Browse
Keywords
Records with Keyword: Carbon Dioxide Capture
Showing records 56 to 80 of 92. [First] Page: 1 2 3 4 5 Last
The Split Flow Process of CO2 Capture with Aqueous Ammonia Using the eNRTL Model
Seung Won Jeong, Bomsock Lee, Sung Young Kim
February 21, 2023 (v1)
Keywords: aqueous ammonia, Aspen Plus, Carbon Dioxide Capture, eNRTL, Simulation
Carbon Capture and Storage (CCS) technology has attracted increasing attention as global climate change accelerates. Carbon dioxide removal processes under development include pressure swing adsorption (PSA) and chemical absorption using amine solvents. In this paper, an ammonia solvent, which is relatively inexpensive and has good material properties, was used instead of amines in the carbon dioxide removal process simulation as a chemical absorption method. This simulation used the eNRTL thermodynamics model which has the advantage of predicting ions in the liquid phase in Aspen Plus. A case study (Case Study 1) was conducted to verify the validity of the thermodynamic model. The purpose of this research was to find the operating conditions to eliminate more than 90% of the carbon dioxide contained in the flue gas from coal-fired power stations, and to lower heat duty and operating cost conditions. A second case study (Case Study 2) was conducted to find the operating conditions by c... [more]
Integrated Process for Producing Glycolic Acid from Carbon Dioxide Capture Coupling Green Hydrogen
Dongliang Wang, Jingwei Li, Wenliang Meng, Jian Wang, Ke Wang, Huairong Zhou, Yong Yang, Zongliang Fan, Xueying Fan
February 21, 2023 (v1)
Keywords: Carbon Dioxide Capture, glycolic acid synthesis, process analysis, process modeling, renewable hydrogen
A novel process path is proposed to produce glycolic acid (GA) from CO2 as the feedstock, including CO2 capture, power-to-hydrogen, CO2 hydrogenation to methanol, methanol oxidation to formaldehyde, and formaldehyde carbonylation units. The bottlenecks are discussed from the perspectives of carbon utilization, CO2 emissions, total site energy integration, and techno-economic analysis. The carbon utilization ratio of the process is 82.5%, and the CO2 capture unit has the largest percentage of discharge in carbon utilization. Among the indirect emissions of each unit, the CO2 hydrogenation to methanol has the largest proportion of indirect carbon emissions, followed by the formaldehyde carbonylation to glycolic acid and the CO2 capture. After total site energy integration, the utility consumption is 1102.89 MW for cold utility, 409.67 MW for heat utility, and 45.98 MW for power. The CO2 hydrogenation to methanol makes the largest contribution to utility consumption due to the multi-stage... [more]
Thermodynamic and Economic Evaluation of a Novel Green Methanol Poly-Generation System
Qiliang Ye, Yipeng Bao, Hui Pan, Yulan Liu, Peiqing Yuan
February 21, 2023 (v1)
Keywords: Carbon Dioxide Capture, green methanol, process simulation, thermo-economic analysis
Methanol is considered a sustainable alternative energy source due to its ease of storage and high-octane rating. However, the conventional methanol production process is accompanied by resource consumption and significant greenhouse gas emissions. The electrochemical reaction of electrochemically reacted hydrogen (H2) with captured carbon dioxide (CO2) offers an alternative route to methanol production. This paper presents a new green poly-generation system consisting of a parabolic trough solar collector (PTC) unit, an organic Rankine cycle (ORC) unit, a CO2 capture unit, an alkaline electrolysis unit, a green methanol synthesis and distillation unit, and a double-effect lithium bromide absorption refrigeration (ARC) unit. The system mainly produced 147.4 kmol/h of methanol at 99.9% purity, 283,500 kmol/h of domestic hot water, and a cooling load of 1341 kW. A total 361.34 MW of thermal energy was supplied to the ORC by the PTC. The alkaline electrolysis unit generated 464.2 kmol/h o... [more]
Optimisation of an Integrated System: Combined Heat and Power Plant with CO2 Capture and Solar Thermal Energy
Agustín Moisés Alcaraz Calderón, Oscar Alfredo Jaramillo Salgado, Nicolas Velazquez Limón, Miguel Robles Perez, Jorge Ovidio Aguilar Aguilar, Maria Ortencia González Díaz, Abigail González Díaz
February 21, 2023 (v1)
Keywords: Carbon Dioxide Capture, combined heat and power, parabolic-trough collector, solar energy
This paper aims to evaluate different design configurations of a combined heat and power (CHP) plant with post-combustion CO2 capture. Three cases are involved in this study: case 1 consists of three trains and each train has a configuration of one gas turbine with a heat recovery steam generator (HRSG); case 2 consists of three trains and one steam turbine; and case 3 consists of only two trains. The third case presented the highest CHP efficiency of 72.86% with 511.8 MW net power generation. After selecting the optimum configuration, a parabolic-trough collector (PTC) was incorporated to generate additional saturated steam at 3.5 bar for the capture plant, adding greater flexibility to the CHP because more steam was available. In addition, the efficiency of the cycle increased from 72.86% to 80.18%. Although case 2 presented lower efficiency than case 3, it has a steam turbine which brings the possibility of increasing the amount of electricity instead of steam production. When the P... [more]
CO2 Adsorption Performance on Surface-Functionalized Activated Carbon Impregnated with Pyrrolidinium-Based Ionic Liquid
Syeda Saba Fatima, Azry Borhan, Muhammad Ayoub, Noraini Abd Ghani
February 21, 2023 (v1)
Subject: Materials
Keywords: activated carbon, Biomass, Carbon Dioxide Capture, functionalization, ionic liquid, wet impregnation
The serious environmental issues associated with CO2 emissions have triggered the search for energy efficient processes and CO2 capture technologies to control the amount of gas released into the atmosphere. One of the suitable techniques is CO2 adsorption using functionalized sorbents. In this study, a functionalized activated carbon (AC) material was developed via the wet impregnation technique. The AC was synthesized from a rubber seed shell (RSS) precursor using chemical activation and was later impregnated with different ratios of [bmpy][Tf2N] ionic liquid (IL). The AC was successfully functionalized with IL as confirmed by FTIR and Raman spectroscopy analyses. Incorporation of IL resulted in a reduction in the surface area and total pore volume of the parent adsorbent. Bare AC showed the largest SBET value of 683 m2/g, while AC functionalized with the maximum amount of IL showed 14 m2/g. A comparative analysis of CO2 adsorption data revealed that CO2 adsorption performance of AC... [more]
Exergy Tables: Aspen Simulation Examples
Eksergitabeller: Aspen Plus simuleringseksempler
Thomas A. Adams II
March 21, 2023 (v2)
Example Aspen Plus chemical process simulations used in the book Exergy Tables: A Comprehensive Set of Exergy Values to Streamline Energy Efficiency Analysis, by Lingyan Deng, Thomas A. Adams II, and Truls Gundersen (McGraw-Hill Education, 2023). The examples are:

1. Medium-pressure steam generation using a natural-gas powered boiler
2. Medium-pressure steam generation using a natural-gas powered boiler with an economizer
3. Medium-pressure steam generation using an off-gas powered boiler
4. Postcombustion CO2 capture using diglycolamine (DGA) with CCS

Note, stream conditions may vary slightly from those in the book when simulated with different versions of the software.

Files are Aspen Plus v12.1, but should be openable on any version 12.1 or later.
Prediction of Amines Thermal Degradation in CO2 Capture Process Using Intelligent Techniques
Abbas Azarpour, Sohrab Zendehboudi
October 19, 2022 (v1)
Keywords: Amines, Carbon Dioxide Capture, intelligent model, statistical analysis, thermal degradation
Mitigation of carbon emissions is an important step to achieve the climate change goals. Amine-based post-combustion CO2 capture (PCC) process is a promising technology, and many commercial projects have been developed based on different capture mechanisms governing in various carbon capture and storage (CCS) processes. The thermally regenerative amine-based PCC is a traditional technology, which consists of an absorber to capture CO2 from the flue gas and a desorber to strip CO2 from the CO2-rich. Although there have been substantial improvements in the industrial applications of amines technology, further developments are still required owing to significant energy requirement, high capital cost, and amine degradation. One of the most critical issues in the amine-based PCC process is the degradation of solvent, which occurs by the transformation of amines into other chemical components by thermal degradation and oxidative degradation. In the thermal degradation, the amines react with... [more]
Comparative Investigation of Different CO2 Capture Technologies for Coal to Ethylene Glycol Process
Yanqing Ma, Yitao Liao, Yi Su, Baojie Wang, Yong Yang, Dong Ji, Hongwei Li, Huairong Zhou, Dongliang Wang
October 12, 2022 (v1)
Keywords: acid gas removal, Carbon Dioxide Capture, coal to ethylene glycol, performance analysis, process simulation
The coal to ethylene glycol (CTEG) process has drawn much attention due to the serious conflict between supply and demand of ethylene glycol in China. However, it is inevitably accompanied by the problem of high CO2 emissions. Carbon capture is one of the most promising potential effective ways to address this issue. However, the CTEG process, integrated with carbon capture technology, will lead to energy and economic penalties. Thus, a comprehensive evaluation of CTEG process with different CO2 capture technologies is urgently needed. This study analyzed the technoeconomic performance of four CO2 capture alternatives for the CTEG process: Rectisol, mono-ethanol amine (MEA), chilled ammonia process (CAP) and dimethyl carbonate (DMC) technologies. Results show the energy consumption of CO2 capture of the Rectisol process is the lowest, 1.88 GJ/tCO2, followed by the DMC process, 2.10 GJ/tCO2, the CAP process, 3.64 GJ/tCO2, and the MEA process, 5.20 GJ/tCO2. The CO2 capture cost of the Re... [more]
Novel approach for low CO2 intensity hydrogen from natural gas
Julian Straus, Vidar T. Skjervold, Rahul Anantharaman, David Berstad
September 20, 2022 (v1)
Keywords: Carbon Dioxide Capture, Hydrogen production, Low emission H2, Process integration
Hydrogen from natural gas with CO2 capture can be a key transition technology to a low carbon energy system due to the abundance of natural gas and the possibility to increase the production capacity quickly. However, it is necessary to achieve both a high energy efficiency and a high CO2 capture ratio to be a viable option. The liquefaction of CO2 is one promising separation technology as it provides the captured CO2 in a transportable format. This paper therefore proposes a hydrogen production process with integrated CO2 liquefaction. Efficiencies of up to 84.7 % (Based on the higher heating value) and CO2 capture ratios of up to 97.2 % can be achieved. One advantage of the utilization of CO2 liquefaction as separation technology is furthermore the possibility to incorporate a partial recycle of the flue gas from the separation to the water–gas shift reaction, increasing both energy efficiency and carbon capture ratio.
Purification Methods for Captured CO2 from Petroleum Coke Oxy-Combustion Power Plants
Tia Ghantous, Ikenna J Okeke, Thomas A Adams II
October 21, 2021 (v2)
Keywords: Carbon Dioxide Capture, eco-technoeconomic analysis, oxy-combustion, Petroleum Coke
We present eco-technoeconomic analyses of four processes, including two novel designs, for the purification of captured CO2 from flue gas for a petroleum coke (petcoke) oxy-combustion power plant operated with carbon capture and sequestration (CCS). A base case petcoke oxy-combustion design obtained from a previous study consisting of flue gas water removal using condensation was used in this study. Other purification processes evaluated consist of a cryogenic distillation petcoke oxy-combustion with CCS, an oxygen deficient petcoke oxy-combustion with CCS and a catalytic dehydration petcoke oxy-combustion via hydrogen conversion with CCS. An eco-technoeconomic analysis considering greenhouse gas (GHG) emissions, levelized cost of electricity (LCOE), thermal efficiency and CO2 product purity to meet pipe-line specifications, was conducted on all purification candidates. This revealed that base case design did not meet the CO2 pipeline specifications. The highest LCOE was attributed to... [more]
Design Strategies for Oxy-Combustion Power Plant Captured CO2 Purification
Ikenna J. Okeke, Tia Ghantous, Thomas A. Adams II
June 28, 2021 (v1)
Keywords: Aspen Plus, Carbon Dioxide Capture, CO2 Purification, Oxy-combustion, Petroleum Coke
This submission contains Aspen Plus files for the design and systems performance analysis of oxy-combustion power plant captured CO2 purification using different techniques.
Effect of Hydrogen Bond Donors and Acceptors on CO2 Absorption by Deep Eutectic Solvents
Tausif Altamash, Abdulkarem Amhamed, Santiago Aparicio, Mert Atilhan
June 21, 2021 (v1)
Subject: Materials
Keywords: Absorption, Carbon Dioxide Capture, deep eutectic solvents, density functional theory, hydrogen bond
The effects of a hydrogen bond acceptor and hydrogen bond donor on carbon dioxide absorption via natural deep eutectic solvents were studied in this work. Naturally occurring non-toxic deep eutectic solvent constituents were considered; choline chloride, b-alanine, and betaine were selected as hydrogen bond acceptors; lactic acid, malic acid, and fructose were selected as hydrogen bond donors. Experimental gas absorption data were collected via experimental methods that uses gravimetric principles. Carbon dioxide capture data for an isolated hydrogen bond donor and hydrogen bond acceptor, as well as natural deep eutectic solvents, were collected. In addition to experimental data, a theoretical study using Density Functional Theory was carried out to analyze the properties of these fluids from the nanoscopic viewpoint and their relationship with the macroscopic behavior of the system, and its ability for carbon dioxide absorption. The combined experimental and theoretical reported appro... [more]
Adsorption of CO2 on Amine-Modified Silica Particles in a Confined-Fluidized Bed
Rossella Girimonte, Flaviano Testa, Marta Gallo, Rocco Buscieti, Giuseppe Leone, Brunello Formisani
June 21, 2021 (v1)
Keywords: Adsorption, amine-based adsorbents, Carbon Dioxide Capture, confined-fluidized bed, mesoporous silica gel, packed-fluidized bed
To reduce the anthropogenic CO2 emissions produced from fossil fuel burning plants, the application of carbon capture and storage (CCS) is necessary and development of a more efficient and economically feasible CO2 capture process is essential as an alternative to the conventional amine scrubbing process which uses aqueous amine solutions. CO2 capture can be enhanced by improving both the gas−solid contact efficiency and by tuning a specific high-performance sorbent. The aim of this research is to investigate the adsorption of CO2 using impregnated mesoporous silica in a “confined-fluidized bed”. This non-conventional fluidized bed (sometimes also termed the “packed-fluidized bed”) seems suitable for improving the efficiency of gas−solid processes for which the bypass effect of the gas−solid contact caused by bubbling represents a major drawback. Results, expressed as grams of CO2 adsorbed per kilogram of material, are discussed in terms of amine load in the sorbent, breakthrough time... [more]
Carbon Dioxide Capture in Homogeneous and Heterogeneous Surfaces of Porous Silica Glass
Chontira Boonfung, Chaiyot Tangsathitkulchai, Atichat Wongkoblap
April 27, 2021 (v1)
Subject: Materials
Keywords: Adsorption, Carbon Dioxide Capture, defective surface, Grand Canonical Monte Carlo, porous silica glass, surface functional groups
Experimental and simulation studies for carbon dioxide (CO2) adsorption on porous silica glass were performed to reveal how surface heterogeneity can affect the adsorption mechanism of CO2. In performing the simulation, the structure of porous silica glass was modeled as a slit pore consisting of parallel walls of connected SiO4 units. The adsorption isotherms of CO2 at 283 K were generated for a series of pore widths using a Monte Carlo ensemble. The defective surfaces created by random removal of surface atoms and the surfaces containing hydroxyl functional groups were chosen to represent the surface heterogeneity for the simulation tasks. The isotherms derived for the defective surfaces showed a rapid adsorption at low pressures because of the stronger interaction between the rough nonuniform surfaces and CO2 molecules. For the role of surface functional groups, the adsorption isotherms dramatically increased with an increasing number of functional groups. The amount of CO2 adsorbed... [more]
CO2 Utilization via Integration of an Industrial Post-Combustion Capture Process with a Urea Plant: Process Modelling and Sensitivity Analysis
Reza Shirmohammadi, Alireza Aslani, Roghayeh Ghasempour, Luis M. Romeo
March 24, 2021 (v1)
Keywords: capture efficiency, Carbon Dioxide Capture, CO2 utilization, heat consumption, monoethanol amine, post-combustion
Carbon capture and utilization (CCU) may offer a response to climate change mitigation from major industrial emitters. CCU can turn waste CO2 emissions into valuable products such as chemicals and fuels. Consequently, attention has been paid to petrochemical industries as one of the best options for CCU. The largest industrial CO2 removal monoethanol amine-based plant in Iran has been simulated with the aid of a chemical process simulator, i.e., Aspen HYSYS® v.10. The thermodynamic properties are calculated with the acid gas property package models, which are available in Aspen HYSYS®. The results of simulation are validated by the actual data provided by Kermanshah Petrochemical Industries Co. Results show that there is a good agreement between simulated results and real performance of the plant under different operational conditions. The main parameters such as capture efficiency in percent, the heat consumption in MJ/kg CO2 removed, and the working capacity of the plant are calculat... [more]
Aspen Plus Simulation of a Rectisol Process for Blue Hydrogen Production
Thomas A Adams II
March 12, 2021 (v2)
This is an Aspen Plus v12 model for a Rectisol process used for removing CO2 from a shifted syngas stream arising from steam methane reforming for the purposes of Blue hydrogen production. It is intended for educational use, and is useful as a starting point for those interested in simulating this process. It is not optimized in any way, but it contains a working flowsheet for those interested in modifying it for your own purposes.

The simulation was developed using the simulation strategy given in Adams TA II, Khojestah Salkuyeh Y, Nease J. Processes and Simulations for Solvent-based CO2Capture and Syngas Cleanup. Chapter in: Reactor and process design for in sustainable energy technology. Elsevier (2014). Pages 163-232. ISBN: 978-0-444-59566-9. It is based on the process discussed in Doctor RD, Molburg JC, Thimmapuram PR, Berry GF, Livengood CD. Gasification combined cycle: carbon dioxide recovery, transport, and disposal. US DOE Report, Argonne National Laboratory ANL/ESD-24. 19... [more]
Optimal design and operation of a waste tire feedstock polygeneration system
Avinash Shankar Rammohan Subramanian, Truls Gundersen, Thomas A. Adams II
October 8, 2020 (v1)
Keywords: Carbon Dioxide Capture, Gasification, Global Optimization, Polygeneration system, Rubber, Waste Tire, Waste-to-Energy
The accompanying model for the paper 'Optimal design and operation of a waste tire feedstock polygeneration system' is presented. The model is written using the GOSSIP software platform and modeling language.
Surface-Response Analysis for the Optimization of a Carbon Dioxide Absorption Process Using [hmim][Tf2N]
Grazia Leonzio, Edwin Zondervan
February 22, 2021 (v1)
Keywords: Carbon Dioxide Capture, ionic liquid, Optimization, process simulation, statistical analysis
The [hmim][Tf2N] ionic liquid is considered in this work to develop a model in Aspen Plus® capturing carbon dioxide from shifted flue gas through physical absorption. Ionic liquids are innovative and promising green solvents for the capture of carbon dioxide. As an important aspect of this research, optimization is carried out for the carbon capture system through a central composite design: simulation and statistical analysis are combined together. This leads to important results such as the identification of significant factors and their combinations. Surface plots and mathematical models are developed for capital costs, operating costs and removal of carbon dioxide. These models can be used to find optimal operating conditions maximizing the amount of captured carbon dioxide and minimizing total costs: the percentage of carbon dioxide removal is 93.7%, operating costs are 0.66 million €/tonCO2 captured (due to the high costs of ionic liquid), and capital costs are 52.2 €/tonCO2 capt... [more]
Efficacies of Carbon-Based Adsorbents for Carbon Dioxide Capture
Tasmina Khandaker, Muhammad Sarwar Hossain, Palash Kumar Dhar, Md. Saifur Rahman, Md. Ashraf Hossain, Mohammad Boshir Ahmed
August 29, 2020 (v1)
Subject: Materials
Keywords: activated carbon, Adsorption, Carbon Dioxide Capture, carbon nanomaterials, surface area
Carbon dioxide (CO2), a major greenhouse gas, capture has recently become a crucial technological solution to reduce atmospheric emissions from fossil fuel burning. Thereafter, many efforts have been put forwarded to reduce the burden on climate change by capturing and separating CO2, especially from larger power plants and from the air through the utilization of different technologies (e.g., membrane, absorption, microbial, cryogenic, chemical looping, and so on). Those technologies have often suffered from high operating costs and huge energy consumption. On the right side, physical process, such as adsorption, is a cost-effective process, which has been widely used to adsorb different contaminants, including CO2. Henceforth, this review covered the overall efficacies of CO2 adsorption from air at 196 K to 343 K and different pressures by the carbon-based materials (CBMs). Subsequently, we also addressed the associated challenges and future opportunities for CBMs. According to this r... [more]
Techno-Economic Analysis of CO2 Capture Technologies in Offshore Natural Gas Field: Implications to Carbon Capture and Storage in Malaysia
Norhasyima Rahmad Sukor, Abd Halim Shamsuddin, Teuku Meurah Indra Mahlia, Md Faudzi Mat Isa
May 22, 2020 (v1)
Keywords: carbon capture and storage (CCS), Carbon Dioxide Capture, offshore gas field, Technoeconomic Analysis
Growing concern on global warming directly related to CO2 emissions is steering the implementation of carbon capture and storage (CCS). With Malaysia having an estimated 37 Tscfd (Trillion standard cubic feet) of natural gas remains undeveloped in CO2 containing natural gas fields, there is a need to assess the viability of CCS implementation. This study performs a techno-economic analysis for CCS at an offshore natural gas field in Malaysia. The framework includes a gas field model, revenue model, and cost model. A techno-economic spreadsheet consisting of Net Present Value (NPV), Payback Period (PBP), and Internal Rate of Return (IRR) is developed over the gas field’s production life of 15 years for four distinctive CO2 capture technologies, which are membrane, chemical absorption, physical absorption, and cryogenics. Results predict that physical absorption solvent (Selexol) as CO2 capture technology is most feasible with IRR of 15% and PBP of 7.94 years. The output from the techno-... [more]
Comprehensive Environmental Impact Assessment of a Combined Petroleum Coke and Natural Gas to Fischer-Tropsch Diesel Process
Thomas A. Adams II
March 13, 2020 (v1)
Subject: Other
In this study, a well-to-wheels life cycle assessment was conducted to determine the environmental impacts from disposing of petroleum coke by converting it into liquid fuel. Specifically, three processes for converting petroleum coke and natural gas to Fischer Tropsch diesel were investigated, both with and without carbon capture and sequestration (CCS). Impact categories were calculated using the EPA’s TRACI 2.1 US-Canada 2008 midpoint method in SimaPro software. In addition, the impact of grid emissions on the overall process was assessed using two representative Canadian locations with high (Alberta) and low (Ontario) grid emissions. The results of each impact category were compared among the designs and against conventional petroleum and oil-sands derived diesel. Key findings showed that the proposed designs when operated using CCS in the low-emissions-grid location had lower life cycle GHG emissions than conventional petroleum and oil-sands derived diesel. Nevertheless, the vario... [more]
Screening of Amino Acids and Surfactant as Hydrate Promoter for CO2 Capture from Flue Gas
Jyoti Shanker Pandey, Yousef Jouljamal Daas, Nicolas von Solms
February 12, 2020 (v1)
Keywords: amino acids, Carbon Dioxide Capture, flue gas hydrate, sodium dodecyl sulfate
In this study, the kinetics of flue gas hydrate formation in bulk water in the presence of selected amino acids and surfactants are investigated. Four amino acids (3000 ppm) are selected based on different hydropathy index. Constant-ramping and isothermal experiments at 120 bar pressure and 1 °C temperature are carried out to compare their hydrate promotion capabilities with surfactant sodium dodecyl sulfate (SDS) (500−3000 ppm) and water. Based on experimental results, we report the correlation between hydrate promotion capability of amino acids and their hydrophobicity. Hydrophobic amino acids show stronger flue gas hydrate promotion capability than water and hydrophilic amino acids. We discuss the controlling mechanisms to differentiate between promoters and inhibitors’ roles among the amino acids. Between 2000−3000 ppm concentrations, hydrophobic amino acids have near similar promotion capabilities as SDS. This research highlights the potential use of amino acids as promoters or in... [more]
Vapor Liquid Equilibrium Measurements of Two Promising Tertiary Amines for CO2 Capture
Diego D. D. Pinto, Znar Zahraee, Vanja Buvik, Ardi Hartono, Hanna K. Knuutila
January 19, 2020 (v1)
Subject: Materials
Keywords: 12-HEPP, amine, Carbon Dioxide Capture, DEA-12-PD, VLE
Post combustion CO2 capture is still a rather energy intense, and therefore expensive, process. Much of the current research for reducing the process energy requirements is focused on the regeneration section. A good description of the vapor liquid equilibrium of the solvent is necessary for the accurate representation of the process. 3-(Diethylamino)-1,2-propanediol (DEA-12-PD) and 1-(2-hydroxyethyl)piperidine (12-HEPP) have been proposed as potential components in solvent blends for the membrane contactor. However, there are few available experimental data for these two tertiary amines making difficult to accurate simulate such process. In this work, we provide experimental data on the pure component saturation pressure (383 to 443 K) and on VLE of aqueous solutions of these amines (313 to 373 K) in order to fill part of the data gap. The data were used to estimate model parameters used to represent the data. The saturation pressure was modeled using the Antoine equation and the devi... [more]
Effect of Gas Recycling on the Performance of a Moving Bed Temperature-Swing (MBTSA) Process for CO₂ Capture in a Coal Fired Power Plant Context
Giorgia Mondino, Carlos A. Grande, Richard Blom
December 10, 2019 (v1)
Keywords: adsorbents, Carbon Dioxide Capture, gas recycling, gProms, moving bed, post-combustion, process modelling, temperature-swing
A mathematical model of a continuous moving-bed temperature-swing adsorption (MBTSA) process for post-combustion CO₂ capture in a coal-fired power plant context has been developed. Process simulations have been done using single component isotherms and measured gas diffusion parameters of an activated carbon adsorbent. While a simple process configuration with no gas re-circulation gives quite low capture rate and CO₂ purity, 86% and 65%, respectively, more advanced process configurations where some of the captured gas is recirculated to the incoming flue gas drastically increase both the capture rate and CO₂ purity, the best configuration reaching capture rate of 86% and CO₂ purity of 98%. Further improvements can be achieved by using adsorbents with higher CO₂/N₂ selectivity and/or higher temperature of the regeneration section.
Experimental and Theoretical Study of the Interactions between Fe₂O₃/Al₂O₃ and CO
Zhiyong Liang, Wu Qin, Changqing Dong
December 10, 2019 (v1)
Subject: Materials
Keywords: Carbon Dioxide Capture, chemical looping combustion (CLC), density functional theory (DFT), iron oxide
The behavior of Fe₂O₃/Al₂O₃ particles as oxygen carriers (OCs) for CO chemical looping combustion (CLC) under different reaction temperatures (700 °C, 800 °C, 900 °C, and 1000 °C) were tested in a lab-scale fluidized bed and a thermogravimetric analysis (TGA) unit. The results show that the oxygen carrier presents the highest reactivity at 800 °C, even after 30 cycles of redox reaction in a fluidized bed, while more obvious carbon deposition occurred for the case at 700 °C, and agglomeration for the case at 1000 °C. Moreover, the detailed behavior of the prepared Fe₂O₃/Al₂O₃ particle was detected in the TGA apparatus at different reaction temperatures. Furthermore, temperature-programming TGA experiments were performed to investigate the influence of different CO concentrations and CO/CO₂ concentrations on the reaction between CO and OC during the chemical looping combustion processes. Based on these experimental behaviors of the prepared Fe₂O₃/Al₂O₃ during the CLC of CO, the detailed... [more]
Showing records 56 to 80 of 92. [First] Page: 1 2 3 4 5 Last
[Show All Keywords]