LAPSE

Browse
Subjects
Records with Subject: Biosystems
Showing records 101 to 125 of 295. [First] Page: 1 2 3 4 5 6 7 8 9 Last
Antioxidant Activity and Selenium and Polyphenols Content from Selected Medicinal Plants Natives from Various Areas Abundant in Selenium (Poland, Lithuania, and Western Ukraine)
Zofia Sotek, Bożenna Białecka, Bogumiła Pilarczyk, Radosław Drozd, Renata Pilarczyk, Agnieszka Tomza-Marciniak, Barna Kruzhel, Halyna Lysak, Małgorzata Bąkowska, Stakh Vovk
January 2, 2020 (v1)
Subject: Biosystems
Keywords: ABTS, FRAP, herbs, polyphenols, selenium
The study was performed on Centaurea cyanus, Chamomilla recutita, Majorana hortensis, Ocimum basilicum, Plantago lanceolata, Sinapis alba, and Valeriana officinalis harvested in Lithuania, Poland, and Ukraine. Our aim was to determine the differences in selenium concentrations, total polyphenols, and the antioxidant activity in same-species samples from different regions. Another goal was to assess the correlations between these variables within the species. We found variations in most species, but not in all regions of harvesting. In four of the six species from Ukraine, we observed the highest concentration of Se. The selenium concentrations ranged from 15−182 µg/kg DW, and the greatest variation between the regions occurred in S. alba. The level of polyphenols was 5.52−53.25 mg TAE/100 g DW, and the largest differences between the sampling regions occurred in P. lanceolata and O. basilicum. ABTS radicals scavenging ability ranged from 5.20−59.79 μM AAE/100 g DW, while the FRAP poten... [more]
Application of an In Vitro Psoriatic Skin Model to Study Cutaneous Metabolization of Tazarotene
Alexandre Morin, Mélissa Simard, Geneviève Rioux, Alexe Grenier, Sophie Morin, Roxane Pouliot
January 2, 2020 (v1)
Subject: Biosystems
Keywords: 3D culture, metabolization, psoriasis, skin substitutes, tazarotene, tissue engineering
Psoriasis is an inflammatory skin disease characterized by the presence of whitish and scaly plaques, which can cover up to 90% of the body surface. These plaques result from the hyperproliferation and abnormal differentiation of keratinocytes. Dermopharmaceutical testing of new therapies is limited by healthy and pathological skin models, which are not closely enough mimicking their in vivo counterparts. In this study, we exploited percutaneous absorption and Ultra Performance Liquid Chromatography (UPLC) analyses in order to determine the metabolic capacity of our psoriatic skin model. Skin substitutes were reconstructed according to the self-assembly method and tested regarding their percutaneous absorption of a topical formulation of tazarotene, followed by UPLC analyses. Histological and immunofluorescence analyses confirmed both the healthy and psoriatic phenotypes. Results from percutaneous absorption showed a significant level of tazarotene metabolite (tazarotenic acid) when th... [more]
Assessment of the Toxicity of Natural Oils from Mentha piperita, Pinus roxburghii, and Rosa spp. Against Three Stored Product Insects
Marwa I. Mackled, Mervat EL-Hefny, May Bin-Jumah, Trandil F. Wahba, Ahmed A. Allam
December 16, 2019 (v1)
Subject: Biosystems
Keywords: bioassay, contact film, fumigation, GC-MS analysis, Mentha piperita, natural plant oils, Pinus roxburghii, Rosa spp., stored product insects
Three natural oils extracted from Mentha piperita, Pinus roxburghii, and Rosa spp. were assessed in order to determine their insecticidal activity against the adults of three stored product insects: the rice weevil (Sitophilus oryzae L.), the lesser grain borer (Rhyzopertha dominica, Fabricius), and the red flour beetle (Tribolium castaneum, Herbst.). By Gas chromatography−mass spectrometry (GC/MS) analysis, the main compounds in the n-hexane oil from Rosa spp. were determined to be methyl eugenol (52.17%), phenylethyl alcohol (29.92%), diphenyl ether (7.75%), and geraniol (5.72%); in the essential oil from M. piperita, they were menthone (20.18%), 1,8-cineole (15.48%), menthyl acetate (13.13%), caryophyllene (4.82%), β-pinene (4.37%), and D-limonene (2.81%); and from the foliage of P. roxburghii, they were longifolene (19.52%), caryophyllene (9.45%), Δ-3-carene (7.01%), α-terpineol (6.75%), and γ-elemene (3.88%). S. oryzae and R. dominica were reared using sterilized wheat grains, and... [more]
Green Synthesized Silver Nanoparticles of Myrtus communis L (AgMC) Extract Inhibits Cancer Hallmarks via Targeting Aldose Reductase (AR) and Associated Signaling Network
Abdulwahab Ali Abuderman, Rabbani Syed, Abdullah A. Alyousef, Mohammed S. Alqahtani, Mohammad Shamsul Ola, Abdul Malik
December 16, 2019 (v1)
Subject: Biosystems
Keywords: anti-cancer, green synthesis, Myrtus communis L., silver NPs
In this current study, we demonstrated the green synthesis and characterization of silver nanoparticles using Myrtus communis L. plant extract (Ag-MC) and its evaluation of anticancer and antimicrobial activities. The green synthesis of (Ag-MC), was assessed by numerous characterization techniques such as ultraviolet-visible spectroscopy (UV-VIS), Fourier-transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD) transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy (EDX). The anti-cancer activity of the green synthesized silver nanoparticles was evaluated by the median inhibitory dose (IC50) on human liver carcinoma cell lines (HepG2). These results suggested that SN-NPs can be used as effective anticancer cell lines, as well as antibacterial and antiseptic agents in the medical field. This study showed that overexpression of aldose reductase (AR) in the human liver carcinoma cell line, HepG2, was down regulated by administration of SN-MC. The do... [more]
Inhibition of Key Enzymes Linked to Obesity and Cytotoxic Activities of Whole Plant Extracts of Vernonia mesplilfolia Less
Jeremiah Oshiomame Unuofin, Gloria Aderonke Otunola, Anthony Jide Afolayan
December 16, 2019 (v1)
Subject: Biosystems
Keywords: HeLa, Hoechst 33342/PI staining, lipase, Vernonia mespilifolia, α-amylase, α-glucosidase
The whole plant of Vernonia mespilifolia is widely used as a traditional remedy for obesity in South Africa. The aim of this study was to investigate the anti-obesity and cytotoxic effects of Vernonia mespilifolia extracts in vitro. The α-amylase, α-glucosidase, and lipase inhibitory activities of aqueous and ethanol extracts of Vernonia mespilifolia were investigated, while the cytotoxic effects of these extracts were analyzed using Hoechst 33342 and propidium iodide (PI) dual staining on a human cervical HeLa cell line. The results showed that the LC50 (the concentration of a material will kill 50% of test organisms) values of aqueous and ethanol extracts of Vernonia mespilifolia were >200 and 149 µg/mL, respectively, to HeLa cells. Additionally, the ethanol extract exhibited the strongest inhibitory effect on the pancreatic lipase (Half-maximal inhibitory concentration (IC50) = 331.16 µg/mL) and on α-amylase (IC50 = 781.72 µg/mL), while the aqueous extract has the strongest α-glucos... [more]
Screening and Diversity Analysis of Aerobic Denitrifying Phosphate Accumulating Bacteria Cultivated from A2O Activated Sludge
Yong Li, Siyuan Zhao, Jiejie Zhang, Yang He, Jianqiang Zhang, Rong Ge
December 16, 2019 (v1)
Subject: Biosystems
Keywords: aerobic denitrifying phosphate accumulating bacteria (ADPB), denitrifying phosphorus removal, diversity
The aerobic denitrifying phosphate accumulating bacteria (ADPB) use NO3− as an electron acceptor and remove nitrate by denitrification and concomitant uptake of excessive phosphorus in aerobic conditions. Activated sludge was collected from the A2O aerobic biological pool of the sewage treatment plant at Hezuo Town, Chengdu City. The candidate ADPB strains were obtained by cultivation in the enriched denitrification media, followed by repeated isolation and purification on bromothymol blue (BTB) solid plates. The obtained candidates were further screened for ADPB strains by phosphorus uptake experiment, nitrate reduction test, metachromatic granules staining, and poly-β-hydroxybutyrate (PHB) staining. The 16 sedimentation ribosome deoxyribonucleic acid (16 S rDNA) molecular technique was used to determine their taxonomy. Further, the denitrification and dephosphorization capacities of ADPB strains were ascertained through their growth characteristics in nitrogen-phosphorus-rich liquid... [more]
Drug Leaching Properties of Vancomycin Loaded Mesoporous Hydroxyapatite as Bone Substitutes
Jayasingh Anita Lett, Suresh Sagadevan, Joseph Joyce Prabhakar, Nor Aliya Hamizi, Irfan Anjum Badruddin, Mohd Rafie Johan, Ab Rahman Marlinda, Yasmin Abdul Wahab, Tatagar Mohammad Yunus Khan, Sarfaraz Kamangar
December 16, 2019 (v1)
Subject: Biosystems
Keywords: drug delivery, fatty acid, Hydroxyapatite, Sol-Gel synthesis, Vancomycin
Infections after bone reconstructive surgery become an authentic therapeutic and economic issue when it comes to a modern health care system. In general; infected bone defects are regarded as contraindications for bone grafting. Since the pathogens develop a biofilm on the inner surface of the bone; local delivery of antibiotics becomes more important. The present work focuses on the synthesis of Mesoporous Hydroxyapatite (MPHAP) loaded with drug Vancomycin (Van) and to investigate its loading and leaching ability in phosphate buffer solution (PBS), to be used for post-operative infections. The effect of pore size on MPHAP was analyzed using different fatty acids as organic modifiers. The impacts of various fatty acids chain length on the morphology and pore size were studied. A simple impregnation technique with optimized conditions ensured a high antibiotic loading (up to 0.476 + 0.0135 mg/mL), with a complete in vitro release obtained within 50 h.
Essential and Recovery Oils from Matricaria chamomilla Flowers as Environmentally Friendly Fungicides Against Four Fungi Isolated from Cultural Heritage Objects
Mervat EL-Hefny, Wael A.A. Abo Elgat, Asma A. Al-Huqail, Hayssam M. Ali
December 16, 2019 (v1)
Subject: Biosystems
Keywords: antifungal activity, chamazulene, cultural heritage, flower oils, GC/MS-analysis, Matricaria chamomilla
Recovery oils, obtained from the hydro-distillation of the fresh flowers of Matricaria chamomilla, as well as essential oils, were studied for their environmental purposes in cultural heritage. These oils were assayed for their antifungal activity against the growth of four molds isolated from archaeological manuscripts (Aspergillus niger), museum gypsum board Antique (A. flavus), museum archaeological tissue (A. terreus), and museum organic materials (Fusarium culmorum) of cultural heritage objects. Oils were applied to inhibit the growth of fungi at amounts of 25, 50, 75 and, 100 µL/mL, and compared with negative controls (0 µL/mL) or positive controls (Sertaconazol 3g/L). Using GC/MS analysis, the main chemical compounds identified in the essential oil were (Z)-β-farnesene (27%), D-limonene (15.25%), and α-bisabolol oxide A (14.9%), while the compounds identified in the recovery oil were α-bisabolol oxide A (18.6%), d-limonene (8.82%), and α-bisabolol oxide B (7.13%). A low amount o... [more]
Multivariate Analysis of Plasma Metabolites in Children with Autism Spectrum Disorder and Gastrointestinal Symptoms Before and After Microbiota Transfer Therapy
James B. Adams, Troy Vargason, Dae-Wook Kang, Rosa Krajmalnik-Brown, Juergen Hahn
December 16, 2019 (v1)
Subject: Biosystems
Keywords: autism spectrum disorder, biomarker, co-occurring conditions, fecal microbiota transplant, Fisher discriminant analysis, gastrointestinal symptoms, leave-one-out cross-validation, Multivariate Statistics, plasma metabolites
Current diagnosis of autism spectrum disorder (ASD) is based on assessment of behavioral symptoms, although there is strong evidence that ASD affects multiple organ systems including the gastrointestinal (GI) tract. This study used Fisher discriminant analysis (FDA) to evaluate plasma metabolites from 18 children with ASD and chronic GI problems (ASD + GI cohort) and 20 typically developing (TD) children without GI problems (TD − GI cohort). Using three plasma metabolites that may represent three general groups of metabolic abnormalities, it was possible to distinguish the ASD + GI cohort from the TD − GI cohort with 94% sensitivity and 100% specificity after leave-one-out cross-validation. After the ASD + GI participants underwent Microbiota Transfer Therapy with significant improvement in GI and ASD-related symptoms, their metabolic profiles shifted significantly to become more similar to the TD − GI group, indicating potential utility of this combination of plasma metabolites as a b... [more]
Simultaneous Removal of Calconcarboxylic Acid, NH4+ and PO43− from Pharmaceutical Effluent Using Iron Oxide-Biochar Nanocomposite Loaded with Pseudomonas putida
Saifeldin M. Siddeeg, Mohamed A. Tahoon, Faouzi Ben Rebah
December 16, 2019 (v1)
Subject: Biosystems
Keywords: biochar, calconcarboxylic acid, industrial wastewater, microorganisms, nanocomposites
In the current study, the Fe2O3/biochar nanocomposite was synthesized through a self-assembly method, followed by the immobilization of Pseudomonas putida (P. putida) on its surface to produce the P. putida/Fe2O3/biochar magnetic innovative nanocomposite. The synthesized nanocomposite was characterized using different techniques including X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FT-IR). Then, the efficiencies of this material to remove calconcarboxylic acid (CCA) organic dye, ammonium ions (NH4+), and phosphate ions (PO43−) from industrial wastewater were analyzed. The removal rates of up to 82%, 95%, and 85% were achieved for CCA dye, PO43−, NH4+, respectively, by the synthesized composite. Interestingly, even after 5 cycles of reuse, the prepared nanocomposite remains efficient in the removal of pollutants. Therefore, the P. putida/Fe3O4/biochar composite was found to be an actual talen... [more]
Integrated Bioethanol Fermentation/Anaerobic Digestion for Valorization of Sugar Beet Pulp
Joanna Berlowska, Katarzyna Pielech-Przybylska, Maria Balcerek, Weronika Cieciura, Sebastian Borowski, Dorota Kregiel
December 10, 2019 (v1)
Subject: Biosystems
Keywords: bioethanol, Hydrogen, hydrolysis, methane, stillage, sugar beet pulp
Large amounts of waste biomass are generated in sugar factories from the processing of sugar beets. After diffusion with hot water to draw the sugar from the beet pieces, a wet material remains called pulp. In this study, waste sugar beet pulp biomass was enzymatically depolymerized, and the obtained hydrolyzates were subjected to fermentation processes. Bioethanol, biomethane, and biohydrogen were produced directly from the substrate or in combined mode. Stillage, a distillery by-product, was used as a feedstock for anaerobic digestion. During biosynthesis of ethanol, most of the carbohydrates released from the sugar beet pulp were utilized by a co-culture of Saccharomyces cerevisiae Ethanol Red, and Scheffersomyces stipitis LOCK0047 giving 12.6 g/L of ethanol. Stillage containing unfermented sugars (mainly arabinose, galactose and raffinose) was found to be a good substrate for methane production (444 dm³ CH₄/kg volatile solids (VS)). Better results were achieved with this medium tha... [more]
Predicting the Longitudinally and Radially Varying Gut Microbiota Composition using Multi-Scale Microbial Metabolic Modeling
Siu H. J. Chan, Elliot S. Friedman, Gary D. Wu, Costas D. Maranas
December 10, 2019 (v1)
Subject: Biosystems
Keywords: genome-scale metabolic model, gut microbiome, multi-scale modeling, spatial heterogeneity
Background: The gut microbiota is a heterogeneous group of microbes that is spatially distributed along various sections of the intestines and across the mucosa and lumen in each section. Understanding the dynamics between the spatially differential microbial populations and the driving forces for the observed spatial organization will provide valuable insights into important questions such as the nature of colonization of the infant gut and different types of inflammatory bowel disease localized in different regions of the intestines. However, in most studies, the microbiota is sampled only at a single site (often feces) or from a particular anatomical site of the intestines. Differential oxygen availability is putatively a key factor shaping the spatial organization. Results: To test this hypothesis, we constructed a community genome-scale metabolic model consisting of representative organisms for the major phyla present in the human gut microbiome. By solving step-wise optimization... [more]
Detoxification of a Lignocellulosic Waste from a Pulp Mill to Enhance Its Fermentation Prospects
Tamara Llano, Natalia Quijorna, Alberto Coz
December 10, 2019 (v1)
Subject: Biosystems
Keywords: biorefinery, detoxification, Fermentation, inhibitors, spent sulfite liquor, sugars
Detoxification is required for sugar bioconversion and hydrolyzate valorization within the biorefining concept for biofuel or bio-product production. In this work, the spent sulfite liquor, which is the main residue provided from a pulp mill, has been detoxified. Evaporation, overliming, ionic exchange resins, and adsorption with activated carbon or black carbon were considered to separate the sugars from the inhibitors in the lignocellulosic residue. Effectiveness in terms of total and individual inhibitor removals, sugar losses and sugar-to-inhibitor removal ratio was determined. The best results were found using the cation exchange Dowex 50WX2 resin in series with the anion exchange Amberlite IRA-96 resin, which resulted in sugar losses of 24.2% with inhibitor removal of 71.3% of lignosulfonates, 84.8% of phenolics, 82.2% acetic acid, and 100% of furfurals. Apart from exchange resins, the results of evaporation, overliming, adsorption with activated carbon and adsorption with black... [more]
Effects of Biogas Substrate Recirculation on Methane Yield and Efficiency of a Liquid-Manure-Based Biogas Plant
Frauke P. C. Müller, Gerd-Christian Maack, Wolfgang Buescher
December 10, 2019 (v1)
Subject: Biosystems
Keywords: biogas, hydraulic retention time (HRT), methane output, organic loading rate (OLR), recirculation
Biogas plants are the most complex systems and are heavily studied in the field of renewable energy. A biogas system is mainly influenced by biological and technical parameters that strongly interact with each other. One recommended practice when operating a biogas plant is the recirculation of the substrate from the second fermenter into the first fermenter, which extends the recirculation amount (RA) and, in turn, the recirculation rate (RR). This technique should be applied to support and secure the biogas process. In this investigation, the RA was varied, starting with the recommended “best practice” of 10.0 m³/d (RR 40%). Every ten days, the RA was reduced in steps of 1.5 m³/d, with 5.5 m³/d (RR 27%) being the final value. The basic question to be addressed concerns to what extent the RR influences the methane yield and thereby influence the efficiency of a manure-based biogas plant in practice. Diverting the “best practice” to a RR of 27% stabilised the fermentation process and l... [more]
High-Titer Methane from Organosolv-Pretreated Spruce and Birch
Leonidas Matsakas, Christos Nitsos, Dimitrij Vörös, Ulrika Rova, Paul Christakopoulos
December 10, 2019 (v1)
Subject: Biosystems
Keywords: anaerobic digestion, biogas, birch, lignocellulosic biomass, methane, organosolv pretreatment, spruce
The negative impact of fossil fuels and the increased demand for renewable energy sources has led to the use of novel raw material sources. Lignocellulosic biomass could serve as a possible raw material for anaerobic digestion and production of biogas. This work is aimed at using forest biomass, both softwood (spruce) and hardwood (birch), as a raw material for anaerobic digestion. We examined the effect of different operational conditions for the organosolv pretreatment (ethanol content, duration of treatment, and addition of acid catalyst) on the methane yield. In addition, we investigated the effect of addition of cellulolytic enzymes during the digestion. We found that inclusion of an acid catalyst during organosolv pretreatment improved the yields from spruce, but it did not affect the yields from birch. Shorter duration of treatment was advantageous with both materials. Methane yields from spruce were higher with lower ethanol content whereas higher ethanol content was more benef... [more]
LC-ESI-QTOF/MS Profiling of Australian Mango Peel By-Product Polyphenols and Their Potential Antioxidant Activities
Danying Peng, Hafza Fasiha Zahid, Said Ajlouni, Frank R. Dunshea, Hafiz A. R. Suleria
December 10, 2019 (v1)
Subject: Biosystems
Keywords: antioxidant activity, HPLC-PDA, LC-ESI-QTOF/MS, mango peels, polyphenols
Mango (Mangifera indica L.) is one of the most important fruits in the world. Mango peel is an important by-product that is rich in polyphenols and it could have high economic value if it is effectively utilized. Phenolic characterization is an essential step in the commercial utilization of mango peel by-products as food ingredients. Herein, qualitative and quantitative analyses of two Australian mango peel “Keitt” and “Kensington Pride” (K&P) by-products were conducted while using liquid chromatography coupled to electrospray ionisation and quadrupole time of flight mass spectrometry (LC-ESI-QTOF/MS) and high-performance liquid chromatography coupled to photodiode array detector (HPLC-PDA). A total of 98 polyphenols compounds were tentatively identified in both Keitt peel and K&P peel extracts, with greater concentrations of these compounds being detected in Keitt peel. The total phenolic content (TPC), total flavonoid content (TFC), and a total tannin content (TTC) were determined.... [more]
Effect of Enzyme Interaction with Lignin Isolated from Pretreated Miscanthus × giganteus on Cellulolytic Efficiency
Woochul Jung, Ratna Sharma-Shivappa, Praveen Kolar
December 10, 2019 (v1)
Subject: Biosystems
Keywords: hydrolysis, inhibition, lignin, miscanthus, pretreatment
The effect of binding between the lignin isolates from an alkali (NaOH)− and an acid (H2SO4)− pretreated Miscanthus and cellulolytic enzymes in Cellic® CTec2 was investigated. Additonally, cellobiose and Avicel were enzymatically hydrolyzed with and without lignin isolates to study how enzyme binding onto lignin affects its conversion to glucose. Three carbohydrate−lignin loadings (0.5:0.25, 0.5:0.5, and 0.5:1.0% (w/v)) were employed. The results indicated that β-glucosidase (BG) had a strong tendency to bind to all lignin isolates. The overall tendency of enzyme binding onto lignin isolate was similar regardless of pretreatment chemical concentration. Though enzyme binding onto lignin isolates was observed, hydrolysis in the presence of these isolates did not have a significant (p > 0.05) impact on glucose production from cellobiose and Avicel. Cellobiose to glucose conversion of 99% was achieved via hydrolysis at both 5 and 10 FPU/g carbohydrate. Hydrolysis of Avicel with 5 and 10 FP... [more]
Ultrasound-Assisted Phytochemical Extraction Condition Optimization Using Response Surface Methodology from Perlette Grapes (Vitis vinifera)
Muhammad Kaleem, Asif Ahmad, Rai Muhammad Amir, Ghazala Kaukab Raja
December 10, 2019 (v1)
Subject: Biosystems
Keywords: antioxidants, flavonoids, phytochemicals, ultrasound, Vitis vinifera
In the current study, bioactive compounds of Vitis vinifera (Perlette) were extracted using an ultrasound-assisted extraction technique. The central composite design of response surface methodology (RSM) was used to determine the effect of time, temperature, and concentration of acetic acid on response variables that include extract yield, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity of Vitis vinifera extracts. The results of the central composite design of RSM revealed that the quadratic polynomial model is best fitted to experimental results, with all the responses having a regression coefficient greater than 0.9. Optimized extraction levels include 26.5 min, an extraction temperature of 59 °C, and an acetic acid concentration of 62.9% with good extraction yield results of 34.95 g/100 g dry weight (DW) of grapes, TPC 34.38 mg gallic acid equivalent per gram (GAE/g) DW, flavonoid content 10.21 mg quercetin equivalents per gram (QEQ/g) DW, and a... [more]
Stimuli-Sensitive Cell Penetrating Peptide-Modified Nanocarriers
Federico Perche
December 10, 2019 (v1)
Subject: Biosystems
Keywords: cellular uptake, peptides, responsive
The integration of drugs into nanocarriers favorably altered their pharmacodynamics and pharmacokinetics compared to free drugs, and increased their therapeutic index. However, selective cellular internalization in diseased tissues rather than normal tissues still presents a formidable challenge. In this chapter I will cover solutions involving environment-responsive cell-penetrating peptides (CPPs). I will discuss properties of CPPs as universal cellular uptake enhancers, and the modifications imparted to CPP-modified nanocarriers to confine CPP activation to diseased tissues.
Production Process and Optimization of Solid Bioethanol from Empty Fruit Bunches of Palm Oil Using Response Surface Methodology
Nurfahmi, M. Mofijur, Hwai Chyuan Ong, Badrul Mohamed Jan, Fitranto Kusumo, Abdi Hanra Sebayang, Hazlina Husin, Arridina Susan Silitonga, Teuku Meurah Indra Mahlia, S. M. Ashrafur Rahman
December 10, 2019 (v1)
Subject: Biosystems
Keywords: bioethanol production, calorific value, enzyme hydrolysis, organosolv pretreatment, response surface methodology, solid bioethanol
This study aimed to observe the potential of solid bioethanol as an alternative fuel with high caloric value. The solid bioethanol was produced from liquid bioethanol, which was obtained from the synthesis of oil palm empty fruit bunches (PEFBs) through the delignification process by using organosolv pretreatment and enzymatic hydrolysis. Enzymatic hydrolysis was conducted using enzyme (60 FPUg−1 of cellulose) at a variety of temperatures (35 °C, 70 °C, and 90 °C) and reaction times (2, 6, 12, 18, and 24 h) in order to obtain a high sugar yield. The highest sugars were yielded at the temperature of 90 °C for 48 h (152.51 mg/L). Furthermore, fermentation was conducted using Saccharomyces cerevisiae. The bioethanol yield after fermentation was 62.29 mg/L. Bioethanol was extracted by distillation process to obtain solid bioethanol. The solid bioethanol was produced by using stearic acid as the additive. In order to get high-quality solid bioethanol, the calorific value was optimized using... [more]
Antibacterial and Antifungal Activity of Novel Synthesized Neodymium-Substituted Cobalt Ferrite Nanoparticles for Biomedical Application
Suriya Rehman, Mohammad Azam Ansari, Mohammad A. Alzohairy, Mohammad N. Alomary, B. Rabindran Jermy, Raheem Shahzad, Neda Tashkandi, Zainab Hassan Alsalem
December 10, 2019 (v1)
Subject: Biosystems
Keywords: antibacterial activity, bioactivity, magnetic nanomaterials, neodymium, spinel ferrites, yeast
Neodymium (Nd)-substituted cobalt ferrite nanoparticles (NPs), i.e., CoNdxFe2−xO4 (0.0 ≤ x ≤ 0.2) NPs, were synthesized by the sonochemical method. The compositional characterization was done by scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). Antistaphylococcal activity was found to be enhanced, i.e., survival rate was 50%, 45%, 40%, and 30% with the increase in the ratio of Nd (0.0 ≤ x ≤ 0.2), whereas anticandidal activity was found efficient, i.e., 9%, 20%, 22%, and 40% survival rate at all the four ratios. The morphogenesis studies indicated that the synthesized metal−ligand, improves the antimicrobial capacity by binding them strongly to the microbial walls. To the best of our knowledge, this is the first report which demonstrates the series of CoNdxFe2−xO4 (0.0 ≤ x ≤ 0.2) NPs being active towards Staphylococcus aureus and Candida albicans and encourages its potential candidature for pharmaceuti... [more]
Chemically Enhanced Primary Sludge as an Anaerobic Co-Digestion Additive for Biogas Production from Food Waste
Xiaorong Kang, Yali Liu
December 9, 2019 (v1)
Subject: Biosystems
Keywords: chemically enhanced primary sedimentation, food waste, Renewable and Sustainable Energy, VFAs
In order to overcome process instability and buffer deficiency in the anaerobic digestion of mono food waste (FW), chemically enhanced primary sludge (CEPS) was selected as a co-substrate for FW treatment. In this study, batch tests were conducted to study the effects of CEPS/FW ratios on anaerobic co-digestion (coAD) performances. Both soluble chemical oxygen demand (SCOD) and protease activity were decreased, with the CEPS/FW mass ratio increasing from 0:5 to 5:0. However, it was also found that the accumulation of volatile fatty acids (VFAs) was eliminated by increasing the CEPS/FW ratio, and that corresponding VFAs concentrations decreased from 13,872.97 to 1789.98 mg chemical oxygen demand per L (mg COD/L). In addition, the maximum value of cumulative biogas yield (446.39 mL per g volatile solids removal (mL/g VSsremoval)) was observed at a CEPS/FW ratio of 4:1, and that the tendency of coenzyme F420 activity was similar to biogas production. The mechanism analysis indicated that... [more]
A Comparative Study of Biogas Reactor Fluid Rheology—Implications for Mixing Profile and Power Demand
Luka Šafarič, Sepehr Shakeri Yekta, Jörgen Ejlertsson, Mohammad Safari, Hossein Nadali Najafabadi, Anna Karlsson, Francesco Ometto, Bo H. Svensson, Annika Björn
December 9, 2019 (v1)
Subject: Biosystems
Keywords: anaerobic digestion, Computational Fluid Dynamics, stirring, substrate, viscosity
Anaerobic digestion (AD) is an established process for integrating waste management with renewable energy and nutrient recovery. Much of the research in this field focuses on the utilisation of new substrates, yet their effects on operational aspects such as fluid behaviour and power requirement for mixing are commonly overlooked, despite their importance for process optimisation. This study analysed rheological characteristics of samples from 21 laboratory-scale continuous stirred-tank biogas reactors (CSTBRs) digesting a range of substrates, in order to evaluate substrate effect on mixing efficiency and power demand through computational fluid dynamics (CFD). The results show that substrate and process parameters, such as solids content and organic loading, all have a significant effect on CSTBR fluid rheology. The correlation levels between rheological and process parameters were different across substrates, while no specific fluid behaviour patterns could be associated with substra... [more]
Antifungal Activity of Euclea divinorum Root and Study of its Ethnobotany and Phytopharmacology
Mohamed Al-Fatimi
December 9, 2019 (v1)
Subject: Biosystems
Keywords: antifungal, antioxidant, ethnobotany, Euclea divinorum, naphthoquinones, Soqotra
The ethnobotanical survey of Euclea divinorum Hiern (Ebenaceae) was conducted on Soqotra Island, Yemen. The root bark is used to treat mouth, dental, dermal and blood diseases in the traditional medicine of the island. The study is the first report about the effect of the plant root barks against six human pathogenic fungi. The non-polar dichloromethane extract of Euclea divinorum root bark showed stronger antifungal activities compared to polar direct and sequential methanolic extracts. These extracts showed significant broad antifungal activity against Absidia corymbifera, Aspergillus fumigatus, Candida krusei, Microsporum gypseum, Mucor sp. and Trichophyton mentagrophytes compared to the standard antibiotic drug nystatin. Thin-layer chromatography (TLC) revealed the presence of the naphthoquinones in the extracts. The results showed an extraction process to separate most antifungal naphthoquinones from the root bark by using non-polar solvent dichloromethane, while flavonoids remain... [more]
Effects of Conventional Flotation Frothers on the Population of Mesophilic Microorganisms in Different Cultures
Mohammad Jafari, Mehdi Golzadeh, Sied Ziaedin Shafaei, Hadi Abdollahi, Mahdi Gharabaghi, Saeed Chehreh Chelgani
December 3, 2019 (v1)
Subject: Biosystems
Keywords: bioleaching, flotation, frother, Machine Learning, mixed culture
Bioleaching is an environment-friendly and low-investment process for the extraction of metals from flotation concentrate. Surfactants such as collectors and frothers are widely used in the flotation process. These chemical reagents may have inhibitory effects on the activity of microorganisms through a bioleaching process; however, there is no report indicating influences of reagents on the activity of microorganisms in the mixed culture which is mostly used in the industry. In this investigation, influences of typical flotation frothers (methyl isobutyl carbinol and pine oil) in different concentrations (0.01, 0.10, and 1.00 g/L) were examined on activates of bacteria in the mesophilic mixed culture (Acidithiobacillus ferrooxidans, Leptospirillum ferrooxidans, and Acidithiobacillus thiooxidans). For comparison purposes, experiments were repeated by pure cultures of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans in the same conditions. Results indicated that increasing... [more]
Showing records 101 to 125 of 295. [First] Page: 1 2 3 4 5 6 7 8 9 Last
[Show All Subjects]