LAPSE:2023.4409
Published Article

LAPSE:2023.4409
Fast and Efficient Removal of Uranium onto a Magnetic Hydroxyapatite Composite: Mechanism and Process Evaluation
February 23, 2023
Abstract
The exploration and rational design of easily separable and highly efficient sorbents with satisfactory capability of extracting radioactive uranium (U)-containing compound(s) are of paramount significance. In this study, a novel magnetic hydroxyapatite (HAP) composite (HAP@ CoFe2O4), which was coupled with cobalt ferrite (CoFe2O4), was rationally designed for uranium(VI) removal through a facile hydrothermal process. The U(VI) ions were rapidly removed using HAP@ CoFe2O4 within a short time (i.e., 10 min), and a maximum U(VI) removal efficiency of 93.7% was achieved. The maximum adsorption capacity (Qmax) of the HAP@CoFe2O4 was 338 mg/g, which demonstrated the potential of as-prepared HAP@CoFe2O4 in the purification of U(VI) ions from nuclear effluents. Autunite [Ca(UO2)2(PO4)2(H2O)6] was the main crystalline phase to retain uranium, wherein U(VI) was effectively extracted and immobilized in terms of a relatively stable mineral. Furthermore, the reacted HAP@CoFe2O4 can be magnetically recycled. The results of this study reveal that the suggested process using HAP@CoFe2O4 is a promising approach for the removal and immobilization of U(VI) released from nuclear effluents.
The exploration and rational design of easily separable and highly efficient sorbents with satisfactory capability of extracting radioactive uranium (U)-containing compound(s) are of paramount significance. In this study, a novel magnetic hydroxyapatite (HAP) composite (HAP@ CoFe2O4), which was coupled with cobalt ferrite (CoFe2O4), was rationally designed for uranium(VI) removal through a facile hydrothermal process. The U(VI) ions were rapidly removed using HAP@ CoFe2O4 within a short time (i.e., 10 min), and a maximum U(VI) removal efficiency of 93.7% was achieved. The maximum adsorption capacity (Qmax) of the HAP@CoFe2O4 was 338 mg/g, which demonstrated the potential of as-prepared HAP@CoFe2O4 in the purification of U(VI) ions from nuclear effluents. Autunite [Ca(UO2)2(PO4)2(H2O)6] was the main crystalline phase to retain uranium, wherein U(VI) was effectively extracted and immobilized in terms of a relatively stable mineral. Furthermore, the reacted HAP@CoFe2O4 can be magnetically recycled. The results of this study reveal that the suggested process using HAP@CoFe2O4 is a promising approach for the removal and immobilization of U(VI) released from nuclear effluents.
Record ID
Keywords
Adsorption, cobalt ferrite, hydroxyapatite, mineralization, uranium(VI)
Subject
Suggested Citation
Ou T, Peng H, Su M, Shi Q, Tang J, Chen N, Chen D. Fast and Efficient Removal of Uranium onto a Magnetic Hydroxyapatite Composite: Mechanism and Process Evaluation. (2023). LAPSE:2023.4409
Author Affiliations
Ou T: Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
Peng H: Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
Su M: Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
Shi Q: Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
Tang J: School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China [ORCID]
Chen N: Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
Chen D: Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
Peng H: Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
Su M: Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
Shi Q: Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
Tang J: School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China [ORCID]
Chen N: Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
Chen D: Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
Journal Name
Processes
Volume
9
Issue
11
First Page
1927
Year
2021
Publication Date
2021-10-28
ISSN
2227-9717
Version Comments
Original Submission
Other Meta
PII: pr9111927, Publication Type: Journal Article
Record Map
Published Article

LAPSE:2023.4409
This Record
External Link

https://doi.org/10.3390/pr9111927
Publisher Version
Download
Meta
Record Statistics
Record Views
260
Version History
[v1] (Original Submission)
Feb 23, 2023
Verified by curator on
Feb 23, 2023
This Version Number
v1
Citations
Most Recent
This Version
URL Here
https://psecommunity.org/LAPSE:2023.4409
Record Owner
Auto Uploader for LAPSE
Links to Related Works
