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Abstract 

We present a new two-level rolling horizon optimization framework applied to a zero-

emissions coal-fueled solid-oxide fuel cell power plant with compressed air energy storage for 

peaking applications. Simulations are performed where the scaled hourly demand for the year 2014 

from the Ontario, Canada market is met as closely as possible. It was found that the proposed two-

level strategy, by slowly adjusting the SOFC stack power upstream of the storage section, can 

improve load-following performance by 86% compared to the single-level optimization method 

proposed previously. A performance analysis indicates that the proposed approach uses the 

available storage volume to almost its maximum potential, with little improvement possible 

without changing the system itself. Further improvement to load-following is possible by 

increasing storage volumes, but with diminishing returns. Using an economically-focused 

objective function can improve annual revenue generation by as much as 6.5%, but not without a 

significant drop-off in load-following performance.  

1. Introduction 

Due to pressure from governmental regulations, the constant knowledge of waning resources, 

and the rapidly improving technologies for generating reliable electricity from renewable 

resources, classic power plants utilizing fossil fuels such as coal and natural gas (NG) are being 

eschewed in favour of more environmentally friendly alternatives, particularly in North America. 

In fact, it is projected that by 2035 the United States and Canada will each generate approximately 

10% [1] and 16% [2] of their power from non-hydroelectric renewable resources, respectively. 

However, a current prohibitive feature of renewable resources is that they are typically intermittent 

in nature (variable and unpredictable wind/cloud patterns, day/night cycles, etc.), which makes 

them unsuitable for use in a bulk supply scenario, which requires high reliability and consistency. 

Although it is possible to use large-scale intermittent energy storage techniques such as pumped 

hydro storage [3], compressed air energy storage (CAES) [4], molten salt loops [5], material phase 

changes [6] and others in order to levelized the power supply from intermittent renewables, the 

high variability of renewables coupled with the limited capacity of energy storage techniques make 



2 | P a g e  

 

for significantly difficult planning and operability concerns. These problems are further 

exacerbated by the low capacities of renewables and round-trip efficiency losses in potential 

energy storage systems, both of which must be improved before renewable energy sources will be 

capable of fully displacing fossil fuel-based power. 

While the paradigm in energy sources for electricity generation moves to renewables, the use 

of fossil fuels still constitutes a major portion of the power generated worldwide. In fact, it is 

estimated that the United States will still supply approximately 34% of its electricity demand 

through the consumption of coal [1]. Furthermore, at its current usage rate it is estimated that North 

America possesses sufficient reserves for over 250 years of domestic coal consumption [7]. This 

large supply of coal, combined with the forecasted importance of it as a future resource, provides 

an opportunity and challenge to use make the most efficient usage of this resource as possible. 

Solid oxide fuel cells (SOFCs) can be used to generate reliable “peaking” electric power at the 

bulk scale with minimal environmental impact when appropriate carbon capture strategies are used 

[8]-[10]. To do this, SOFCs fueled by coal [11],[12] or natural gas (NG) [13] can be integrated 

with compressed air energy storage (CAES) in order to exploit some process synergies that enable 

the system to meet an ever-changing electricity demand through the day despite having no direct 

CO2 emissions. The electric power can be generated at a competitive market price, even without 

government subsidies, once the SOFC technology reaches maturity. Furthermore, detailed life 

cycle analyses have shown that these proposed SOFC plants have significantly lower 

environmental impacts than other state of the art options such as the NG combined cycle (NGCC) 

[14] or supercritical pulverized coal (SCPC) [15] process. 

In the SOFC/CAES system, the SOFCs produce power at a constant, steady rate, and the CAES 

system either stores or releases compressed air in different amounts that can change hourly or even 

more frequently. The goal is to adjust the amount stored or released throughout the day in order to 

change the total net electricity production needed to meet the demand. However, because the SOFC 

output is limited and the CAES storage capacity is finite, the power demand cannot always be met 

every hour of every day, week, and month. Therefore, an operating policy is required which must 

decide how well to match the production and demand at any given time. For example, the original 

proof-of-concept used a naïve (or “greedy”) operating policy, which was to always store or release 

energy at any given moment such that power demand at that moment would be met exactly. 

Although this worked sometimes, it also led to significant “large misses” when the CAES storage 

volume reached minimum or maximum capacity, leading to all flexibility in the system being lost 

instantaneously [11]-[13]. The concept of real-time optimization [16]-[19] being used in chemical 

plants and even with small SOFC experimental setups [20] led to the eventual development of a 

rolling horizon optimization (RHO) technique that uses forecasts of future demand to optimally 

plan the next series of control moves based on the operating and storage constraints of the 

SOFC/CAES system [21]. With this approach, the system would predict a potential problem and 

then avoid it by scheduling a series of “small misses” over time in order to prevent a more serious 

large miss. Although this method improves the day-to-day performance and peak-following 

capability of the SOFC/CAES plant, it does not solve the problem of seasonal changes in demand, 

such as a generally higher demand (up to 30% more) during the summer and winter months 

compared to autumn and spring. 

Therefore, to better solve this problem, we present a new, expanded version of the RHO 

concept by formulating a two-stage RHO methodology that exploits the modular nature of the 

upstream SOFC stacks by turning some of them on or off safely, infrequently, and in incremental 
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amounts. This leads to a modular step increase or decrease in the steady-state output of the plant, 

and thus the baseload can be optimally selected in order to track seasonal changes in demand as 

closely as possible. This allows for the CAES storage volume to be much more efficiently utilized, 

and significantly improves season-to-season and overall annual load-following performance. To 

demonstrate, this concept is applied to a SOFC/CAES plant with zero direct CO2 emissions using 

gasified coal as a fuel source, showing for the first time that it is possible to use coal for clean, 

reliable and efficient electrical peaking power at the 100 megawatt scale over the entire year. 

2. The Process and Simulation Models 

1.1 SOFC/CAES Plant Layout  

The integrated SOFC/CAES system used for this work is shown in Figure 1, which was studied 

in a prior work using the “greedy” operational strategy [11] but has not been examined using a 

RHO framework. This system is capable of providing reliable power with system-limited peaking 

capabilities and 100% capture of direct CO2 emissions. The essential operating principle of this 

plant is as follows: The plant is designed for an annual average expected power demand subject to 

diurnal fluctuations. During periods of low demand, the CAES system consumes electricity 

provided by the base-load SOFC portion to charge the CAES storage of a completely independent 

(save for heat integration) CAES plant. The air source for the CAES, instead of atmospheric air, 

is the already-compressed cathode exhaust stream (mostly N2) from the SOFC power island, 

resulting in significant savings and efficiency losses during the compression step. The 

consumption of power by the CAES compressors results in a net plant output lower than the base 

load output of the plant, and the diverted cathode exhaust into the CAES storage may be adaptively 

selected in order to result in a net plant output equal to (or very close to) the demand at any given 

time. When demand increases beyond the base load capacity, the CAES system is discharged, pre-

heated by exchanging heat with the hot SOFC exhaust streams, and expanded to generate 

supplemental power in order to reach the required demand.  
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Figure 1: SOFC/CAES plant fueled by gasified coal that is simulated with the two stage RHO scheme presented in this 

work. Reproduced with permission from [11] 

By synergistically using the excess heat available from the SOFC stacks (preventing the 

consumption of NG for pre-heating) and compressing the cathode exhaust instead of atmospheric 

air (reducing the overall compression ratio from 40-70 to approximately 4-7 depending on the 

operating pressure of the storage volume), SOFCs and CAES can be shown to complement each 

other nicely and result in peaking systems with higher efficiencies than any current alternative. For 

further details regarding the plant design and analyses, the reader is encouraged to refer to the prior 

studies on the design of the system [11],[22]. Please note that although this design was chosen for 

the case study, many other design variations, including variations using other fuels such as natural 

gas, are also possible.  
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Once constructed, some operating parameters of the SOFC/CAES plant can be changed during 

operation. The two key operating parameters which are changed hourly during transient operation 

are (1) the percentage of the cathode exhaust sent to either CAES or the heat recovery and steam 

generation (HRSG) section, which is controlled by the three-way valve immediately downstream 

of stream 6.5, and (2) the amount of compressed air released from the CAES which is controlled 

by the valve immediately downstream of stream 10.3. The number of SOFC stacks in operation 

(or equivalently, the total power output of the SOFC stacks themselves) can also be changed as a 

third operating variable, although only once per week. 

2.1. Rigorous SOFC/CAES Model in Aspen Plus 

Since the rigorous SOFC/CAES system model used in this work was the same as in the prior 

work and is described in detail there, [11] only a brief summary is provided for brevity. Rigorous 

simulations of the SOFC portion of the proposed plant were performed using Aspen Plus v8.6 

using the Peng Robinson equation of state (EOS) employing the Boston-Mathias modification, 

with a few exceptions (the Redlich-Kwong-Soave EOS and Electrolyte-NRTL packages were used 

for CO2/H2O streams below and near the critical point of CO2, respectively). The coal feedstock 

to the gasification step is assumed to be Illinois #6 Bituminous, and thus has a higher heating value 

(HHV) of 27.267 MJ/kg [23] and contains 63.75% C, 4.5% H, 1.25% N, 0.29% Cl, 2.51% S, 

11.12% H2O and the remainder ash by weight [22]. The plant uses an optional water-gas shift 

(WGS) step upstream of the SOFC stacks to upgrade the H2 content of the anode fuel stream, the 

trade-offs of which were addressed in the prior work. The SOFC plant is sized to produce a 

maximum output of approximately 820 MW, which was chosen to be consistent with our prior 

work and is also the size of a typical SCPC or other comparable coal-fueled base-load plant 

according to Woods et al. [24].  

Although this is a much larger SOFC plant than any currently existing example, the US 

Department of Energy is anticipating that MW-scale SOFCs will exist by 2020 and should be 

commercially available by approximately 2030 [25],[26],[27]. In fact, Bloom Energy already has 

210 kW modules available, further showing the advancement in technology is proceeding as 

anticipated [28]. Large-scale simulations of SOFC plants are also common in current literature 

[29]. It should be noted that the units in the SOFC plant are assumed to reach equilibrium, and thus 

the throughput of the plant may be reduced to as low as 600 MW in response to seasonal changes 

in base load due to the modular nature of the SOFCs. A detailed description of the SOFC plant 

was the topic of a prior paper and is thus not repeated here for the sake of brevity. For design 

decisions and stream conditions for the SOFC plant, the reader is referred to a prior work [22]. 

The CAES operating parameters were chosen based on the design recommendations by 

Luyben [30], and are comparable to the E.N. Kraftwerke plant as simulated by Raju and Khaitan 

[31]. Details regarding the operation and integration of the CAES system with the SOFC plant was 

the main topic of a prior work, and is thus not repeated here. The reader is referred to Table 1 in 

[11] for the assumptions related to the CAES system. The base case size of the underground CAES 

cavern is assumed to be 600,000 m3, which was chosen based on a Pareto-optimal trade-off in the 

original investigation. However, with the proposed RHO framework allowing for better utilization 

of CAES storage volume, the size of the CAES cavern is varied in a sensitivity analysis (See 

section 4.2).  
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2.2. Reduced-Order SOFC/CAES Model 

The Aspen Plus simulation takes approximately 5 minutes to converge, since the model itself 

requires several different iterative solves to converge tear streams, design specifications, and local 

optimization problems. This makes it unsuitable to use in a RHO framework because the RHO 

algorithm, which is described in Section 3, requires around 500 simulations for the algorithm to 

complete (or about 40 CPU-hours) every timestep, which in this work is once every hour of the 

year. So for the entire year of interest, this would require about 40 CPU-years to compute. 

Furthermore, the nature of the RHO algorithm is such that it cannot be easily parallelized, so using 

more CPUs in parallel does not solve this problem.  

Therefore, a much faster reduced-order model representing the SOFC/CAES plant was 

identified from the rigorous Aspen Plus model. The reduced-order model was fit by running the 

Aspen Plus simulation at a variety of values for three key independent state variables. These are 

the pressure in the CAES cavern (𝑃) at the beginning of the time step, a variable related to the 

amount of cathode exhaust diverted to the CAES storage volume (𝑆), and the current baseload 

capacity of the steady-state plant (𝐵𝐿). Latin hypercube sampling was used for each independent 

variable. For each combination of variables, the net power output of the SOFC/CAES system 

𝑓(𝑃, 𝑆, 𝐵𝐿) was computed with the Aspen Plus model and recorded. This was performed twice, 

such that two models were identified, one for the charging mode and another for the discharging 

mode. A least-squares regression method was used to identify the coefficients of the model, which 

had the form: 

 𝑓(𝑃, 𝑆, 𝐵𝐿) = ∑ ∑ ∑ 𝑎𝑥𝑦𝑧 (
𝑃

�̅�
)

𝑥

(
𝑆

�̅�
)

𝑦

(
𝐵𝐿

𝐵𝐿̅̅ ̅̅
)

𝑧

.2
𝑧=0

2
𝑦=0

2
𝑥=0   (1) 

Note that the indexed form of this model used in the optimization routine is discussed in section 

3.1.1. In the model in Eq. (1), 𝑎𝑥𝑦𝑧 is the model coefficient for the 𝑥𝑡ℎ, 𝑦𝑡ℎ and 𝑧𝑡ℎ powers of the 

normalized independent variables. The list of identified model parameters is shown in Table 1. 

The overbar denotes the value at which each of the variables were normalized to improve the 

scaling accuracy of the model. It is convenient to note the relationship between the variable used 

to describe the exhaust flow rate (𝑆), the flow rate of the cathode exhaust (𝐹), and 𝐵𝐿 is: 

𝑆 = {
1 −

𝐹

50.257𝐵𝐿−3123.4

𝐹                             
 

[𝑤ℎ𝑒𝑛 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝐶𝐴𝐸𝑆]
      [𝑤ℎ𝑒𝑛 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝐶𝐴𝐸𝑆]

 (2) 

A plot showing the nonlinear fit of the model and sampled data points for a variety of baseloads 

(each represented by a different plane) are shown in Figure 2. It can be seen that the model fits the 

data very well without spurious curvature or significant biases, with an overall testing R2 value of 

0.989 and a root-mean squared error of estimation (RMSEE) of 2 MW (0.4%). A testing set, also 

sampled using Latin Hypercubes, was used to validate the model, which had a similar R2 and a 

root-mean squared error of prediction (RMSEP) of 5 MW (1.0%). Figure 3 shows the comparative 

results of the reduced-order model versus the output of the full model for a variety of pressures, 

flows, and baseload values (all independent variables in the model). It can be seen that the data are 

very tightly correlated (corresponding to the strong goodness of fit) and are well scattered around 

the 𝑦 = 𝑥 line for all SOFC/CAES plant outputs, showing that the model is not over-fit, nor is the 

shape of the model biased in any regions of the typical operating regime. Higher order polynomial 

terms did not increase the R2 significantly and had small coefficient values, and so only 2nd order 

terms were used in the final reduced model.  
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Table 1: Reduced-order model coefficients for revised RHO formulation 

Coefficient 
Value when 𝒎 = 𝒄 

(charging mode) 

Value when 𝒎 = 𝒅 

(discharge mode) 

a000 173.3 0.1 

a100 -158.0 0 

a200 24.6 0 

a010 -55.8 25.5 

a020 6.2 0 

a001 369.4 696.8 

a002 79.6 0 

a011 94.5 0 

a101 12.7 0 

a110 70.7 0 

a111 -25.4 0 

 

 

Figure 2: Predicted (planes) and simulated (dots) performance of the reduced-order SOFC/CAES model used in this work 

for six selected baseline capacities (BL). 
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Figure 3: Correlation plot comparing the output of the reduced order model described in section 2 (x-axis) to the detailed 

Aspen Plus model of the SOFC/CAES plant (y-axis) for a range of operating conditions using Latin Hypercube sampling 

3. Two-Stage Rolling Horizon Optimization Framework 

The reduced-order model was implemented in GAMS [32]. The RHO algorithm was 

implemented in MATLAB, which communicated with GAMS to perform the optimization routine 

at each simulated time step. The RHO problem formulation for both stages and a discussion of 

what solvers were used in GAMS is presented in this section.  

3.1. Problem Formulation 

In the load-following optimization case, it is the objective of the RHO to determine the 

SOFC/CAES operating parameters over the control horizon that will either minimize the sum-of-

squared errors (SSE), maximize the total revenue, or some weighted combination of both over the 

optimization’s horizon (ℛ). The primary decision variables of interest determined by the RHO 

program are the flow rate to or from the CAES cavern (𝐹) and what the baseload for the coming 

week should be (𝐵𝐿), which is then used to calculate the power output of the combined 

SOFC/CAES plant at each time step.  

3.1.1. First Stage Objective Function Formulation 

The problem formulation for this investigation is inspired by the formulation in our prior work 

[21] with some significant changes to the formulation and solution strategy for improved load-

following and revenue generation performance. Overall, the RHO objective attempts to maximize 

a weighted objective function Φ that balances the total revenue generated by the SOFC/CAES 

plant (ℛ) and the load following performance of the plant as measured by the negative of the sum 

of squared error (SSE) between the plant output and demand as follows: 
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max
𝛿𝑖,𝑡, 𝐹𝑖,𝑡

Φ𝑖 = {𝜓ℛ𝑖 − (1 − 𝜓)𝑆𝑆𝐸𝑖},  (3) 

𝑆𝑆𝐸𝑖 =  ∑ (𝐸𝑖,𝑡 − 𝐷𝑖,𝑡)
2𝑁

𝑡=1 ,  (4) 

ℛ𝑖 =  ∑ (𝐸𝑖,𝑡𝜔𝑖,𝑡),𝑁
𝑡=1   (5) 

where 𝑆𝑆𝐸𝑖 is the sum of squared error difference at each simulation time step 𝑖 between the power 

produced 𝐸𝑖,𝑡 and forecasted demand 𝐷𝑖,𝑡 (both in MW) at each control move 𝑡 across the forecast 

time horizon 𝑁, 𝜔𝑖,𝑡 is the forecasted market spot-price of electricity (POE) for each one-hour 

optimization interval over the optimization horizon (both forecasts are obtained from the IESO 

[33]), and 𝜓 𝜖 [0,1] defines the emphasis on which of the two objectives should be met. Selecting 

𝜓 = 1 results in a pure revenue maximization problem while selecting 𝜓 = 0 yields a load-

following problem. 𝐹𝑖,𝑡 is the flow rate to or from the CAES storage volume at each simulation 

time step, the direction of which is denoted by 𝛿𝑖,𝑡, which is a binary variable that denotes whether 

the CAES storage is being charged (𝛿 = 1; the net plant output is reduced below the base-load) or 

discharged (𝛿 = 0; the net plant output is increased beyond the base-load). For the demonstrative 

purposes of this work, 𝑖 ranges from 1 to 8760, for each of the 8760 hours in one simulated year 

of plant operation. However, it is possible for this routine to be used indefinitely in real time, 

thereby not having a terminal value of  𝜉.  

3.1.2. Process Model Equations 

For the purposes of this investigation, the optimization or “control move” interval is one hour. 

𝐸𝑖,1 is therefore the power actually produced at simulated timestep i, and 𝐸𝑖,𝑡 is the power the 

optimizer plans on producing t–1 timesteps in the future for 𝑡 = (2 … 𝑁), which may or may not 

be implemented depending on future decisions since the entire forecasted output is recalculated at 

each update of 𝑖. The optimal production of the plant at the current simulation time 𝑖 for the 

prediction horizon 𝑡 = 1 … 𝑁 is calculated as: 

𝐸𝑖,𝑡 = 𝛿𝑖,𝑡𝑓𝑐,𝑖,𝑡(𝑃𝑖,𝑡, 𝑆𝑖,𝑡, 𝐵𝐿𝑖) +  (1 − 𝛿𝑖,𝑡)𝑓𝑑,𝑖,𝑡(𝑃𝑖,𝑡, 𝑆𝑖,𝑡, 𝐵𝐿𝑖),    (6) 

where 𝐵𝐿𝑖 is the baseload selected for the current simulation timestep 𝑖 (the optimization sub-

routine to select 𝐵𝐿𝑖 is discussed later), 𝐸𝑖,𝑡 is the electrical output of the SOFC/CAES plant for 

RHO horizon 𝑡 = 1 … 𝑁 at simulation time step 𝑖, 𝐷𝑖,𝑡 is the demand for the RHO horizon 𝑡 =
1 … 𝑁 at simulation time step 𝑖. The variables 𝑆𝑖,𝑡 and 𝑃𝑖,𝑡 are the variable related to the molar flow 

rate to/from the storage cavern (in kmol/hr) and the pressure (in bar) in the cavern at each time 

step, respectively, and 𝑓𝑚,𝑖,𝑡 are the indexed versions of the reduced-order models for the charging 

and discharging of the CAES cavern where 𝑚 𝜖 {𝑐, 𝑑}, respectively and take the form: 

𝑓𝑚,𝑖,𝑡(𝑃𝑖,𝑡, 𝑆𝑖,𝑡, 𝐵𝐿𝑖) = ∑ ∑ ∑ 𝑎𝑥𝑦𝑧 (
𝑃𝑖,𝑡

�̅�
)

𝑥

(
𝑆𝑖,𝑡

�̅�
)

𝑦

(
𝐵𝐿𝑖

𝐵𝐿̅̅ ̅̅
)

𝑧

,2
𝑧=0

2
𝑦=0

2
𝑥=0   (7) 

𝑆𝑖,𝑡 = {
1 −

𝐹𝑖,𝑡

50.257𝐵𝐿𝑖−3123.4
       𝑤ℎ𝑒𝑛 𝑚 = 𝑐

𝐹𝑖,𝑡                                     𝑤ℎ𝑒𝑛 𝑚 = 𝑑
. (8) 
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Note that the description of the coefficients is given in the previous section and the values of which 

are listed in Table 1. The mass balance constraint on the CAES cavern is described by: 

𝑛𝑖,1 = 𝑛𝑖−1,1 + 𝐹𝑖,1𝛿𝑖,1Δ − 𝐹𝑖,1(1 − 𝛿𝑖,1)Δ,   

𝑛𝑖,𝑡 = 𝑛𝑖,𝑡−1 + 𝐹𝑖,𝑡𝛿𝑖,𝑡Δ − 𝐹𝑖,𝑡(1 − 𝛿𝑖,𝑡)Δ,  [∀ 𝑡 = (2 … 𝑁)] (9) 

where 𝑛𝑖,𝑡 is the number of moles of cathode exhaust contained in the CAES storage volume at 

any given timestep 𝑖 and Δ is the length of the simulation time step in which the output of the plant 

is held constant via a zero-order hold. Note again that 𝑛𝑖,1 is the actual molar holdup of the cavern 

as a result of executing the decision variables 𝐹𝑖,1 and 𝛿𝑖,1, and 𝑛𝑖,𝑡 for 𝑡 = (2 … 𝑁) is the predicted 

molar holdup 𝑁– 1 timesteps in the future based on the current optimization results, and may or 

may not change in the future. The pressure 𝑃𝑖,𝑡 of the CAES storage volume is calculated using 

the SRK equation of state: 

𝑃𝑖,𝑡 =
𝑅𝑇𝑖,𝑡

𝒱𝑖,𝑡−𝑏𝑆𝑅𝐾
−

𝑎𝑆𝑅𝐾

𝑇0.5𝒱𝑖.𝑡(𝑉+𝑏𝑆𝑅𝐾)
 , [∀ 𝑡 = (1 … 𝑁)] (10) 

where 𝑎𝑆𝑅𝐾 and 𝑏𝑆𝑅𝐾 are the SRK model coefficients for the cathode exhaust (assumed to be pure 

N2) with values of 1.56 × 10-5 
𝑚6 𝑏𝑎𝑟

𝑚𝑜𝑙2  and 2.67 × 10-5 
𝑚3

𝑚𝑜𝑙
, respectively [34]. The symbol 𝑅 is the 

universal gas constant and 𝑇 is the uniform temperature in the storage volume (assuming the 

contents of the volume itself are well-mixed). The molar volume of the CAES cavern contents at 

each control step is denoted by 𝒱𝑖,𝑡 and is determined as a function of the CAES storage volume 

𝑉 as: 

𝒱𝑖,𝑡𝑛𝑖,𝑡 = 𝑉. [∀ 𝑡 = (1 … 𝑁)] (11) 

Note that the molar volume calculations given above in Eq. (11) combined with the material 

balances in Eq. (9) result in nonlinear relationships between the pressure in the CAES cavern and 

the flow rate to or from its control volume, which increases the complexity of the constraint in Eq. 

(10). Pressure is calculated at each time step to ensure that it never exceeds the operating limits of 

the CAES system, specifically: 

 

𝑃𝑚𝑖𝑛 ≤ 𝑃𝑖,𝑡 ≤ 𝑃𝑚𝑎𝑥 .  [∀ 𝑡 = (1 … 𝑁)] (12) 

 

Finally, the flow rate into the CAES cavern is bounded by the cathode exhaust flow rate denoted 

by 𝐹𝑚𝑎𝑥: 

 

0 ≤ 𝛿𝑖,𝑡𝐹𝑖,𝑡 ≤ 𝐹𝑚𝑎𝑥 . [∀ 𝑡 = (1 … 𝑁)] (13) 

Inspection of the above equations shows that 𝐸𝑖,𝑡 is a quadratic function in 𝑃𝑖,𝑡, 𝐵𝐿𝑖,𝑡 and 𝑆𝑖,𝑡. 

However, 𝑃𝑖,𝑡 is itself a highly nonlinear function of 𝐹𝑖,𝑡 and thus 𝑆𝑖,𝑡 due to the SRK equations of 

state and material balances on the CAES storage volume. It can therefore be concluded that the 

objective function for this problem is highly nonlinear and includes the binary variable 𝛿𝑖,𝑡 at each 

simulation timestep. The RHO problem at each simulation timestep 𝑖 is thus a mixed-integer 

nonlinear program (MINLP), the size of which increases depending on the forecasting and 

optimization horizon 𝑁.    
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3.2. Second Stage: Baseload Selection 

The baseload 𝐵𝐿𝑖 is adjusted every 𝜉 time steps of the simulation (chosen to be one week, or 

168 hours, due to the desired low-frequency of changing the SOFC output) by solving the second 

stage optimization problem of the form: 

min 
𝐵𝐿𝑖

 Γ = {
min  

𝛿𝜄,𝜏𝐹𝜄,𝜏
[∑ ∑ (𝐸𝜄,𝜏 − 𝐷𝜄,𝜏)

2𝑁=1
𝜏=1

𝑖 +𝜉
𝜄=𝑖 ]}, (14) 

 

𝐵𝐿𝜄 = 𝐵𝐿𝑖 ,  [∀ 𝜄] (15) 

 

(𝐵𝐿𝑖 − 𝐵𝐿𝑖−1)2 ≤ (∆𝐵𝐿𝑚𝑎𝑥)2, (16) 

 

where ∆𝐵𝐿𝑚𝑎𝑥 is the maximum permitted change in the baseload (40 MW was used in this work) 

every 𝜉 timesteps. It can immediately be seen that the objective function in Eq. (14) is the 

minimization of the original RHO objective function focused entirely on the minimization of SSE 

as described in equations (1) and (2). However, the RHO horizon for the sub-problem is restricted 

to one future time step (𝑁 = 1), a technique known as the greedy algorithm. The optimization 

problem in Eq. (14) is subjected to the same operating constraints as the original RHO problem, 

but in this case 𝐵𝐿𝑖 is adjusted to find the baseload that minimizes the SSE of the greedy algorithm 

for the coming week. The outer optimization problem is thus restricted to a nonlinear program of 

one dimension that can be solved much more quickly than the full-sized inner optimization 

problem outlined in Eq. (3). The only additional constraint for Eq. (14) is the restriction that 𝐵𝐿𝑖 

must not move more than ∆𝐵𝐿𝑚𝑎𝑥 from the previous value (Eq. 16). 

As a final note, it should be stated that the final result of the outer-layer optimization problem 

in Eq. (14) is rounded to the nearest MW step change to represent the modular nature of the SOFC 

stacks and thus the gross output of the SOFC/CAES plant. Rounding to the nearest 5 MW has been 

found to not change the nature of the solution to the outer-layer RHO problem, and thus is not 

added as a hard constraint to avoid having 𝐵𝐿𝑖 appear as an integer variable 

3.3. Optimization Scheme and Method 

3.3.1. Summary of Optimization Algorithm  

The optimization scheme in this work follows closely to that of the prior investigation [21]. 

However, in this case there is an additional outer-layer optimization that occurs every 𝜉 time steps. 

A summary of the algorithm is as follows: 

1. Select desired values of the objective weighting factor 𝜓, the storage cavern volume 𝑉, and 

the RHO horizon 𝑁. 

 

2. Initialize the problem with the demand predictions for next 𝑁 timesteps (The actual 

historical hourly operation of 2014 is used for this study). 
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3. Provide the initial guesses for the SOFC/CAES plant output (�̇�), number of moles in the 

cavern (�̇�), model selection variable (�̇�) and operating pressure of the cavern (�̇�) to im-

prove the likelihood of locating an optimal solution: 

 

If 𝑖 = 1 

�̇�1,1 … �̇�1,𝑁 = 𝐷1 … 𝐷𝑁 

�̇�1,1 … �̇�1,𝑁 = 𝑛0 

�̇�1,1 … �̇�1,𝑁 = 1 

�̇�1,1 … �̇�1,𝑁 = 𝑃0 

Else 

�̇�𝑖+1,1 … �̇�𝑖+1,𝑁−1 = 𝐸𝑖,2 … 𝐸𝑖,𝑁  �̇�𝑖+1,𝑁 = 𝐷𝑖+𝑁 

�̇�𝑖+1,1 … �̇�𝑖+1,𝑁−1 = 𝑛𝑖,2 … 𝑛𝑖,𝑁  �̇�𝑖+1,𝑁 = 𝑛𝑖,𝑁 

�̇�𝑖+1,1 … �̇�𝑖+1,𝑁−1 = 𝛿𝑖,2 … 𝛿𝑖,𝑁  �̇�𝑖+1,𝑁 = 𝛿𝑖,𝑁 

�̇�𝑖+1,1 … �̇�𝑖+1,𝑁−1 = 𝑃𝑖,2 … 𝑃𝑖,𝑁  �̇�𝑖+1,𝑁 = 𝑃𝑖,𝑁 

 

4. Assign the appropriate baseload: 

 

If 𝑖 = 1 OR 𝜉 (𝑚𝑜𝑑 𝑡) = 0: 

Perform second stage RHO to select optimal baseload 𝐵𝐿𝑖 

 

Else 

 𝐵𝐿𝑖 = 𝐵𝐿𝑖−1 

 

5. Pass in demand, the current baseload, and the operating conditions of the CAES system to 

the first stage RHO and obtain results. 

 

6. Recover the actual values at simulation step 𝑖 for plant output (�̅�𝑖), cavern pressure (�̅�𝑖) 

and number of moles (�̅�𝑖) as the first value of each described by the rolling horizon opti-

mizer. 

 

�̅�𝑖 = 𝐸𝑖,1 

�̅�𝑖 = 𝑃𝑖,1 

�̅�𝑖 = 𝑛𝑖,1 

 

7. Update simulation time step and save results: 𝑖 = 𝑖 + 1 . Check if 𝑖 > 𝑁𝑚𝑎𝑥, which denotes 

the end of the simulation:  

 

If 𝑖 > 𝑁𝑚𝑎𝑥  

End the algorithm.  

 

Else 

Return to step 3.  

It is important to note that for research purposes, the demand for the entire year was “known” 

up front so that each iteration of the algorithm could take place immediately. However, in a real 
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application, demand forecasts for the next 𝑁 timesteps would be used instead, and one iteration 

would take place each hour over the course of the year. Also, in the case of the Ontario grid, the 

existing 24-hour demand forecast prediction models are very good with a low prediction error 

(typically less than 4%) [33]. Our prior work for the one-layer RHO [21] showed that the difference 

in performance between using predictions with up to 12% error versus perfectly accurate 

predictions was small due to the structure of the RHO framework. Therefore, only perfectly 

accurate predictions are used in this study to determine a “best case” scenario. 

3.4. Solver Selection 

Two commercial solvers were used in GAMS in a hierarchical structure for this work: 

ANTIGONE and BARON [32]. ANTIGONE is used as the primary solver in this case because it 

was found to solve each optimization step of the simulation faster than BARON when provided 

with a feasible initial guess (solution time for 𝑁 = 24 is approximately 20 seconds with 

ANTIGONE). However, if a feasible initial guess was not provided by the algorithm presented in 

section 3.3.1 due to a switch in 𝛿 or an unexpectedly large change in demand or price, ANTIGONE 

sometimes failed to converge to a feasible solution. In these cases, it was found that BARON was 

able to solve the problem to a feasible optimum (solution time for 𝑁 = 24 is approximately 10 

minutes) in all cases. Consequently, a feasible optimum was found at each simulation time step, 

which was recorded in MATLAB. The total time for one simulation of 8760 time steps (one year 

of operation with hour-long control intervals) was approximately 5 CPU days per run, on average. 

Note that if BARON were used exclusively, approximately 61 CPU days would have been 

required.   

4. Results and Discussion 

The following sections describe the impacts that the proposed two-stage RHO scheme has on 

the load-following and revenue-maximization capabilities of the studied SOFC/CAES plant fueled 

by gasified coal. All simulation case studies use a forecasting and optimization horizon of 𝑁 = 24 

hours (one full day ahead) and 𝜉 = 168 hours (one full week ahead). It should be noted that the 

effect of adjusting the horizon of 𝑁 = 24 hours to be the set 𝑁 = {6, 12, 24, 48, 168} was 

discussed in our prior work that focused on the design and application of a single-stage RHO 

methodology [21]. Since the value of 𝑁 only affects the performance of the first stage of the 

proposed two-stage RHO strategy, it is very likely that the week-to-week results for the two-stage 

using different values of 𝑁 will be similar to the prior work. 

4.1. Effect of Two-Stage RHO Scheme on Plant Performance 

The importance of being able to change the baseload output of the integrated SOFC/CAES 

plant is demonstrated in Figure 4, which shows the average weekly demand for the province of 

Ontario, Canada for the operating year of 2014 scaled to an average of 720 MW. Since the CAES 

system storage capacity is on the order of 100s of MW-h, it would be impossible to exclusively 

use CAES to account for seasonal drifts in demand such as those shown in Figure 4 without an 

intractably large storage volume. Furthermore, the maximum range of the power change 

achievable by the CAES system is constrained by the cathode exhaust flow rate (when charging, 

or dipping below the current baseload) and excess heat available from the SOFC for pre-heating 

(for discharging, or rising above the current baseload). This range, for a 720 MW baseload plant, 
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is approximately 200 MW if the baseload is never changed. However, it can be seen in Figure 4 

that the difference between the minimum and maximum average weekly demand is nearly 235 

MW, with the actual difference between the highest and lowest moments of the year being 527 

MW. Thus, the use of weekly optimal baseload changes allows for more efficient use of the CAES 

storage volume and operating constraints.  

 

Figure 4: Weekly average demand for the simulated market over one year of operation 

4.1.1. Load Following Performance 

Shown in Figure 5 is the simulation results for one consistently high week of demand near the 

beginning of the year. Figure 5 (B) shows the performance of the SOFC/CAES system with the 

default selected initial value for 𝐵𝐿 of 720 MW (recall that this is the average demand over the 

entire simulated year) while Figure 5(A) shows the performance of the same system with an 

optimally selected 𝐵𝐿 of 830 MW (note that all subsequent changes to BL after this initial selection 

are subjected to the constraint of Eq. 15). It can readily be seen that the load-following capabilities 

of the integrated SOFC/CAES system are far greater when the baseload is chosen optimally, with 

over a 99% improvement in the load-following metric as measured by SSE. It is still clear in Figure 

5(B) that the first-stage RHO scheme is attempting to use the forecasted demand to reduce large 

misses, but due to the low baseload output of the plant, the CAES storage volume cannot be utilized 

effectively. This result is demonstrated in Figure 6(B), which shows the operating pressure of the 

CAES storage volume for the same week of operation. It is clear that the entire energy storage 

capacity of the CAES system is underutilized, primarily due to demand being consistently higher 

than the base load can even achieve (and thus no excess energy is available for storage). Compare 

this result to Figure 6(A), which shows that the entire storage capacity of the CAES storage volume 

is utilized (both the maximum and minimum operating pressures are reached). Furthermore, it can 

be seen that the operating limits are touched upon but are not active for significant periods of time. 

This is due to the combined optimal selection of the baseload output of the plant via the second 

layer of the RHO scheme and the optimal hourly output as chosen by the first layer.  
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Figure 5: SOFC/CAES plant simulation results (red dashed line) and market demand (black line) for a high-demand 

week of operation near the beginning of the year. (A): with optimal base load selection using both layers of the RHO 

scheme. (B): With default base load selection using only the first layer of the RHO scheme 
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Figure 6: CAES storage volume pressure profiles for the high-demand simulated week of operation. (A): with optimal 

base load selection using both layers of the RHO scheme. (B): With default base load selection using only the first layer of 

the RHO scheme 

Shown in Figure 7 is another case week that demonstrates the improvements brought about by 

the augmentation of the RHO scheme presented in this work, but for a week of consistently low-

demand. In Figure 7(A), it is clear that the optimally selected baseload of 645 MW allows for more 

efficient use of the CAES storage, resulting in a load-following improvement of approximately 

95% as measured by SSE for this week. It is clear in Figure 7(B) that the one-layer RHO scheme 

is optimizing the hourly output of the plant based on the constraints imposed by the CAES storage 

volume limits (and thus avoiding big misses by having a more consistent demand/supply 

mismatch), but in general the ability to provide the precise demanded power is nearly impossible. 

This is emphasized in Figure 8, which shows the pressure profiles for the CAES storage volume 

with (Figure 8[A]) and without (Figure 8[B]) the second layer of the RHO scheme choosing the 

optimal baseload for the week ahead. However, Figure 8(B) is in contrast to Figure 6(B) since in 

this case the CAES storage volume is always operating at or near its maximum limit due to the 

non-optimized baseload plant being too large and thus wasting power (and the resources used to 

make it). Compare this with Figure 8(A), which clearly shows that the entire operating range of 

the CAES storage is used, leading to a more efficient utilization of the available storage. In 

addition, it is also clear that simply oversizing the baseload and leaving it at that same level all 

year round as a strategy for ensuring that high-demand weeks are met is grossly inefficient and 

was the original motivation for the design of the integrated SOFC/CAES plant [11]. Note that the 

difference in initial pressures for each panel in Figure 8 are due to different operation decisions 

made prior to the highlighted week of operation. 
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Figure 7: SOFC/CAES plant simulation results (red dashed line) and market demand (black line) for a low-demand week 

of operation near the beginning of the year. (A): with optimal base load selection using both layers of the RHO scheme. 

(B): With default base load selection using only the first layer of the RHO scheme 
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Figure 8: CAES storage volume pressure profiles for a low-demand simulated week of operation. (A): with optimal base 

load selection using both layers of the RHO scheme. (B): With default base load selection using only the first layer of the 

RHO scheme 

In the previous work, the one-layer RHO scheme provided a significant load-following 

improvement for certain weeks of operation, but only those consistently at or near the default 

baseload output of 720 MW. The adaptive selection of the baseload output of the plant offered by 

the new second layer of the proposed RHO method allows for effective utilization of the CAES 

storage volume during any week of the year. This is further reinforced by the fact that the second 

layer takes the available CAES storage into account when selecting the baseload for the coming 

week. The importance of selecting the baseload each week is exemplified in Figure 9, in which it 

can be seen that the baseload is adjusted nearly every week to adapt to seasonal drifts in demand. 

With regards to the annual load-following performance of the integrated plant, a figure is not 

shown since the high number of data points would make the plot virtually illegible. Rather, the 

SSE values for a one-year simulation are provided in Table 2. It is clear that, over an entire year 

of operation (8760 first-layer optimizations with 𝑁 = 24 and 52 second-layer optimizations with 

𝜉 = 168) the proposed two-level RHO scheme can meet demand with a total SSE of 4.15 × 106 

(MW-h)2. This may be compared to the use of the single layer RHO developed in the prior work 

for the same year of demand using a fixed baseload of 720 MW, which is an order of magnitude 

higher at 30.3 × 106 (MW-h)2. Furthermore, employing the greedy algorithm (hourly decisions 

with no forecasted optimization, equivalent to the one-layer scheme with 𝑁 = 1) with a fixed 

baseload for this year of demand results in an SSE of 42.7 × 106 (MW-h)2. The proposed two-level 

RHO method designed to exploit the modular nature of the SOFC stacks can thus improve the 

load-following performance of an integrated SOFC/CAES peaking plant by over 90% when 
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compared to using no optimization at all, and 86% when compared to optimizing the hourly 

operation of the CAES system exclusively. Although it is not possible to achieve perfect load-

following from a stand-alone SOFC/CAES plant due to the operating limits and constraints of the 

CAES system, more efficient utilization of the CAES storage volume by appropriately optimizing 

the weekly baseload is possible; it is therefore likely that increasing the CAES storage volume 

beyond the base-case 600,000 m3 will result in even better load-following, but with diminishing 

returns. The effect of CAES storage on annual load-following capabilities is discussed later in 

section 4.2. 

Another metric in Table 2 that shows the improvements brought on by the two-level RHO is 

the number of times the CAES storage pressure is near its upper or lower bound. Over the year, 

the two-level RHO scheme results in the CAES storage pressure dipping below 41 bar (that is, the 

CAES storage is near or at the minimum allowable pressure) 423 times (4.8% of the total time 

steps). Of those 423 occurrences, the CAES pressure was stuck at the lower bound for more than 

one time step in a row at only 83 of them (0.9% of all time steps). Compare this to the one-layer 

RHO scheme for the same simulation, in which the CAES storage pressure was at or near its 

minimum constraint 990 times (11.3%). Of those 990 instances, 384 of them (4.4%) occurred 

consecutively. This indicates that nearly 4.5% of all demand instances, even with the one-layer 

RHO active, resulted in consecutive time steps in which the CAES system went unused due to 

capacity constraints. By reducing this occurrence to less than 1% of all time steps simulated, it is 

clear that the two-level RHO is much more effective at utilizing the limited CAES storage volume 

when demand is consistently lower than the average value of 720 MW. A similar result occurs 

with regards to the CAES storage volume operating at or near its maximum allowable pressure. 

Throughout the year, the two-level RHO results in the CAES storage pressure rising above 71 bar 

(within 1 bar of maximum) 288 times (3.3% of the year), whereas the one-layer RHO allows this 

to happen 622 times (7.1% of the year). Of the 288 instances where the two-level RHO results in 

operation near the maximum pressure constraint, only 38 of them (0.4%) result in consecutive time 

steps at maximum pressure, compared to 96 (1.1%) for the one-layer RHO. 

Moreover, the two-level RHO results in the maximum and minimum pressures of the CAES 

storage volume being reached during the same week on 21 occasions versus only 5 for the one-

layer RHO, indicating that the baseload is being selected so as to optimally utilize the available 

CAES storage. These pressure constraint results further reinforce that the two-level RHO makes 

much better use of the limited CAES storage capacity, which allows for much better load-

following on an annual basis. 

Note finally that in order for the two-level RHO scheme to be effective, a larger baseload 

amount of SOFC stacks would have to be purchased than the averaged-out 720 MW. The total size 

of the baseload SOFC power island would therefore have to be its maximum output of 830 MW, 

which is approximately 15% higher than the size of the plant used in the one-layer RHO. Although 

a full economic impact analysis is outside of the scope of this work, the increase in capital 

investment comes with two inherent benefits that should be considered: (1) because more of the 

demand is met, more power can be sold, and (2) the fuel consumption of the plant, which is the 

largest contributor to operating cost, is actually lower for the 830MW plant using the two-level 

RHO than the one-layer RHO case by a small margin (0.7%) while meeting higher peaks than 

possible for the one-layer method.  
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Table 2: Load following metrics comparing this work to the methods used in prior studies 

 Greedy Policy 

(no RHO) 

One-Level RHO Two-level RHO 

(This Work) 

SSE (106 [MW-h]2) 

 

Lower is better 

42.7 30.3 4.15 

Time steps within 1 bar of pressure 

bound 

Lower is better 

4715 1612 711 

Consecutive time steps at upper or 

lower bound 

Lower is better 

3781 480 121 

Weeks in which maximum and mini-

mum pressure are both visited 
Higher is better 

2 5 21 

 

Figure 9: Weekly average demand (black line) for the simulated market over one year of operation alongside the 

optimally selected weekly baseload (red line) via the second stage of the proposed RHO method. The double-line is the 

constant average 720 MW chosen by the one-level RHO 

4.1.2. Economic Performance 

Shown in Table 3 are the resulting revenues generated by the SOFC/CAES plant over the 

simulated year of operation based on the actual market spot-price of electricity over that span. For 

each result, the same values of 𝑁 = 24 and 𝜉 = 168 are used as in the load-following scenario, 

but in this case the economic parameter 𝜓 is varied from 0 (a purely load-following objective) to 

1.0 (a purely economically driven objective that foregoes matching supply and demand in an 

attempt to maximize revenue) for the first layer of the RHO scheme. Note that price forecasting 

models are generally much less reliable than demand forecasting models, and thus the use of the 

proposed RHO scheme is likely better suited for a load-following scenario as concluded in the 

prior work. Also note that the use of a revenue maximization objective in the first stage of the 

proposed two-level RHO scheme results in an attempt to maximize revenue while still following 

the seasonal trends of demand. The reason for this is simply because it is unrealistic to expect to 

be able to sell the maximum possible capacity of the SOFC/CAES plant to the market for the entire 

year, which would be the exclusive optimization decision since there is no negative cost associated 

with overproduction included in the given problem formulation. Consequently, the second stage 

of the simulation selects a baseload most appropriately suited to the coming week of demand in 

the same fashion as the load following objective, but the first level of the RHO is free to produce 

whatever results in the highest revenue generation possible. In reality, there are a multitude of 

potential objective function reformulations that may consider operating cost, annualized capital 

costs, or any combination of these that also consider operating constraints (such as minimum 

production constraints or constraints on maximum allowable misses). The following case study 
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results are meant to show that the proposed two-level RHO is adaptable and may readily be 

implemented with an economic objective of the user’s choosing.  

 Results for this case study show that it is possible to use the two-level RHO to increase annual 

revenue by as much as $14.1 million (6.3%) over the load-following scenario by using the CAES 

storage to exploit future jumps or drops in the spot price of electricity. This is unsurprising, since 

the currently existing CAES plants use this concept as their primary motivation to employ CAES 

technology, as mentioned earlier. However, this increase in revenue does not come without a trade-

off, as the load-following portion of the objective function is eschewed entirely, leading to a very 

sporadic supply profile such as that shown in Figure 10. Based on the results in Figure 10, any 

scenario requiring distributed power generation or other cases in which high reliability and 

availability is needed would not be an appropriate opportunity to use the revenue maximization 

method. The application of the economic objective function is rather to utilize the available CAES 

storage for a given week of operation based on a previously selected baseload.  

Given the continuous nature of the economic weight 𝜓, it is possible to achieve a hybridized 

objective function that balances revenue generation and delivering reliable power. A discussion 

revolving around this concept and the trade-offs associated with it are provided in section 4.3.  

Table 3: SSE results comparing this work to the methods used in prior studies 

Economic Parameter 𝝍 Revenue Generated (106 $) Revenue Relative to Base Case 

0.00 224.6 100.0% 

0.50 229.2 102.0% 

0.75 233.8 104.1% 

0.90 238.4 105.6% 

0.95 238.6 106.2% 

1.00 238.7 106.3% 
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Figure 10: SOFC/CAES plant simulation results (red dashed line) and market demand (black line) for the consistently 

high week of operation near the beginning of the year using the proposed two-level RHO. (A): with the economic 

weighting parameter 𝝍 = 𝟎. (B): with the economic weighting parameter 𝝍 = 𝟏 

4.2. Effect of Storage Volume on Plant Performance 

In the original work defining the conceptual plant design of an integrated SOFC/CAES system 

for peaking power, it was postulated that increasing the CAES volume would improve the load-

following capabilities of the integrated plant [13]. Although a sensitivity analysis in that work 

showed that such improvements are possible, they were not without significant added cost and 

exhibited a significant case of diminishing marginal return for increasing the size of the CAES 

storage volume. This result was primarily due to the CAES system only capable of storing 

intermediate amounts of energy (hundreds of MW-h), but the seasonal drifts in demand required 

massive amounts of energy storage (nearly millions of MW-h) that were not possible with CAES 

unless an excessively large volume was available. Moreover, as previously mentioned, the 

maximum amplitude of the CAES system is not sufficient to handle the maximum and minimum 

swing in demand observed by a typical market. 

However, the adaptive baseload selection routine introduced in this work allows for a much 

more efficient utilization of the CAES volume throughout seasonal drifts in demand. As a result, 

a sensitivity analysis was performed to assess what improvements to load following would be 

possible with modest increases in the base case CAES volume size. The results showing the annual 

SSE for the integrated SOFC/CAES plant using the proposed two-level RHO with 𝑁 = 24, 𝜉 =
168 and 𝜓 = 0 versus the available CAES storage volume (with all other operational constraints 

the same) are shown in Figure 11. As expected, Figure 11 shows diminishing marginal returns as 
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a function of CAES storage volume size. However, doubling the CAES cavern to (a very 

reasonable) 1.2 × 106 m3 results in a 53% reduction in SSE (from 4.15 × 106 to 1.95 × 106 [MW-

h]2) over a year of operation. Furthermore, doubling the storage size results in its operating 

pressure being within 1 bar of the maximum or minimum constrained range for only 339 time steps 

(or 3.9% of the year). This is nearly a 20% reduction compared to the base case cavern size. Along 

with this reduction in operation near the constraints, the number of instances where the CAES 

pressure constraint is nearly active for consecutive time steps is only 45 times in this scenario, 

further reinforcing that the larger CAES volume is being efficiently used by the RHO scheme to 

improve the load-following capabilities of the plant. Any cavern size beyond 1.2 × 106 m3 offers 

only a small improvement to the plant’s load following capabilities with a significant increase in 

cost and further restriction on available locations. 

One further interesting observation that can be made from Figure 11 is that the integrated 

SOFC/CAES plant will be unable to provide perfect load following even with an infinitely large 

storage volume. This is since the maximum amplitude of weekly demand variation is too high for 

the CAES capacity to compensate for without the external use of atmospheric air (for charging) or 

the combustion of NG for pre-heating (for discharging). However, as a stand-alone plant meant to 

supply a demand profile with a moderate amplitude, it is conceivable that a SOFC/CAES system 

would be able to supply efficient power with nearly 100% reliability.  

 

Figure 11: SSE using the base case parameters for the two-level RHO scheme for various CAES storage volume sizes 

4.3. Pareto Trade-off Analysis Between Revenue and Load-Following Objectives  

A trade-off plot between the potential load-following and economic performance of the 

SOFC/CAES system using the proposed two-level RHO method for various values of 𝜓 is shown 

in Figure 12. Note that the base case CAES storage volume of 600,000 m3 was used to generate 

this plot. It can immediately be seen that greedy algorithm (used in the original work demonstrating 

the applicability of an SOFC/CAES plant for load following) falls well below the Pareto frontier 

denoting the optimal achievable combinations of revenue generation and load following. In fact, 

using the proposed two layer RHO method offers both an increase in revenue (1.5%) and a 

reduction in SSE simultaneously. Alternatively, it is possible to choose 𝜓 to be a value between 

0.75 and 0.90 in order to obtain approximately an increase in revenue of 6.5% ($14.6 million) 

relative to the base case study in this work with the same load-following performance. Any points 

beyond the Pareto front in Figure 12 is an infeasible operating condition based on the constraints 

of the CAES system when integrated with the SOFC power island. However, increases in storage 
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volume size, external air and heat sources, and lower demand profile amplitudes can push the 

frontier further upwards and to the left. 

It is also interesting to note that a base-load only SOFC plant sized to the average demand for 

the year (720 MW) has an excessively high SSE and is thus not included on the Pareto front axes, 

clearly making it a sub optimal method of operation. Furthermore, such a plant would have to be 

sized to always meet the highest possible demand, which would be very wasteful from a resource 

consumption perspective.  

 

Figure 12: Pareto frontier showing the trade-off between revenue generation and load-following capabilities of the 

SOFC/CAES plant for various values of 𝝍 

5. Conclusions and Recommendations 

This study focused on the development of a two-stage RHO method that takes advantage of 

the hourly variability of CAES and the modular nature of SOFCs to provide reliable peaking power 

from an integrated SOFC/CAES plant with no CO2 emissions. The first layer of the proposed RHO 

method used forecasted hourly demand to optimally operate the CAES portion of the integrated 

plant over the optimization time horizon (24 time steps were used in this case). The second layer 

of the RHO framework made adjustments to the SOFC baseload power island in order to adapt to 

seasonal drifts in demand throughout the year, a significant shortcoming of the single layer RHO 

previously proposed. The method was applied to a simulated SOFC/CAES plant fueled by coal 

designed in Aspen Plus v8.6. Simulations for one year of scaled demand data from the Province 

of Ontario, Canada were performed using a reduced-order model in MATLAB with all 

optimization calculations performed in GAMS using ANTIGONE and BARON. All simulation 

and control intervals were chosen to be one hour in order to use the demand data available. Since 

the impact of demand forecasting uncertainty was addressed in a prior work for individual weeks, 

this work focused on the performance of the plant when its baseload is selected optimally at the 

beginning of each week of operation. 
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It was found that the proposed two layer RHO method improved the load following 

performance of the SOFC/CAES plant by over 86% (from 30.3 × 106 to 4.15 × 106 [MW-h]2) as 

measured by the SSE between demand and the power supplied by the plant for the 2014 year of 

operation. This is also a 90% improvement over the load-following capability of the integrated 

plant operating on an hour-by-hour basis (the so-called Greedy algorithm). It is worth noting that 

this improvement in demand/supply matching comes with no alterations to the plant design at all, 

but rather a more optimal utilization of the CAES peaking capabilities for hourly variations and 

the SOFC modularity to handle seasonal drifts in demand. Furthermore, it is possible to increase 

the revenue of the same plant by over $14 million (6.5%) per year if load following is not required 

via the tuning of the first-level objective function toward an economic focus. However, it should 

be noted that the proposed plant would require a larger SOFC power island (and hence capital 

investment), so a full techno economic trade-off analysis of the increased revenue should be the 

subject of a future work. A sensitivity analysis on the effect of CAES storage volume showed 

marked improvements in load following performance when more CAES storage is available, 

yielding a 53% improvement over the base case down to 1.95 × 106 (MW-h)2. However, it was 

concluded that it would not be possible to completely eliminate supply/demand mismatches even 

with an infinitely large storage volume without significantly over-designing the power generation 

equipment. 

Future work on this topic should include the investigation of uncertainty on the performance 

of the two stage RHO framework. Although prior studies found that demand forecast uncertainty 

did not significantly affect the hourly performance of the SOFC/CAES plant, it is possible that 

longer forecasts (and thus a greater degree of prediction error) could bias the second layer of the 

proposed technique and thus affect the baseload selection. Although it is not anticipated that this 

will significantly affect the results, it is something that should be addressed to test the robustness 

of this strategy to real-world noise and other sources of error. 

Overall, the method showcased in this work has shown that, with the proper use of optimization 

strategies and by exploiting the advantages of the technologies therein, SOFC/CAES plants can be 

used to generate clean, reliable and efficient peaking power by using coal, which is a resource 

typically associated with the negative stigmas in all of these categories. The proposed RHO method 

overcomes the main weakness of the SOFC/CAES plant for peaking power by allowing it to slowly 

and safely adjust to seasonal changes in demand in an optimal manner, thereby more efficiently 

using the CAES system to save resources, money, and unnecessary wear on equipment. With these 

results, it is now apparent that technologies such as SOFCs and CAES are emerging as exciting 

opportunities that will permit the use of North America’s abundant natural resources in a 

sustainable future for electricity production.  

6. Acknowledgements 

The authors would like to graciously acknowledge the Ontario Research Fund, the NSERC 

Vanier Canada Graduate Scholarship Program, and the Canada-Brazil Science Without Borders 

program for their financial support of this project. 

 

  



26 | P a g e  

 

7. Nomenclature 

7.1. Abbreviations 

CAES    Compressed Air Energy Storage 

CCS    Carbon Capture and Sequestration 

EOS    Equation of State 

GT    Gas Turbine 

HHV    Higher-Heating Value 

HRSG    Heat Recovery and Steam Generation 

IESO    Independent Electricity Systems Operator 

RHO    Rolling Horizon Optimization 

SOFC    Solid Oxide Fuel Cell 

SSE    Sum of Squared Error 

7.2. Mathematical Symbols 

𝐸    Power produced by SOFC/CAES plant (via optimization) 

�̅�    Actual power produced at each time step 

�̇�    initial guess for 𝐸 for proceeding simulation step 

𝑃    Pressure in CAES storage (via optimization) 

�̅�    Actual pressure recorded in CAES storage at each time step 

�̇�    Initial guess for 𝑃 for proceeding simulation step 

𝑛    Number of moles in CAES storage (via optimization) 

�̅�     Actual number of moles in cavern at each time step 
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�̇�    Initial guess for 𝑛 for proceeding simulation step 

ℛ    Total revenue 

𝐷      Demand 

𝐹      Molar flow rate of cathode exhaust 

𝑁      RHO forecasting horizon 

𝑅    Universal gas constant 

𝑉    Volume 

𝑎    Model coefficient 

𝑓(⋯ )    SOFC/CAES reduced model 

𝛿    Binary charge/discharge decision variable 

�̇�    Initial guess for 𝛿 for proceeding simulation step 

𝜔    Price of electricity 

𝜓    User-defined economic/load-following weight factor 

Φ    Economic/load-following objective function  

𝐵𝐿    Base load  

𝑆    Cathode exhaust diversion parameter 

𝒱    Molar volume 

Δ    Time step length 

𝑎𝑆𝑅𝐾, 𝑏𝑆𝑅𝐾   SRK model coefficients 

7.3. Subscripts 

𝑖    First-stage simulation/control time step 

𝜄    Second-stage simulation/control time step 
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𝑡    First-stage RHO calculation time horizon step 

𝜏    Second-stage RHO calculation time horizon step 

𝑚    Reduced model identifier 

𝑘    Reduced model variable identifier 

𝑎, 𝑏, 𝑐    Reduced model order/coefficient identifiers 

𝑚𝑎𝑥    Maximum allowable value 

𝑚𝑖𝑛    Minimum allowable value 
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