LAPSE:2024.1132
Published Article

LAPSE:2024.1132
Physiological Performance and Biosorption Capacity of Exiguobacterium sp. SH31 Isolated from Poly-Extreme Salar de Huasco in the Chilean Altiplano: A Study on Rare-Earth Element Tolerance
June 21, 2024
Abstract
Rare-earth elements (REEs) are crucial metals with limited global availability due to their indispensable role in various high-tech industries. As the demand for rare-earth elements continues to rise, there is a pressing need to develop sustainable methods for their recovery from secondary sources. Focusing on Exiguobacterium sp. SH31, this research investigates the impact of La, Eu, Gd, and Sm on its physiological performance and biosorption capacity. Tolerance was assessed at pHpzc from 7 to 8 with up to 1 mM rare-earth element concentrations. This study visualized the production of extracellular polymeric substances using Congo red assays and quantified them with ultraviolet−visible spectroscopy. Attenuated total reflectance Fourier transform infrared spectroscopy characterized the functional groups involved in metal interactions. The SH31 strain displayed significant rare-earth element tolerance, confirmed extracellular polymeric substance (EPS) production under all conditions, and increased production in the presence of Sm. Spectroscopy analysis revealed changes in wavelengths associated with OH and R-COO-, suggesting rare-earth element interactions. SH31 demonstrated efficient metal adsorption, with removal rates exceeding 75% at pHpzc 7 and over 95% at pHpzc 7.5 and 8. The calculated Qmax value for rare-earth element biosorption was approximately 23 mg/g, and Langmuir isotherm models effectively described metal sorption equilibria. Genomic exploration identified genes related to extracellular polymeric substance formation, providing insights into underlying mechanisms. This study presents the first evidence of efficient La, Eu, Gd, and Sm adsorption by SH31, emphasizing its potential significance in rare-earth element recovery.
Rare-earth elements (REEs) are crucial metals with limited global availability due to their indispensable role in various high-tech industries. As the demand for rare-earth elements continues to rise, there is a pressing need to develop sustainable methods for their recovery from secondary sources. Focusing on Exiguobacterium sp. SH31, this research investigates the impact of La, Eu, Gd, and Sm on its physiological performance and biosorption capacity. Tolerance was assessed at pHpzc from 7 to 8 with up to 1 mM rare-earth element concentrations. This study visualized the production of extracellular polymeric substances using Congo red assays and quantified them with ultraviolet−visible spectroscopy. Attenuated total reflectance Fourier transform infrared spectroscopy characterized the functional groups involved in metal interactions. The SH31 strain displayed significant rare-earth element tolerance, confirmed extracellular polymeric substance (EPS) production under all conditions, and increased production in the presence of Sm. Spectroscopy analysis revealed changes in wavelengths associated with OH and R-COO-, suggesting rare-earth element interactions. SH31 demonstrated efficient metal adsorption, with removal rates exceeding 75% at pHpzc 7 and over 95% at pHpzc 7.5 and 8. The calculated Qmax value for rare-earth element biosorption was approximately 23 mg/g, and Langmuir isotherm models effectively described metal sorption equilibria. Genomic exploration identified genes related to extracellular polymeric substance formation, providing insights into underlying mechanisms. This study presents the first evidence of efficient La, Eu, Gd, and Sm adsorption by SH31, emphasizing its potential significance in rare-earth element recovery.
Record ID
Keywords
biosorption, Exiguobacterium strain SH31, extracellular polymeric substances, isotherms, rare-earth elements
Subject
Suggested Citation
Serrano G, Fortt J, Castro-Severyn J, Castillo R, Saavedra C, Krüger G, Núñez C, Remonsellez F, Gallardo K. Physiological Performance and Biosorption Capacity of Exiguobacterium sp. SH31 Isolated from Poly-Extreme Salar de Huasco in the Chilean Altiplano: A Study on Rare-Earth Element Tolerance. (2024). LAPSE:2024.1132
Author Affiliations
Serrano G: Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta 1270709, Chile; Centro de Investigación Tecnológica de Agua y Sustentabilidad en el Desierto (CEITSAZA), Facultad de Ingeniería y Ciencias Geológicas, Univers [ORCID]
Fortt J: Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta 1270709, Chile
Castro-Severyn J: Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta 1270709, Chile
Castillo R: Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta 1270709, Chile [ORCID]
Saavedra C: Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile [ORCID]
Krüger G: Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile [ORCID]
Núñez C: Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta 1270709, Chile
Remonsellez F: Centro de Investigación Tecnológica de Agua y Sustentabilidad en el Desierto (CEITSAZA), Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta 1270709, Chile; Laboratorio de Microbiología Aplicada y Extremófilos, [ORCID]
Gallardo K: Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta 1270709, Chile [ORCID]
Fortt J: Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta 1270709, Chile
Castro-Severyn J: Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta 1270709, Chile
Castillo R: Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta 1270709, Chile [ORCID]
Saavedra C: Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile [ORCID]
Krüger G: Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile [ORCID]
Núñez C: Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta 1270709, Chile
Remonsellez F: Centro de Investigación Tecnológica de Agua y Sustentabilidad en el Desierto (CEITSAZA), Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta 1270709, Chile; Laboratorio de Microbiología Aplicada y Extremófilos, [ORCID]
Gallardo K: Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta 1270709, Chile [ORCID]
Journal Name
Processes
Volume
12
Issue
1
First Page
47
Year
2023
Publication Date
2023-12-24
ISSN
2227-9717
Version Comments
Original Submission
Other Meta
PII: pr12010047, Publication Type: Journal Article
Record Map
Published Article

LAPSE:2024.1132
This Record
External Link

https://doi.org/10.3390/pr12010047
Publisher Version
Download
Meta
Record Statistics
Record Views
164
Version History
[v1] (Original Submission)
Jun 21, 2024
Verified by curator on
Jun 21, 2024
This Version Number
v1
Citations
Most Recent
This Version
URL Here
https://psecommunity.org/LAPSE:2024.1132
Record Owner
Auto Uploader for LAPSE
Links to Related Works