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Abstract: Chemical processes with complex reaction mechanisms generally lead to dynamic models
which, while beneficial for predicting and capturing the detailed process behavior, are not readily
amenable for direct use in online applications related to process operation, optimisation, control, and
troubleshooting. Surrogate models can help overcome this problem. In this research article, the first
part focuses on obtaining surrogate models for emulsion copolymerization of nitrile butadiene rubber
(NBR), which is usually produced in a train of continuous stirred tank reactors. The predictions
and/or profiles for several performance characteristics such as conversion, number of polymer
particles, copolymer composition, and weight-average molecular weight, obtained using surrogate
models are compared with those obtained using the detailed mechanistic model. In the second part
of this article, optimal flow profiles based on dynamic optimisation using the surrogate models are
obtained for the production of NBR emulsions with the objective of minimising the off-specification
product generated during grade transitions.

Keywords: acrylonitrile butadiene rubber (NBR); emulsion copolymerization; surrogate modeling;
artificial neural networks; inverse modeling; dynamic optimisation

1. Introduction

Nitrile butadiene rubber (NBR) is an elastomer used in a wide variety of applications
demanding oil, fuel and chemical resistance where the content of acrylonitrile influences the end
use. NBR can be produced by emulsion copolymerization of acrylonitrile (AN) and butadiene (Bd)
using batch, semi-batch, and continuous processes. Usually it is produced using a series of eight to
ten continuous-stirred tank reactors (CSTRs). Cold NBR polymers are synthesized between 5 and
15 ˝C, while hot NBR polymers are usually synthesized between 30 and 50 ˝C. A comprehensive
mechanistic model that can predict different property trajectories for NBR emulsion polymerization
has been developed by our group and has been successfully verified with experimental results over
a long period [1–3]. This model is capable of simulating the emulsion polymerisation of NBR in batch
and in a train of CSTRs, with add-on options, such as choosing the type of reactor start-up, different
modes of monomer partitioning, and the effect of impurities. More detailed information regarding the
traits and attributes of this model can be obtained elsewhere [4,5]. The mechanistic model developed
by our group is complete and comprehensive and has been used for more than just obtaining the
simulated dynamic behavior of commercial trains of CSTRs corresponding to different operating
conditions. Depending on the type of start-up of the reactor train and different mechanisms selected
by the user to be operative (related to radical desorption, partitioning methods, etc.), the simulation
time varied from several minutes to an hour. In the case of starting up the reactors full of water or
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empty, the simulation time was found to be almost two hours, depending on the detail of the selected
thermodynamic approach for monomer partitioning. To integrate the process model for control and
optimisation applications, though, the current mechanistic model can be used, as it adds significant
delay in the response of the measured variables before the control action is taken. To overcome this
problem, suitable surrogate models (whose order is significantly less than the order of the actual
mechanistic model and whose simulation times are far less than that of the fully mechanistic model)
are proposed and used in this article for further online applications. The objective of the current article
is two-fold: firstly, we explain the need for using surrogate models (in addition to the detailed model
developed by our group), obtained using various techniques such as neural networks and transfer
function models; secondly, we use them for real-time process applications, such as recipe formulations,
control, and dynamic optimisation.

Surrogate models can come to the rescue when the objective is to control or optimise a process
whose dynamics are either complex or involves relatively tedious and time-consuming numerical
analysis to solve the original complex model for obtaining different state variables, or when the
actual physics/chemistry of the process are poorly understood/not known. Artificial neural networks
(ANN) are an important and useful tool that belongs to the class of surrogate modeling and is
used for control and optimisation of processes which are highly nonlinear [6,7]. Several authors
have reported using ANN alone for predicting dynamic behavior or for controlling polymerization
reactors [8,9], or otherwise, in a hybrid mode where ANN is used in addition to the corresponding
simpler mechanistic model of the system [10,11]. In general, ANNs are highly efficient when trained
with large datasets involving a wide range of operating conditions. Otherwise, their performance will
be limited and their predictions will be different from the expected dynamics [11]. With sufficient
training data, ANN can efficiently be used for prediction of steady state properties as reported
by Vijayabhaskar et al. [12], Assenhaimer et al. [13], and Delfa and Boschetti [14]. For emulsion
copolymerisation systems. Although ANNs are used like a black box for modeling processes that are
nonlinear, very little is available in the literature for using them as inverse modeling tools for complex
polymerisation processes. In the current article, an inverse modeling approach with ANNs based on
the back propagation technique is used for obtaining formulations for recipe ingredients to be used in
the first reactor of the train that will give desired properties of the copolymer in the last reactor of the
train (in a continuous mode). To further illustrate the points and shed more light, the capability of
ANNs to predict the dynamic behaviour of emulsion copolymerisation of NBR in a batch reactor is
described and discussed next. A major contribution of this research article (in addition to using ANNs)
is to discuss how transfer function models are obtained for emulsion copolymerisation of NBR. For the
first time, a complex process like the NBR system is described using transfer functions, which are, in
turn, used for controlling the properties of the final product.

2. ANNs for NBR Emulsion Copolymerization in a Batch Reactor

In this section we explain how ANNs are used to simulate the production of NBR emulsion
copolymerisation in a batch reactor. With the mechanistic model, the overall simulation time strongly
depended on several factors such as the type of method for calculating monomer partitioning (i.e.,
thermodynamics vs constant partition coefficients), presence of monomer or water soluble impurities,
and other details in the copolymerization kinetics. For any fast control action to be taken, relying
on the mechanistic model would be equivalent to adding a dead time or delay to the measurement
signal, the typical fast measurement being on conversion (X), with other rather slow measurements
on copolymer composition or particle size or Mooney viscosity. Mooney viscosity is a well-known
indirect measure of an average molecular weight of a polymer (usually a rubber product), determined
by a Mooney visometer. In batch operation, ANN is designed to predict the effect of time on important
latex and polymer properties such as conversion, number of particles, copolymer composition (CPC),
weight-based and number-based average molecular weights, and tri- and tetra-functional branching
frequencies. In the simulations, ANN based on back-propagation is programmed in MATLAB, where
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the total prediction error, EpWq (given by Equation (1)), is minimized. The error, EpWq, also referred to
as quadratic error, is defined as the sum of the squares of the differences between the desired output,
Yi, and the predicted output, Xi. The predicted output Xi, is a function of the weights (Wjk for one
hidden layer) used in the network, where the subscripts j and k represent the indices of the input and
output neurons. In vector notation, Wjk is usually represented by W “ pW12, W13, W14, ...q:

EpWq “
1
2

ÿ

rYi ´ XipWqs
2 (1)

The predicted output is operated upon by an activation function also known as a squashing
function. The two most commonly used activation functions are the sigmoid and hyperbolic tangent.
It should be noted that, in the absence of the activation function, the problem reduces to that of
a multiple linear regression model. It is the activation function that provides the ability to handle
nonlinearities. The best values for the weights, Wjk, are obtained by training the network using
Levenberg–Marquardt back-propagation algorithm. In this algorithm, the weights are adjusted using
the method of steepest descent with respect to the error E, as defined by Equation (1). The builtin
function, trainlm.m, in MATLAB is based on this algorithm and is used in the simulations for the NBR
system. The desired output, Y, is obtained from the mechanistic model, which gives good predictions
when compared with the experimental data, as established in previous work [4,5]. The original
mechanistic model is highly nonlinear with 32 multiscale state variables. The data obtained from the
mechanistic model are divided into training, validation, and untested datasets (also called unseen
datasets). From the available data sets, 70% of the data is used for training, 15% percent of the data
is used for validation, and the remaining 15% of the data is used for testing. To avoid an overfitted
model for the training data, a program in MATLAB is written for obtaining the optimum size and
complexity of the network with the objective that the training error be comparable to the prediction
error. Performance characteristics of the designed ANN for the prediction of conversion, cumulative
copolymer composition (CPC), weight-based average molecular weight (MWw) and tri-functional
branching frequency (BN3) are shown in Figure 1a–d. In these figures, the profiles obtained from
the mechanistic model (MM) are compared to those obtained using ANN for a targeted batch time
of 700 min (a typical value used in commercial production). A very good agreement was achieved
between the predictions using ANN with those obtained using the well-established and tested MM.
The designed ANN for NBR emulsion copolymerisation in a batch reactor can, thus, be safely used in
conjunction with process control and optimisation algorithms for describing the desired properties of
the polymer.
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Figure 1. Comparison of (a) conversion; (b) cumulative copolymer composition; (c) weight-average
molecular weight; and (d) tri-functional branching frequency profiles obtained using ANN and
mechanistic models. For process conditions, refer to Dube et al. [2].

3. ANN for Inverse Modeling of NBR Emulsion Copolymerisation in a Train of CSTRs

NBR is commercially produced in a continuous fashion using eight to ten reactors operated in
series. Depending on the demand, a CSTR can be added or removed from the series, which indirectly
affects the mean residence time of the train of CSTRs. The properties of the product from the last
reactor are affected by the recipe ingredients used in the first reactor of the train and by the operating
conditions of the train. While ANNs can be used to predict these properties based on recipe ingredients
given as inputs, by using ANN-based inverse modeling, the recipe ingredients to be used in the first
reactor for targeted properties exiting the last reactor can be obtained. This is achieved by using
the properties of the product from the last reactor (say, the eighth reactor in an eight-reactor CSTR
train) to be the inputs to the network, while the outputs are the recipe ingredients to the first reactor.
This type of inverse modeling is easy and efficient with ANNs compared to the alternative, i.e., offline
optimisation using the corresponding mechanistic model as a constraint. The ingredients that are fed
to the first reactor are initiator (I), reducing agent (RA), emulsifier(s) (E), monomer(s) (M), water (W),
and chain transfer agent (CTA). Considering typical high and low levels for each one of these reaction
ingredients, the corresponding conversion (X), cumulative copolymer composition (CPC), and the
weight-based average molecular weight (MWw) at the exit of the eighth reactor can be simulated using
the mechanistic model. Out of the 64 available datasets, 52 datasets are then used for training the
network and 12 datasets are left in order to check the performance of the ANN with respect to inverse
modeling of the recipe ingredients for obtaining the desired polymer properties. The different levels of
the reaction ingredients used for MM simulations are shown in Table 1. The low and high levels of the
reaction ingredients can be normalized to ´1 and +1, respectively which, in turn, are used as outputs
from the network. The inputs to the network, as shown in Figure 2, are X, CPC, and MWw, while the
outputs are the recipe ingredients RA, I, E, M, W, and CTA.

Table 1. Recipe ingredients to the first reactor in the reactor train and their levels.

Ingredient Low Level (L/min) High Level (L/min)

Sodium Formaldehyde Sulfoxylate (RA) 0.165 0.22
p-methane hydroperoxide (I) 0.046 0.062

Dresinate/Tamol (E) 0.89/1.67 1.183/2.228
Acrylonitrile/Butadiene (M) 48.6/160.3 64.8/213.7

Water (W) 121.36 161.81
tert-dodecyl Mercaptan (CTA) 0.33 0.44

Note: Mean residence time of each reactor in train is 60 min.
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Figure 2. ANN structure used for inverse modeling with X, CPC, and MWw as inputs; RA, I, E, M, W,
and CTA as outputs.

With the objective of obtaining the minimum mean sum of squared errors (MSE), simulations
were performed to study the effect of the number of hidden layers and the number of neurons in each
layer. Table 2 shows the MSE values for monomer and CTA concentrations obtained by varying the
number of hidden layers from one to three and the corresponding number of neurons in each layer
from five to 20. All ANN simulations took less than 3 s for obtaining the trained networks. As is
evident from Table 2, a network with three hidden layers and 20 neurons gives minimum MSE values
and the same trend was found for other reaction ingredients (I, RA, W, and E).

Table 2. Effect of number of hidden layers and number of neurons on MSE.

Number of Neurons
Number of Hidden Layers

Monomer CTA

1 2 3 1 2 3

5 0.1532 0.1593 0.0033 0.1370 0.0420 0.0405
10 0.0653 0.0289 0.0836 0.0677 0.0509 0.2600
15 0.0148 0.0659 0.0405 0.0143 0.2070 0.1355
20 0.0245 0.2412 0.0124 0.137 0.1175 0.0613

A possible reason that can be attributed to the resulting large network is that the difference in
the magnitude for the output variables such as conversion and weight-based molecular weight is
almost 106. Hence, the optimum configuration used in this work was a network with three hidden
layers with 20 neurons in each layer. Though the number of weights for such a large network is very
high, the simulation time for obtaining the trained network in all simulations was only a few seconds.
The trained network (saved as .MAT file in MATLAB) in turn is used as an inverse modeling tool
to predict the recipe ingredients (of the first reactor) for targeted properties of the stream exiting the
eighth reactor. Figure 3 (a through f) shows the recipe ingredients’ predictions obtained using the
ANN-based inverse modeling for desired conversion (X) compared to the data obtained from the
mechanistic model. The proposed ANN-based inverse modeling could predict the required recipe
ingredients very well for desired conversion levels. Similar results and trends were obtained for
desired CPC and MWw (as shown in Figures 4 and 5). The predictions for all reaction ingredients are
precise, except for the initiator in some cases. The prediction capability of the ANN can be quantified



Processes 2016, 4, 6 6 of 14

using the mean sum of squared errors (MSE) for each dataset. The MSE values for each of the predicted
datasets are shown in Table 3.
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Table 3. MSE values for the 12 untested datasets using ANN.

# X CPC MWw
Mean Squared Error (MSE)

RA I E M W CTA

1 0.5611 0.2573 1.17 ˆ 105 0.1247 2.7766 0.0136 0.0105 0.1115 0.0255
2 0.7668 0.2811 1.51 ˆ 105 0.0096 4.0446 0.0074 0.0042 0.0240 0.0001
3 0.4743 0.2735 8.54 ˆ 104 0.0518 5.6491 0.0384 0.0014 0.0016 0.0068
4 0.5515 0.2285 7.56 ˆ 104 0.2717 0.2051 0.7459 0.0300 0.0110 0.1170
5 0.7669 0.2811 1.95 ˆ 105 4.1140 1.4764 0.0101 0.0015 0.0002 0.0396
6 0.6454 0.2711 1.19 ˆ 105 5.2109 4.4500 2.6381 0.0287 0.0034 0.1231
7 0.5689 0.2349 1.05 ˆ 105 0.1591 8.3361 0.0016 0.0076 0.3575 0.1394
8 0.4246 0.2676 5.45 ˆ 104 0.0674 2.9982 0.0549 0.0037 0.0053 0.0211
9 0.6895 0.2784 1.80 ˆ 105 0.0325 2.6604 0.0100 0.0094 0.0000 0.0626

10 0.7074 0.2713 1.24 ˆ 105 0.0470 4.2123 0.0217 0.0001 0.0024 0.0424
11 0.4247 0.2676 7.22 ˆ 104 0.0743 2.9586 0.0487 0.0206 0.0027 0.1336
12 0.6703 0.2547 1.16 ˆ 105 0.0014 2.6040 0.0243 0.0321 0.0004 0.0246

The MSE values from Table 3 clearly show that the prediction using ANN-based inverse modeling
is precise for almost all reaction ingredients except for the initiator. The obtained the MSE of the
initiator is slightly greater than the MSE values of the other reaction ingredients. This is due to
the fact that the magnitude of initiator concentration is very small compared to the concentrations
of the other ingredients. The above results show that ANN-based inverse modeling can give good
estimates of the reaction ingredients to be used in the first reactor (which can be applied to batch reactor
operation as well) for obtaining the desired properties of the polymer exiting the last reactor of the
CSTR train. This method of obtaining the estimates (for initial reaction ingredients) is easier and less
time consuming compared to using the fully mechanistic model. Using the mechanistic model (which
is very useful in its own right, as we have shown in previous publications, e.g., Madhuranthakam and
Penlidis [4,5]), a trial and error approach has to be used for initial reaction ingredients. During the
operation of the reactor train, for any slight discrepancies in the desired properties of the products, it is
always possible to fine-tune the estimates obtained using the ANN-based inverse modeling.
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4. Surrogate Modeling for NBR Emulsion Copolymerization

In this section, models that are capable of predicting the dynamics and are amenable for control
and/or optimisation applications for the emulsion copolymerisation of NBR are discussed. The ANNs
discussed in the previous sections can also be used for predicting the dynamics and for control
purposes, but the additional benefit of the surrogate models is that these models in their standard
forms, such as a first order plus time delay or a second order plus time delay, etc., have fewer
parameters than the number of weights obtained using the ANN. In many situations, the parameters of
a feedback controller or a model predictive controller can be obtained as functions of the corresponding
parameters of the model, which is not feasible with the case of ANN. Surrogate models are obtained
by reducing the order of the original mechanistic model so that computation of the dynamic behaviour
is fast, which in turn helps with online control and optimisation applications. Depending on the type
and order of the original model, the model can be reduced either by using a model balancing approach
or by error minimization. Model balancing involves evaluating the controllability and observability
Gramians and partitioning the state vector into important states and less important states. The reduced
model is obtained by truncation of the least important states [15]. This method involves linearizing the
original model around an operating condition or empirically obtaining Gramians corresponding to
each operating condition, which may be very tedious. The actual mechanistic model for NBR emulsion
copolymerization includes 32 state variables and its highly nonlinear nature makes it cumbersome
to obtain a corresponding linearized model. Due to this reason, empirical models are obtained by
using error minimization criteria. The initial choice of type of empirical models is very crucial as there
could be multiple models (which could differ in the number of parameters) that can fit equally well
the corresponding data available. After choosing a specific transfer function model, the models are
fine-tuned later based on the objective of minimizing the error between the responses of the proposed
empirical model and the data (obtained from the mechanistic model). The parameters of the final
surrogate model are obtained by simulation and using the nonlinear least squares fitting function
lsqnonlin in MATLAB.

5. Transfer Function Models for the First CSTR in the Reactor Train

As mentioned in the previous sections, the ingredients entering the first CSTR are the initiator,
emulsifier(s), monomers, water, and chain transfer agent streams. Typical outputs considered for
obtaining the corresponding surrogate models are conversion, cumulative copolymer composition,
weight-based average molecular weight, and the total number of latex particles per liter of water (Np).
These are the typical outputs (in principle, measurable) which are, in turn, used in the controlled
production of NBR latex. Surrogate modeling is conducted in the Laplace domain by programming
interactive simulations between SIMULINK and MATLAB. The performance of the corresponding
fitted transfer function model is evaluated in terms of the coefficient of determination, R2. The input
variables chosen to be related to any output variable are restricted to the states that have higher
impact than others and that can also be used as practical manipulated variables in control applications.
For example, when the reactor is started full of batch recipe (for other types of start-up policies refer
to [4]), the conversion obtained at the exit of the reactor is expressed as a function of initiator, and
acrylonitrile and butadiene (monomers) flow rates, as shown in Equation (2):

Y1psq “

τ2

K1
s

ˆ
c

τ1τ2

K1

˙2
s2 ` pp1` K1qτ2qs` 1

X1psq `
K1

τ2s` 1
X2psq `

K1

τ2s` 1
X3psq (2)

where Y1 denotes conversion, X1 represents initiator flowrate, X2 is the acrylonitrile flow rate, and X3

is the butadiene flow rate, all in the Laplace domain. τ1, τ2, and K1 are the parameters of the model.
Since the input and output variables in the transfer function models represent perturbations from
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initial steady states, the final model constitutes an initial value problem with all variables (outputs) to
be zero at time t = 0. The structure of this model basically consists of a combination of a second order
and two first order systems. The parameters τ1, τ2, and K are obtained by fitting the model response to
the data obtained from the mechanistic model for a given step change in the input variables X1, X2, and
X3. Similarly, for other output variables such as CPC (Y2), MWw (Y3), and Np (Y4), the corresponding
models are given by Equations (3)–(5):

Y2psq “
K2

τ3s` 1
expp´τ4sq X4psq (3)

Y3psq “
K3s` 1

τ2
5 s2 ` 2τ5τ6s` 1

X5psq (4)

Y4psq “
K4s

τ2
7 s2 ` 2τ7τ8s` 1

X1psq `
„

1
τ7s` 1

2
X6psq (5)

where Y2, Y3 and Y4 represent the output variables CPC, MWw, and Np, respectively, whereas X4, X5,
and X6 represent the ratio of flow rates of the two monomers (AN to Bd), chain transfer agent flow rate,
and emulsifier flow rate, respectively. K2, K3, K4, and τ3 through τ8 are parameters of the empirical
models. Equations (2)–(5) represent the empirical surrogate models for the dynamics of the first reactor
in the reactor train. When the reactor is started full of recipe, the inflow to the first reactor is equivalent
to giving a step input to all input variables X1 through X6 and the output responses Y1 through Y4 are
used to obtain the corresponding parameters of the empirical models. The final comparison of the
responses obtained for X, CPC, MWw, and Np using the data from the mechanistic model (MM) and
the proposed empirical models (EM) are shown in Figure 6a–d, respectively.
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The proposed empirical models fit very well the data obtained from the mechanistic model is
evident from the very high R2 values (close to unity) reported on the corresponding figures. Since the
weight-based average molecular weight (MWw) in the mechanistic model is obtained from a set of
very highly nonlinear model equations that originate using the method of moments, the corresponding
empirical model had a lower R2 value compared to the values of the other output variables. In general,
the performance of the surrogate models is very good. The proposed empirical models are not only
simple and amenable to use for online purposes but also have very few parameters. With the success
of using this method for a single CSTR (the first reactor of the CSTR train), the properties at the exit of
the eighth reactor can also be empirically modeled and further used in online applications, such as
control and grade transitions.

6. Optimal CTA Profile for Minimizing off-Spec Product

The weight-based molecular weight response exiting the eighth reactor in the reactor train is
empirically modeled using the knowledge of the corresponding dynamics in the first reactor of the train.
The validity and versatility of the proposed empirical model is shown in Figure 7 where two different
reactor start-up procedures are used (one of them starting the reactor train full of recipe (Figure 7a)
and the other starting full of water (Figure 7b). The empirical model obtained for this case is given by
Equation (6).

Y8psq “

«

Ks` 1
τ2

1 s2 ` 2τ1τ2s` 1

ff8

X5psq (6)
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model (MM) and empirical model (EM) for reactor train start-ups (a) full of recipe and (b) full of water.

Y8 is the MWw obtained at the exit of the eighth reactor, X5 is the flow rate of the CTA to the first
reactor in the reactor train, and K, τ1, and τ2 are model parameters. The empirical model consists of
eight second-order transfer functions in series, each of them corresponding to the dynamics of each
individual reactor in the reactor train. From the R2 values reported in Figure 7a,b, it is evident that the
proposed second order transfer function in series fits very well the corresponding mechanistic model
in addition to the benefit of employing three parameters only (K, τ1, and τ2).

One of the most common operational constraints that occur in the commercial production of
NBR is during grade changes. During grade changes, the reactor train is switched to operate from
one steady state to another desired steady state. These can be viewed as set point changes that occur
due to customer or production campaign requirements. One of the primary objectives during grade
changes or for start-up of the reactor train is to minimize the off-specification product that is produced
before reaching the steady state. The off-specification product can be minimized in multiple ways
but a usual practice is to add intermittent flows of the manipulated variables along the reactor train
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in a feedforward fashion where the magnitudes of the flow rates of the manipulated variables are
estimated by performing offline optimisation. For batch and semi-batch production of polymers,
Fujisawa and Penlidis [16] have shown different reactor control policies targeted for obtaining
desired copolymer compositions using an offline mechanistic model. For reducing transients during
grade changes for NBR and styrene butadiene systems, Minari et al. [17,18] have used a bang-bang
method (which also uses an offline mechanistic model), where predetermined quantities of CTA and
monomer are added along the reactor train in one shot to reduce the molecular weights and the CPC
in the last reactor of the reactor train. In the present work we propose an online method, where
continuous profiles for manipulated variables such as CTA, monomers etc. are obtained using dynamic
optimisation. This method assumes that the information for molecular weight becomes available
online via an inferential estimator based on Mooney viscosity, in order to minimize the time delay
related to the measurement of molecular weight. The empirical model (as given be Equation (6))
can be used either online or offline optimisation when there is a grade change with respect to MWw.
For simultaneous control of conversion, CPC, and MWw, a multiobjective function based on a weighted
sum or ε-constrained methods can be used [19,20]. While grade changes can involve an increase or
decrease in several product specifications, such as conversion, CPC, NP, MWw, etc., the application to
the scenario where a decrease in MWw by adding extra CTA to the reactor train is discussed here as an
example. In general, the inflows to the last few reactors are manipulated rather than manipulating the
inflows to the first few reactors, due to the fact that the monomer droplets are absent in the last few
reactors. For example, in a reactor train started up full of recipe, the monomer droplets will disappear
in the sixth reactor of the train [5]. Especially for grade changes involving MWw, the corresponding
manipulated variable is the flow rate of CTA added to the reactors with monomer droplets present.
The optimal flow rate of CTA to be added to the first reactor in the reactor train is obtained using the
optimisation function represented by Equation (7):

min
FCTA

f “
ˇ

ˇ

ˇ
MWdes

w ´MWwptq
ˇ

ˇ

ˇ

subject to :
0 ď t ď 1500
1
7

F˚
CTA ď FCTA ď 7F˚

CTA

(7)

where FCAT is the flow rate of CTA to the eighth reactor, MWdes
w is the desired steady state weight-based

molecular weight, MWw(t) is the measured value of the weight-based molecular weight at any time t,
and F˚

CTA is the steady state value of the flow rate of CTA. Assuming a control valve with a rangeability
of 50:1 is used to manipulate the CTA flow rate, the manipulated flow rate is constrained between
1
7

F˚
CTA and 7F˚

CTA. In Equation (7), time t refers to the operation time of the eighth reactor. The mean
residence time for each CSTR in the train is 60 min; hence, the total time for a reactor train of
eight CSTRs will be 480 min. Since it takes three times the total mean residence time for the reactor
train to reach steady state operation, the corresponding operational time used in the simulations was
set to 1500 min (approximately). The optimum value for FCTA is obtained by minimizing the cost
function (as shown in Equation (7)) at different time steps simultaneously. This procedure can be
extended for other grade change applications with specifications on other variables, such as CPC or X,
with manipulated variables being the flow rates of monomers, initiator, and/or emulsifiers.

Figure 8a shows the profiles obtained for MWw at the exit of the eighth reactor for the cases
where a regular CTA flow rate based on a “full of recipe” start-up is compared to that of the CTA flow
rate obtained from optimisation using Equation (7). In both cases (refer to Figure 8a), the area under
the solid curve and the dashed curve with respect to the steady state value of MWw is an indirect
measure of the amount of off-specification product generated during the operation of the reactor train.
Figure 8a clearly shows that using the proposed optimisation method, the amount of off-specification
product/material can be minimized by several folds compared to the base case where a constant CTA
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flow rate is used. The corresponding CTA flow rate profile to be added to the first reactor obtained
from the above mentioned optimisation procedure is shown in Figure 8b. This CTA flow profile can be
practically achieved by using an automatic flow controller installed on the CTA flow line. The proposed
online method for the adjustment of the manipulated CTA flow rate can also be applied to the flow
rates of monomers and initiator to control CPC and/or X.Processes 2016, 4, x 12 of 14 
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7. Concluding Remarks

Surrogate models were investigated in lieu of the original higher order mechanistic model for NBR
emulsion copolymerisation, with the objective of minimizing the computational time for implementing
the models for control/optimisation approaches. Different types of surrogate models, such as models
based on artificial intelligence using neural networks and empirical models in the form of first order
and/or second order (with and without time delay), were designed for studying the dynamics of
NBR production. It was shown that ANNs can be used to efficiently predict the dynamics, and
also as an inverse modeling tool where the reaction ingredients to be added to the first reactor in
the reactor train are obtained for targeted desired properties of the polymer produced in the eighth
reactor of the reactor train. The transfer function models were in the form of standard first and second
order processes (with or without time delay) and could readily be used in control and optimisation
applications. These proposed models fitted well the dynamics of the NBR emulsion polymerization
in the CSTR train and were subsequently used in an optimisation application. With the objective of
minimizing the off-specification product exiting the eighth reactor, the optimal CTA flow rate was
obtained. Compared to offline methods, the proposed (potentially online) method is a very promising
tool with respect to optimal reactor train operation and minimizing the waste generated due to different
startups or grade changes.
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Abbreviations

The following abbreviations are used in this manuscript:

NBR Nitrile Butadiene Rubber
AN Acrylonitrile
Bd Butadiene
CSTR Continuous-Stirred Tank Reactor
ANN Artificial Neural Network
MM Mechanistic Model
EM Empirical Model

References

1. Washington, I.D.; Duever, T.D.; Penlidis, A. Mathematical modeling of acrylonitrile-butadiene emulsion
polymerization: Model development and validation. J. Macromol. Sci. A Pure Appl. Chem. 2010, 47, 747–769.
[CrossRef]

2. Dube’, M.A.; Penlidis, A.; Mutha, R.K.; Cluett, W.R. Mathematical modeling of emulsion copolymerization
of acrylonitrile/butadiene. Ind. Eng. Chem. Res. 1996, 35, 4434–4448. [CrossRef]

3. Scott, A.J.; Nabifar, A.; Madhuranthakam, C.R.; Penlidis, A. Bayesian design of experiments applied to a complex
polymerization system: Nitrile butadiene rubber production in a train of CSTRs. Macromol. Theory Simul. 2015,
24, 13–27. [CrossRef]

4. Madhuranthakam, C.R.; Penlidis, A. Modeling uses and analysis of production scenarios for acrylonitrile-butadiene
(NBR) emulsions. Polym. Eng. Sci. 2011, 51, 1909–1918. [CrossRef]

5. Madhuranthakam, C.R.; Penlidis, A. Improved operating scenarios for the production of
acrylonitrile-butadiene emulsions. Polym. Eng. Sci. 2013, 53, 9–20. [CrossRef]

6. Bhat, N.V.; McAvoy, T.J. Determining model structure for neural models by network stripping.
Comput. Chem. Eng. 1992, 16, 271–281. [CrossRef]

7. Nascimento, C.A.; Giudici, R.; Guardani, R. Neural network based approach for optimization of industrial
chemical processes. Comput. Chem. Eng. 2000, 24, 2303–2314. [CrossRef]

8. Ekpo, E.E.; Mujtaba, I.M. Evaluation of neural networks-based controllers in batch polymerisation of
methyl methacrylate. Neurocomputing 2008, 71, 1401–1412. [CrossRef]

9. Lightbody, G.; Irwin, G.W.; Taylor, A.; Kelly, K.; McCormick, J. Neural network modeling of
a polymerization reactor. Proc. IEEE Int. Conf. Control. 1994, 1, 237–242.

10. D’Anjou, A.; Torrealdea, F.J.; Leiza, J.R.; Asua, J.M.; Arzamendi, G. Model reduction in emulsion polymerization
using hybrid first-principles/artificial neural network models. Macromol. Theory Simul. 2003, 12, 42–56. [CrossRef]

11. Arzamendi, G.; d’Anjou, A.; Grana, M.; Leiza, J.R.; Asua, J.M. Model reduction in emulsion polymerization
using hybrid first-principles/artificial neural network models 2a long chain branching kinetics.
Macromol. Theory Simul. 2005, 14, 125–132. [CrossRef]

12. Vijayabaskar, V.; Gupta, R.; Chakrabarti, P.P.; Bhowmick, A.K. Prediction of properties of rubber by using
artificial neural networks. J. Appl. Polym. Sci. 2006, 100, 2227–2237. [CrossRef]

13. Assenhaimer, C.; Machado, L.J.; Glasse, B.; Fritsching, U.; Guardani, R. Use of a spectroscopic sensor to
monitor droplet size distribution in emulsions using neural networks. Can. J. Chem. Eng. 2014, 92, 318–323.
[CrossRef]

14. Delfa, G.M.; Boschetti, C.E. Optimization of the chain transfer agent incremental addition in SBR
emulsion polymerization. J. Appl. Polym. Sci. 2012, 124, 3468–3477. [CrossRef]

15. Hahn, J.; Edgar, T.F. An improved method for nonlinear model reduction using balancing of
empirical gramians. Comput. Chem. Eng. 2002, 26, 1379–1397. [CrossRef]

16. Fujisawa, T.; Penlidis, A. Copolymer composition control colicies: characteristics and applications.
J. Macromol. Sci. A Pure Appl. Chem. 2008, 45, 115–132. [CrossRef]

17. Minari, R.J.; Gugliotta, L.M.; Vega, J.R.; Meira, G.R. Continuous emulsion styrene-butadiene rubber (SBR)
process: Computer simulation study for increasing production and for reducing transients between
steady states. Ind. Eng. Chem. Res. 2006, 45, 245–257. [CrossRef]



Processes 2016, 4, 6 14 of 14

18. Minari, R.J.; Gugliotta, L.M.; Vega, J.R.; Meira, G.R. Continuous emulsion copolymerization of acrylonitrile
and butadiene: Simulation study for reducing transients during changes of grade. Ind. Eng. Chem. Res. 2007,
46, 7677–7683. [CrossRef]

19. Rivera-Toledo, M.; Flores-Tlacuahuac, A. A multiobjective dynamic optimization approach for a methyl-methacrylate
plastic sheet reactor. Macromol. React. Eng. 2014, 8, 358–373. [CrossRef]

20. Camargo, M.; Morel, L.; Fonteix, C.; Hoppe, S.; Hu, G.; Renaud, J. Development of new concepts for the
control of polymerization processes: Multiobjective optimization and decision engineering. II. Application
of a choquet integral to an emulsion copolymerization process. J. Appl. Polym. Sci. 2011, 120, 3421–3434.
[CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

