crystallization process. For this application, a robust NMPC based on min–max
optimization guarantees satisfaction of all state and input constraints for a set of uncertainty
realizations, and also provides better robust performance compared with open-loop optimal
control, nominal NMPC, and robust NMPC minimizing the expected performance at each sampling
instance. The performance of robust NMPC can be improved by generating optimization scenarios
using Bayesian inference. With the efficient parallel solver, the solution time of one optimization
problem is reduced from 6.7 min to 0.5 min, allowing for real-time application.

Keywords: dynamic optimization; robust NMPC; parallel NLP; batch crystallization

1. Introduction

Nonlinear model predictive control (NMPC) is an advanced control technique based on an online
solution of a nonlinear optimal control problem at each sampling instance using new measurements
and updated state estimates. The quality of NMPC depends on the accuracy of the underlying
model. Despite the high fidelity of using nonlinear models based on first principles, there are
still uncertainties associated with external and internal disturbances. Although the inherent robust
Input-to-State Stability (ISS) of NMPC can be proven for ideal NMPC [1,2], the assumption that the
existence of uncertainties do not change the feasibility (e.g., no state and input constraints) is not
valid for many applications. Even if robust stability is valid, it is of limited use in analyzing the
robust performance, especially for batch processes.

Several approaches have been proposed to take uncertainty into consideration in the design of
NMPC algorithms. The most widely-studied approach is to solve a min–max optimization at each
sampling instance to minimize the performance index of the worst-case while satisfying the state and
input constraints for a set of uncertainty realizations [3]. One concern about this approach is that the
nominal performance is sacrificed as the min–max optimization often chooses a very conservative
control strategy. Huang et al. [4] proposes to minimize the expected value of the performance index
based on multiple uncertainty scenarios. Nagy and Braatz [5] minimizes a weighted sum of expected
value and variance of the performance index. While all of these approaches can be implemented
within a feedback framework, this feedback is not considered in the NMPC optimization formulation
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itself. By contrast, Magni et al. [6] optimizes the control laws instead of the control steps at each
sampling step. However, if the form of the control law is overly complex, this approach may not be
computationally feasible. Recently, several other methods including multi-stage NMPC [7], Riccati
differential equations [8] and a relaxation-based approach [9] were reported.

If we represent the uncertainties with a set of scenarios, the multi-scenario-based robust
NMPC problem can be viewed as a large-scale stochastic program. The problem size becomes
too large to be solved efficiently online by a serial solver, driving the need for parallel algorithms.
For stochastic programs, an efficient parallel algorithm often exploits the structure at problem
formulation level (e.g., Bender decomposition, Lagrangian decomposition, Lagrangian relaxation,
progressive hedging) or at linear algebra level. Although the parallelization of the first class can
be easily implemented, the convergence rate is typically slow, especially for nonlinear problems. In
contrast, the second class of approaches can retain the fast convergence properties of the original
host algorithms. For this class, interior-point methods are popular because the structure of the
linear system remains the same at each iteration. The linear systems derived using interior-point
methods for stochastic programming problems have the block-bordered-diagonal form, and they
can be decomposed using the Schur complement method [10]. When the number of first stage
variables is small, this approach has almost perfect strong scaling. However, when the number
of first stage variables is large, forming and solving the dense Schur complement becomes a
computational bottleneck.

In order to deal with stochastic programs with large first-stage dimensionality, many approaches
have been proposed. Kang et al. [11] uses a preconditioned conjugate gradient (PCG) procedure
to solve the Schur system with an automatic L-BFGS preconditioner. This approach avoids both
forming and factorizing the Schur complement explicitly. Lubin et al. [12] forms the Schur system
as a by-product of a sparse factorization and factorizes the Schur system in parallel. Cao et al.
[13] performs adaptive clustering of scenarios inside-the-solver and forms a sparse compressed
representation of the large Karush–Kuhn–Tucker(KKT) system as a preconditioner. The matrix that
needs to be factorized in this approach is much smaller than the full-space KKT system and more
sparse than the Schur system.

In addition to the parallel solution of the KKT system, a scalable parallel algorithm also
requires parallel evaluations of the nonlinear programming (NLP) functions and gradients, and
parallel implementations of all other linear algebra operations (e.g., vector-vector operations and
matrix-vector multiplications). While the latter is easy for many parallel architectures, the former
is not. There is, to the best knowledge of the author, no efficient modeling language supporting
parallel evaluations of functions and gradients for general NLP problems. However, for structured
problems such as stochastic programs, Kang et al. [11] and Zavala et al. [10] build a single AMPL [14]
model instance for each scenario and evaluate all these instances in parallel. Several packages (e.g.,
PySP [15], StochJuMP[16]) have also been developed to support the parallel evaluation of functions
and gradients for structured NLP problems.

This paper solves optimization problems arising from robust NMPC using the parallel algorithm
developed to solve stochastic programs. This paper is organized as follows: Section 2 presents
both the NMPC and robust NMPC approaches. Section 3 describes one parallel algorithm to solve
large-scale stochastic programs based on the Schur complement method. Section 4 illustrates this
approach with a case study of a batch crystallization process, and compares the performance of robust
NMPC with open-loop control and nominal NMPC. Final conclusions are presented in Section 5.

2. Problem Formulations

This section demonstrates the problem formulations in the context of batch processes, while the
solution strategy described in Section 3 can also be applied to continuous processes.
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2.1. NMPC Formulation

For a batch process in the interval [t0, t f ], the optimal control problem solved online at a sampling
instance tk is of the following form:

min
u(t)

J(z(t), u(t), p), (1a)

s.t.
dz(t)

dt
= f (z(t), u(t), p), (1b)

y(t) = c(z(t), u(t), p), (1c)

z(tk) = ẑ(tk), (1d)

g(z(t), u(t), p) ≤ 0, t ∈ [tk, t f ] , (1e)

where J is the objective function, t is the time, z(t) is the vector of nz state variables, u denotes
the vector of nu input variables, p represents the vector of np uncertainty parameters, and y(t) is
the vector of ny output variables. The initial state values ẑ(tk) of the process are estimated using
moving horizon estimation (MHE) from the historical measurement of y(t), t ∈ [t0, tk]. The function
f describes the system dynamics and the function g represents the constraints on the inputs and
state variables. After solving the above optimal control problem, the input trajectory in the interval
[tk, tk+1) is injected in the plant. The optimization process is repeated with the updated estimation of
ẑ(tk+1) at the next sampling instance tk+1.

For batch processes, the objective function usually only depends on the product quality at the
end of the process. Therefore, one popular expression of the objective function is:

‖y(t f )− yset‖2
Π, (2)

where Π is a weight matrix, and yset is the setpoint. We want the product quality at the end of the
batch process to be as close to the setpoint as possible.

2.2. MHE Formulation

NMPC requires the initial value of the states ẑ(tk), but often not all states can be measured.
Therefore, we need to estimate those unmeasured state variables from available measurements.
At each sampling instance tk, before solving the optimal control problem (1), we solve the state
estimation problem of the following form:

min
p,w(t)

∫ tk

t0

‖ w(t) ‖2
Rdt +

k

∑
i=1
‖ y(ti)− ym(ti) ‖2

W + ‖p− pre f ‖2
Z, (3a)

s.t.
dz(t)

dt
= f (z(t), u(t), p) + w(t), (3b)

y(t) = c(z(t), p), (3c)

z(t0) = z̃0, (3d)

z(t) ≥ 0, t ∈ [t0, tk] , (3e)

where ym(ti) is the vector of measured values at sampling instance ti, w is the vector of model noise,
pre f is the vector of reference value for p, and R, W and Z are weighting matrices. In the objective
function, we want the predicted output to fit the measurements, the predicted parameter to be close
to the reference, and the model noise to be small. Here, we assume the initial state value at t0 is
available; otherwise, z̃0 is also a variable and a term penalizing the deviation of z̃0 from reference
should also be included in the objective function.
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2.3. Robust NMPC Formulation

Despite the high fidelity obtained with nonlinear models based on first principles, there are
still uncertainties associated with external and internal disturbances. A decision made without a
consideration of these uncertainties might not only result in low-quality products but also carry the
risk of violating some safety constraints. In order to deal with the parameter uncertainties, robust
NMPC minimizes the expected or worst-case performance. For a batch process controlled by robust
NMPC minimizing the expected performance, we solve with the following objective instead of (2):

E(‖y(t f )− yset‖2
Π), (4)

where E represents the expected value with respect to uncertain parameters p, and p follows a known
distribution on the set P ∈ Rnp .

To solve this problem numerically, one method is to assume that p has a finite number of
realizations p1, ..., pS, with probability ξ1, ..., ξS. S := {1..S} is the scenario set and S is the number of
scenarios. With this assumption, the objective function can be formulated as the following:

E(‖y(t f )− yset‖2
Π) = ∑

s∈S
ξs‖ys(t f )− yset‖2

Π. (5)

Then, we can derive the following extensive form of the robust NMPC problems and also drop
ξs from the notation by defining Π← ξs Π:

min
u(t)

∑
s∈S
‖ys(t f )− yset‖2

Π, (6a)

dzs(t)
dt

= f (zs(t), u(t), ps), (6b)

ys(t) = c(zs(t), u(t), ps), (6c)

zs(tk) = ẑ(tk), (6d)

g(zs(t), u(t), ps) ≤ 0, (6e)

t ∈ [tk, t f ], ∀s ∈ S , (6f)

where zs is a vector of states corresponding to p=ps. The control profile u needs to be determined
before the realization of p is known. Hence, we can view u as the first stage variables and zs and ys as
the second stage variables.

In many cases, the number of possible realizations of p is infinite. To deal with that situation, a
number of scenarios are generated using Monte Carlo sampling. Although Equation (5) is no longer
exact, it is often a good approximation when the number of scenarios is sufficiently large. This method
is called the sample average approximation (SAA) method. The optimal value from the extensive
form problem (6) converges to that of the original problem with objective function (4) with probability
1 as S→ ∞ [17].

If we want to minimize the worst-case performance index instead of expected performance at
each sampling instance, we can replace the objective function (6a) with the following equations:

min
u(t),worst

worst, (7a)

s.t. worst ≥ ‖ys(t f )− yset‖2
Π. (7b)

2.4. Efficient Optimization via the Simultaneous Approach

The above optimization problems are all differential-algebraic equation (DAE) constrained
optimization problems. The simultaneous method can be used to reformulate these DAE-constrained
problems by discretizing the DAE system using collocation methods [18]. As an example of the



Processes 2016, 4, 20 5 of 14

simultaneous approach, we consider the formulation for robust NMPC with expected performance
as the objective. The time domain [tk,t f ] is partitioned into ne stages with length hi, i = 1, ..., ne,
where ∑ne

i=1 hi = t f − tk, while each stage is discretized using nc collocation points. The problem after
discretization is of the following form:

min
ui,j ,zi,j

s ,yi,j
s ,żi,j

s

∑
s∈S
‖yne ,nc

s − yset‖2
Π, (8a)

s.t. zi,j
s = zi

s + hi

nc

∑
k=1

wj,k żi,j
s , (8b)

żi,j
s = f (zi,j

s , ui,j, ps), (8c)

yi,j
s = c(zi,j

s , ui,j, ps), (8d)

z1
s := ẑ(tk), (8e)

zi+1
s := zi,nc

s , (8f)

g(zi,j
s , ui,j, ps) ≤ 0, (8g)

∀i = 1, ..., ne, j = 1, ...nc, s ∈ S , (8h)

where w are the coefficients from the Radau collocation method. If we view ui,j as first stage variables,
and zi,j

s , yi,j
s , and żi,j

s as second stage variables, the above problem fits the problem formulation of
two-stage stochastic programs.

3. Efficient Parallel Schur Complement Method for Stochastic Programs

The robust NMPC problem formulation discussed in the paper match the structure of stochastic
programming problems. A general extensive form of two-stage stochastic programs is of the form:

min f0(x0) + ∑
s∈S

fs(xs, x0), (9a)

s.t. c0(x0) = 0, (λ0) (9b)

cs(x0, xs) = 0, (λs) (9c)

x0 ≥ 0, (ν0) (9d)

xs ≥ 0, (νs) (9e)

∀s ∈ S , (9f)

where x0 ∈ Rn0 are the first stage variables, λ0 ∈ <m0 and ν0 ∈ <n0 are the dual variables for the
first stage equality constraints and the bounds, xs ∈ <ns are the second stage variables for scenario
s, and λs ∈ <ms and νs ∈ <ns are the dual variables for the second stage equality constraints and
the bounds. The total number of variables is n := n0 + ∑s∈S ns and the total number of equality
constraints is m := m0 + ∑s∈S ms.

In our implementation, instead of solving the original stochastic program of the form in (9), we
solve the problem (10) by duplicating the first stage variables x0 as x0,s, s ∈ S :

min f0(x0,1) + ∑
s∈S

fs(xs, x0,s), (10a)

s.t. c0(x0,1) = 0, (λ0) (10b)

cs(xs, x0,s) = 0, (λs) (10c)

x0,1 ≥ 0, (ν0) (10d)

xs ≥ 0, (νs) (10e)
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x0,s = x0, (σs) (10f)

∀s ∈ S , (10g)

where the equality and bound constraints previously applied on x0 only transfer to that of x0,1 to
prevent redundant constraints.

Without Equation (10f), the above formulation can be decomposed into S independent
sub-problems. The Lagrangian function of subproblem 1 is defined as

L1(x0,1, x1, λ1, λ0, ν1, ν0) = f0(x0,1) + f1(x1, x0,1) + λ1
Tc1(x0,1, x1)

+ λ0
Tc0(x0,1)− νT

1 x1 − νT
0 x0,1,

(11)

and the Lagrangian function for the remaining subproblem s, s ∈ {2..S} is defined as:

Ls(x0,s, xs, λs, νs) = fs(xs, x0,s) + λs
Tcs(x0,s, xs)− νT

s xs. (12)

The Lagrangian of the whole problem (10) can be formulated as:

L(x, λ, ν, σ) = ∑
s∈S
Ls + σT

s (x0,s − x0). (13)

If we use an interior-point method to solve the problem (10), typically the dominant
computational cost is the solution of the KKT system. Given the structure of problem (10), the KKT
system has the following arrowhead form:

K1 B1

K2 B2
. . .

...
KS BS

BT
1 BT

2 . . . BT
S K0




∆w1

∆w2
...

∆wS
∆w0

 =


r1

r2
...

rS
r0

 , (14)

where

∆wT
0 := [∆xT

0 ],

∆wT
1 := [∆xT

1 , ∆x0,1
T , ∆λT

1 , ∆λT
0 , σT

1 ],

∆wT
s := [∆xT

s , ∆x0,s
T , ∆λT

s , σT
s ], ∀s ∈ {2..S}

rT
0 := ∑

s∈S
σs,

rT
1 = −

[(
∇x1L1 + ν1 − µinX1

−1e
)T

, cT
1 , cT

0 , (x0,1 − x0)
T
]

,

rT
s = −

[(
∇xsLs + νs − µinXs

−1e
)T

, cT
s , (x0,s − x0)

T
]

, ∀s ∈ {2..S}

K0 :=
[
0n0

]
,

K1 :=


W1 HT

0,1 A1 A0 0
H0,1 W0,1 T1 0 I
AT

1 TT
1 0 0 0

AT
0 0 0 0 0

0 I 0 0 0

 , (15)
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Ks :=


Ws HT

0,s,s As 0
H0,s,s W0,s Ts I
AT

s TT
s 0 0

0 I 0 0

 , ∀s ∈ {2..S}

B1 :=
[
0 0 0 0 −I,

]
,

Bs :=
[
0 0 0 −I

]
, ∀s ∈ {2..S}

Ws := Hs + X−1
s Vs, ∀s ∈ {1..S},

W0,1 := H0,1 + X−1
0,1 V0,1,

W0,s := H0,s, ∀s ∈ {2..S}

where cs=cs(xs, x0,s), As=∇xs cs(xs, x0,s), Ts=∇x0,s cs(xs, x0,s), Hs=∇2
xsxsLs, H0,s=∇2

x0,sx0,s
Ls,

H0,s,s=∇2
x0,sxsLs.

Assuming that all Ks are of full rank, we can show with the Schur complement method that the
solution of the Equation (14) is equivalent to that of the following system:

(K0 − ∑
s∈S

BT
s K−1

s Bs︸ ︷︷ ︸
:=Z

)∆w0 = r0 − ∑
s∈S

BT
s K−1

s rs︸ ︷︷ ︸
:=rZ

, (16a)

Ks∆ws = rs − Bs∆w0, ∀s ∈ S . (16b)

The system (16) can be solved in three steps. The first step is to form Z and rZ by adding the
contribution from each scenario s. This step requires the factorizations of one sparse matrix K1 of
size n1 + 2n0 + m1 + m0 and S − 1 sparse matrix Ks of size ns + 2n0 + ms. Besides a total of S
factorizations of block matrices, this step also requires a total of (S + 1)n0 backsolves. The second
step is to solve the Equation (16a) to get the direction of first stage variables ∆w0. This step requires
one factorization and one backsolve of the dense matrix Z. With ∆w0, the third step is to compute
∆ws from Equation (16b). This step requires a total of S backsolves of the block sparse matrix. A
straightforward implementation of these three steps leads to the explicit Schur complement method.

Using the Schur complement method, both step 1 and step 3 can be easily parallelized. When
n0 is relatively small, the cost of factorizing matrix Z in step 2 is negligible, and the efficiency of
parallelizing step 1 and step 3 can be close to one if the size of each block is close to each other. In
addition, the memory requirement of the parallel Schur complement method is much smaller for each
node than solving the system (14) in serial since the information of each block can be stored at each
node.

One advantage of using the formulation (10) is that the Schur complement matrix is positive
definite (P.D.) if the original KKT system and each Ks block satisfies the inertia condition for
descent [11,19]. This property enables the use of a PCG procedure to solve the Schur system [11],
leading to the implicit Schur complement method. This approach avoids both the explicit formation
and factorization of the dense Schur complement matrix. Therefore, this approach is more efficient
when n0 is relatively large.

Another advantage of using formulation (10) is that it facilitates the software development
process. Equation (15) indicates that the KKT system of the whole problem can be constructed
from the Jacobian, Hessian, and function evaluations of subblocks. In other words, the whole model
can be constructed by generating one model representation (e.g., AMPL file) for each subblock and
setting appropriate suffixes in each model file to identify first stage variables. Therefore, the model
evaluation can be performed in parallel. The specialty of formulation (10) is that the Hessian and
Jacobian for the subblocks can be used directly. For example, the Jacobian evaluated for subproblem
s, s ∈ {2..S}, is∇xs ,x0,s cs(xs, x0,s)

T = [AT
s , TT

s ]. For the formulation (10),∇xs ,x0,s cs(xs, x0,s)
T can be used
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directly in Equation (15) without splitting into AT
s and TT

s and the remaining matrices in Equation (15)
can be obtained straightforwardly from each model representation.

4. Performance of Robust NMPC on Batch Crystalization

In this section, we illustrate the performance of an implementation of robust NMPC with a batch
crystallization process.

4.1. Case Study: Multidimensional Unseeded Batch Crystallization Model

This section describes briefly a multidimensional unseeded batch crystallization model of KH2PO4-H2O
system. The details can be found in Mesbah et al. [20], Acevedo and Nagy [21], Cao et al. [22]. If we
only consider the length L and the width W of crystals, using the population balance model (PBM)
and method of moments (MOM), the batch crystallization model can be expressed as the following
system of differential algebraic equations:

dµ00

dt
= B, (17a)

dµ10

dt
= G1µ00, (17b)

dµ01

dt
= G2µ00, (17c)

dµ11

dt
= G1µ01 + G2µ10, (17d)

dµ20

dt
= 2G1µ10, (17e)

dC
dt

= −2ρckvG1(µ11 − µ20)− ρckvG2µ20, (17f)

G1 = kg1 Sg1 , (17g)

G2 = kg2 Sg2 , (17h)

B = kbSb, (17i)

S =
C− Cs(T)

Cs(T)
, (17j)

Cs(T) = cT2 + dT + e, (17k)

where µij is the cross-moment, C is the solute concentration, B is the nucleation rate, G1 and G2 are
the growth rates along L and W, respectively, S is the relative supersaturation, Cs is the saturation
concentration, kg1 , kg2 , g1, g2, and kb are kinetic parameters, ρc is the density of the solution, c, d,
and e are polynomial coefficient describing the relationship between saturation concentration and
temperature, and kv is a constant volumetric shape factor. The temperature T is the control in this
system. Two important indexes of crystals are mean length (ML) and aspect ratio (AR), which can be
determined with the following equations:

ML =
µ01

µ00
, (18a)

AR =
µ01

µ10
. (18b)

The nominal kinetic parameters are available in Acevedo and Nagy [21], Cao et al. [22], Gunawan
et al. [23] and Majumder and Nagy [24].
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4.2. Numerical Results

The kinetic parameters in this model are subject to large uncertainties. For the purpose of this
case study, we assume that kb, b, kg1 , g1, kg2 and g2 follow uniform distributions on the interval
[3.494 · 106 5.494 · 106] #/cm3 min, [2.03 2.05], [0.06726 0.07926] cm/min, [1.47 1.49], [0.5445 0.6645]
cm/min, [1.73 1.75]. We also assume that measurements of ML, AR and C are available and the
measurement noise corresponding to ML, AR and C follows truncated normal distributions on the
interval [−12 12] µm, [−0.2 0.2], and [−0.008 0.008] g/cm3. The mean values of the original normal
distribution are all zero, and the standard deviations are 6 µm, 0.1, and 0.004 g/cm3, respectively.

The setpoint we keep is ARset=2.9 and MLset=200 µm, which is selected using the Pareto front
line reported in Cao et al. [22]. The following cost function is used as the objective function in the
NMPC and to evaluate the performance of a specific test simulation:

cost = 100(AR(t f )− ARset)
2 + (ML(t f )−MLset)

2. (19a)

We assume that the batch process lasts for 90 minutes and there are 18 sampling and control
steps. The total number of first stage variables is small enough that the explicit Schur complement
method is still efficient. For practical considerations, we also assume the batch process is also
subjected to the following constraints so that the temperature profile is within the operation range
and certain yield is guaranteed:

Tmin <= T(t) <= Tmax, (20a)

− Rmax <=
dT(t)

dt
<= 0, (20b)

C(t f )− Cmax <= 0 . (20c)

For the numerical results shown later, Tmax is 45 ◦C, Tmin is 5 ◦C, Rmax is 4 ◦C/min, and Cmax is
0.237 g/cm3.

Table 1 shows the robust performance of different control strategies when exact information is
available. For each control strategy, we test the robust performance over 100 scenarios generated
from the uncertain parameter distributions, and we will refer to these as test scenarios. For the
case of ideal NMPC, we assume that the state of the system is perfectly known, and the controller
performance is estimated using exact information from each test scenario. Both the open-loop and
nominal NMPC perform the optimization using nominal values for the parameters. For the two
robust formulations, exact min–max and exact min–expected, we need to select scenarios for the
multi-scenario optimization. We refer to these as optimization scenarios. In Table 1, we show results
for the exact case where the optimization scenarios are the same as the test scenarios. Later, in this
section (and in Table 2), we will consider the more realistic case when the optimization scenarios are
not the same as the test scenarios. While we assume that ideal NMPC knows the exact value of state
variables, both nominal NMPC and two robust formulations use MHE to estimate unknown state
variables.

Although the ideal NMPC knows the true value of the uncertain parameters, it cannot achieve
the setpoint for several test scenarios. The worst-case performance for the ideal NMPC with exact
parameters is 499, which is the lower bound of the worst-case performance of all other control
strategies. The deviation of the product quality from the setpoint using open-loop control stategy
is very large. Because of the feedback mechanism, performance of nominal NMPC improves
significantly compared with the open-loop control. By considering uncertainty in the design of
NMPC, the performance of exact min–max NMPC is much better than that of nominal NMPC
in terms of the average, standard deviation and worst-case cost evaluated by 100 test scenarios.
However, the robust NMPC sacrifices the performance when the uncertain parameters are all at
their nominal values. Compared with the reduction in the worst-case cost, the nominal cost is
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still small. It is interesting to observe that the performance of exact min–expected NMPC is much
worse than that of exact min–max NMPC and nominal NMPC, even in terms of average cost. The
reason is that, although the control minimizes the expected cost at each sampling instance, the
optimization formulation does not explicitly consider feedback. One advantage of robust NMPC
methods minimizing worst-case or expected performance is that they can fulfill all input and state
constraints for all optimization scenarios, which is not guaranteed with nominal NMPC. For this
application, although there is constraint violation using nominal NMPC for several test scenarios, the
violation is small.

Table 1. The robust performance (value of cost) of different control strategies evaluated using 100 test
scenarios and exact information.

Control Strategies Nominal Average Standard Deviation Worst-Case

Ideal 2× 10−4 30 66 499
Open-loop 2× 10−4 167 223 1339

Nominal NMPC 0.2 93 159 955
Exact Min–max NMPC 32 78 113 677

Exact Min–expected NMPC 12 99 169 1076

Figure 1 shows that the optimal temperature profiles obtained using nominal NMPC and robust
NMPC methods. It is clear that the input profiles from three methods are quite different.
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Exact Min-max NMPC

Exact Min-expected NMPC

Nominal NMPC

Figure 1. Optimal temperature profile for nominal NMPC (nonlinear model predictive control) and
robust NMPC.

The results of robust NMPC shown in Table 1 are ideal in that the test scenarios are the same
as the the optimization scenarios. We now show results for the more realistic case when they
are not the same. Therefore, we generate a new set of optimization scenarios from the uncertain
parameter distributions. Table 2 shows the robust performance of robust NMPC using different
numbers of optimization scenarios. In theory, increasing the number of optimization scenarios
makes the uncertainty distribution considered in the optimization a better approximation of the
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true uncertainty distribution. Since the number of test scenarios are limited, many other factors
(e.g., similarity of optimization scenarios and testing scenarios) also influence the robust performance.
For min–expected NMPC, increasing the number of optimization scenarios from 50 to 100 changes
the performance slightly. In contrast, increasing the number of optimization scenarios from 50 to
100 significantly improves the performance of min–max NMPC. This shows that min–max NMPC is
more sensitive to the number of optimization scenarios. The performance of both robust formulations
using a new set of 100 optimization scenarios is close to the performance of using exactly test scenarios
as optimization scenarios as shown in Table 1, indicating that 100 optimization scenarios appear to be
sufficient for this case study.

Table 2. The robust performance of the robust NMPC using different numbers of scenarios evaluated
using 100 test scenarios.

Type S Nominal Average Standard Deviation Worst-Case

Min–max

25 15 99 170 1062
50 13 102 178 1129
75 13 95 156 946
100 25 80 120 767

Min–expected

25 21 89 138 902
50 11 100 172 1085
75 12 99 169 1064
100 12 99 169 1074

The size of the problem solved in Table 2 with 100 optimization scenarios is very large. It has
434,219 variables and 434,200 constraints. Table 3 shows the solution time of solving the optimization
problem at step t = 0. The total time is composed of both the time constructing the model and the
time solving the NLP. The Schur-complement method implemented not only solves the problem in
parallel, but also builds and evaluates the model in parallel. It gains 14 times speedup on a computer
with 25 cores compared with its own serial implementation. Our solver using a full-factorization
method similar to IPOPT takes 6.7 min to solve the problem while the parallel Schur complement
solver only requires half a minute, allowing for real-time application of this control strategy.

Table 3. The solution time of solving a robust optimization problem with 100 optimization scenarios.

# Processors Full Factorization Schur Complement Method
Time(s) Time(s) Speedup

Building Model

1 44.3 64.2 -
2 - 34.8 1.8
5 - 14.9 4.3
10 - 8.6 7.5
20 - 6.3 10.2
25 - 4.7 13.7

Solving NLP

1 406 426.9 -
2 - 216.3 2.0
5 - 90.8 4.7
10 - 51.0 8.4
20 - 35.8 11.9
25 - 30.0 14.2

Uncertain parameters can be estimated using MHE. However, in the presence of significant noise
and large uncertainties, point estimation results might not be accurate. Nevertheless, we can use
Bayesian inference to update the posterior distributions of uncertainties and generate optimization
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scenarios according to the posterior distribution instead of prior distribution at each sampling
instance. Specifically, the posterior distribution is:

f (p|ym) =
f (ym|p) f (p)

f (ym)
∝ f (ym|p) f (p), (21)

where f (p) is the prior probability density before ym is observed, f (ym|p) is the probability density
of observing ym with a given p, and f (ym) is the probability density of observing ym, which can be
viewed as a constant. For a given p, we can get a corresponding y(p) from simulation. Therefore,
f (ym|p) is equivalent to f (ym|y(p)) and can be computed according to the measurement error
distribution. With this information, Markov chain Monte Carlo (MCMC) can be used to generate
a set of scenarios based on the posterior distribution.

Table 4 illustrates that the performance of robust NMPC with Bayesian inference is better than
robust NMPC with scenarios generated from the prior distribution alone. This is because the posterior
distribution takes the measurements into consideration and therefore is more accurate than the prior
distribution. Specifically, the performance of robust min–max NMPC with 25 optimization scenarios
from Bayesian inference is close to the ideal performance. Increasing the number of optimization
scenarios from 25 to 50 slightly deteriorates the performance because it now considers some scenarios
that have very low probability.

Table 4. Robust performance of min–max NMPC with different numbers of optimization scenarios
from Bayesian inference evaluated using 100 simulations.

Type S Nominal Average Standard Deviation Worst-Case

Min–max
12 18 74 120 744
25 13 61 96 584
50 11 71 114 655

Min–expected
12 17 81 141 943
25 12 84 145 949
50 11 84 145 934

5. Conclusions

In conclusion, this paper solves the optimization problems arising from robust NMPC using
the parallel algorithm developed to solve stochastic programs in distributed and shared memory
machines. The optimization problem resulting from robust NMPC at each sampling instance can be
viewed as a large-scale stochastic program. Using an interior-point method to solve this problem
results in a KKT system of the arrowhead form, and these linear systems can be decomposed using
the Schur complement method, which can be implemented in parallel.

Using a case study of a multidimensional unseeded batch crystallization process, we show
that robust min–max NMPC provides better robust performance compared with open-loop optimal
control, nominal NMPC, and robust NMPC minimizing the expected performance at each sampling
instance. We further improve the performance by generating optimization scenarios using Bayesian
inference. The efficient parallel framework can dramatically reduce both the time to build the model
and the time to solve the optimization problem, and thus allows for real time application.
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