LAPSE:2023.17358
Published Article

LAPSE:2023.17358
Medical Waste Treatment Technologies for Energy, Fuels, and Materials Production: A Review
March 6, 2023
Abstract
The importance of medical waste management has grown during the COVID-19 pandemic because of the increase in medical waste quantity and the significant dangers of these highly infected wastes for human health and the environment. This innovative review focuses on the possibility of materials, gas/liquid/solid fuels, thermal energy, and electric power production from medical waste fractions. Appropriate and promising treatment/disposal technologies, such as (i) acid hydrolysis, (ii) acid/enzymatic hydrolysis, (iii) anaerobic digestion, (vi) autoclaving, (v) enzymatic oxidation, (vi) hydrothermal carbonization/treatment, (vii) incineration/steam heat recovery system, (viii) pyrolysis/Rankine cycle, (ix) rotary kiln treatment, (x) microwave/steam sterilization, (xi) plasma gasification/melting, (xii) sulfonation, (xiii) batch reactor thermal cracking, and (xiv) torrefaction, were investigated. The medical waste generation data were collected according to numerous researchers from various countries, and divided into gross medical waste and hazardous medical waste. Moreover, the medical wastes were separated into categories and types according to the international literature and the medical waste fractions’ percentages were estimated. The capability of the examined medical waste treatment technologies to produce energy, fuels, and materials, and eliminate the medical waste management problem, was very promising with regard to the near future.
The importance of medical waste management has grown during the COVID-19 pandemic because of the increase in medical waste quantity and the significant dangers of these highly infected wastes for human health and the environment. This innovative review focuses on the possibility of materials, gas/liquid/solid fuels, thermal energy, and electric power production from medical waste fractions. Appropriate and promising treatment/disposal technologies, such as (i) acid hydrolysis, (ii) acid/enzymatic hydrolysis, (iii) anaerobic digestion, (vi) autoclaving, (v) enzymatic oxidation, (vi) hydrothermal carbonization/treatment, (vii) incineration/steam heat recovery system, (viii) pyrolysis/Rankine cycle, (ix) rotary kiln treatment, (x) microwave/steam sterilization, (xi) plasma gasification/melting, (xii) sulfonation, (xiii) batch reactor thermal cracking, and (xiv) torrefaction, were investigated. The medical waste generation data were collected according to numerous researchers from various countries, and divided into gross medical waste and hazardous medical waste. Moreover, the medical wastes were separated into categories and types according to the international literature and the medical waste fractions’ percentages were estimated. The capability of the examined medical waste treatment technologies to produce energy, fuels, and materials, and eliminate the medical waste management problem, was very promising with regard to the near future.
Record ID
Keywords
chemicals, Energy, fuels, medical waste
Subject
Suggested Citation
Giakoumakis G, Politi D, Sidiras D. Medical Waste Treatment Technologies for Energy, Fuels, and Materials Production: A Review. (2023). LAPSE:2023.17358
Author Affiliations
Giakoumakis G: Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, School of Maritime and Industrial Studies, University of Piraeus, 80 Karaoli & Dimitriou, GR 18534 Piraeus, Greece
Politi D: Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, School of Maritime and Industrial Studies, University of Piraeus, 80 Karaoli & Dimitriou, GR 18534 Piraeus, Greece
Sidiras D: Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, School of Maritime and Industrial Studies, University of Piraeus, 80 Karaoli & Dimitriou, GR 18534 Piraeus, Greece [ORCID]
Politi D: Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, School of Maritime and Industrial Studies, University of Piraeus, 80 Karaoli & Dimitriou, GR 18534 Piraeus, Greece
Sidiras D: Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, School of Maritime and Industrial Studies, University of Piraeus, 80 Karaoli & Dimitriou, GR 18534 Piraeus, Greece [ORCID]
Journal Name
Energies
Volume
14
Issue
23
First Page
8065
Year
2021
Publication Date
2021-12-02
ISSN
1996-1073
Version Comments
Original Submission
Other Meta
PII: en14238065, Publication Type: Review
Record Map
Published Article

LAPSE:2023.17358
This Record
External Link

https://doi.org/10.3390/en14238065
Publisher Version
Download
Meta
Record Statistics
Record Views
208
Version History
[v1] (Original Submission)
Mar 6, 2023
Verified by curator on
Mar 6, 2023
This Version Number
v1
Citations
Most Recent
This Version
URL Here
https://psecommunity.org/LAPSE:2023.17358
Record Owner
Auto Uploader for LAPSE
Links to Related Works
