Browse
Subjects
Records with Subject: Intelligent Systems
Showing records 194 to 218 of 261. [First] Page: 1 5 6 7 8 9 10 11 Last
Forecasting Electricity Market Risk Using Empirical Mode Decomposition (EMD)—Based Multiscale Methodology
Kaijian He, Hongqian Wang, Jiangze Du, Yingchao Zou
February 5, 2019 (v1)
Keywords: electricity market risk, Empirical Mode Decomposition (EMD), Exponential Weighted Moving Average (EWMA), Value at Risk (VaR)
The electricity market has experienced an increasing level of deregulation and reform over the years. There is an increasing level of electricity price fluctuation, uncertainty, and risk exposure in the marketplace. Traditional risk measurement models based on the homogeneous and efficient market assumption no longer suffice, facing the increasing level of accuracy and reliability requirements. In this paper, we propose a new Empirical Mode Decomposition (EMD)-based Value at Risk (VaR) model to estimate the downside risk measure in the electricity market. The proposed model investigates and models the inherent multiscale market risk structure. The EMD model is introduced to decompose the electricity time series into several Intrinsic Mode Functions (IMF) with distinct multiscale characteristics. The Exponential Weighted Moving Average (EWMA) model is used to model the individual risk factors across different scales. Experimental results using different models in the Australian electric... [more]
Power Quality Disturbances Feature Selection and Recognition Using Optimal Multi-Resolution Fast S-Transform and CART Algorithm
Nantian Huang, Hua Peng, Guowei Cai, Jikai Chen
February 5, 2019 (v1)
Keywords: classification and regression tree algorithm, decision tree, feature selection, optimal multi-resolution fast S-transform, power quality disturbances
In order to improve the recognition accuracy and efficiency of power quality disturbances (PQD) in microgrids, a novel PQD feature selection and recognition method based on optimal multi-resolution fast S-transform (OMFST) and classification and regression tree (CART) algorithm is proposed. Firstly, OMFST is carried out according to the frequency domain characteristic of disturbance signal, and 67 features are extracted by time-frequency analysis to construct the original feature set. Subsequently, the optimal feature subset is determined by Gini importance and sorted according to an embedded feature selection method based on the Gini index. Finally, one standard error rule subtree evaluation methods were applied for cost complexity pruning. After pruning, the optimal decision tree (ODT) is obtained for PQD classification. The experiments show that the new method can effectively improve the classification efficiency and accuracy with feature selection step. Simultaneously, the ODT can... [more]
Using Trajectory Clusters to Define the Most Relevant Features for Transient Stability Prediction Based on Machine Learning Method
Luyu Ji, Junyong Wu, Yanzhen Zhou, Liangliang Hao
January 31, 2019 (v1)
Keywords: feature extraction and selection, support vector machines, trajectory clusters, transient stability prediction
To achieve rapid real-time transient stability prediction, a power system transient stability prediction method based on the extraction of the post-fault trajectory cluster features of generators is proposed. This approach is conducted using data-mining techniques and support vector machine (SVM) models. First, the post-fault rotor angles and generator terminal voltage magnitudes are considered as the input vectors. Second, we construct a high-confidence dataset by extracting the 27 trajectory cluster features obtained from the chosen databases. Then, by applying a filter⁻wrapper algorithm for feature selection, we obtain the final feature set composed of the eight most relevant features for transient stability prediction, called the global trajectory clusters feature subset (GTCFS), which are validated by receiver operating characteristic (ROC) analysis. Comprehensive simulations are conducted on a New England 39-bus system under various operating conditions, load levels and topologie... [more]
A Long-Term Wind Speed Ensemble Forecasting System with Weather Adapted Correction
Yiqi Chu, Chengcai Li, Yefang Wang, Jing Li, Jian Li
January 31, 2019 (v1)
Keywords: ensemble forecasting, statistical correction, weather classification, wind forecasting, wind power
Wind forecasting is critical in the wind power industry, yet forecasting errors often exist. In order to effectively correct the forecasting error, this study develops a weather adapted bias correction scheme on the basis of an average bias-correction method, which considers the deviation of estimated biases associated with the difference in weather type within each unit of the statistical sample. This method is tested by an ensemble forecasting system based on the Weather Research and Forecasting (WRF) model. This system provides high resolution wind speed deterministic forecasts using 40 members generated by initial perturbations and multi-physical schemes. The forecasting system outputs 28⁻52 h predictions with a temporal resolution of 15 min, and is evaluated against collocated anemometer towers observations at six wind fields located on the east coast of China. Results show that the information contained in weather types produces an improvement in the forecast bias correction.
Fuzzy Logic Based Multi-Criteria Wind Turbine Selection Strategy—A Case Study of Qassim, Saudi Arabia
Shafiqur Rehman, Salman A. Khan
January 31, 2019 (v1)
Keywords: decision-making, fuzzy arithmetic mean operator, fuzzy logic, wind energy, wind turbine
The emergence of wind energy as a potential alternative to traditional sources of fuel has prompted notable research in recent years. One primary factor contributing to efficient utilization of wind energy from a wind farm is the type of turbines used. However, selection of a specific wind turbine type is a difficult task due to several criteria involved in the selection process. Important criteria include turbine’s power rating, height of tower, energy output, rotor diameter, cut-in wind speed, and rated wind speed. The complexity of this selection process is further amplified by the presence of conflicts between the decision criteria. Therefore, a decision is desired that provides the best balance between all selection criteria. Considering the complexities involved in the decision-making process, this paper proposes a two-level decision turbine selection strategy based on fuzzy logic and multi-criteria decision-making (MCDM) approach. More specifically, the fuzzy arithmetic mean ope... [more]
Application of Hybrid Quantum Tabu Search with Support Vector Regression (SVR) for Load Forecasting
Cheng-Wen Lee, Bing-Yi Lin
January 31, 2019 (v1)
Keywords: electric load forecasting, quantum computing mechanics, quantum tabu search (QTS) algorithm, support vector regression (SVR)
Hybridizing chaotic evolutionary algorithms with support vector regression (SVR) to improve forecasting accuracy is a hot topic in electricity load forecasting. Trapping at local optima and premature convergence are critical shortcomings of the tabu search (TS) algorithm. This paper investigates potential improvements of the TS algorithm by applying quantum computing mechanics to enhance the search information sharing mechanism (tabu memory) to improve the forecasting accuracy. This article presents an SVR-based load forecasting model that integrates quantum behaviors and the TS algorithm with the support vector regression model (namely SVRQTS) to obtain a more satisfactory forecasting accuracy. Numerical examples demonstrate that the proposed model outperforms the alternatives.
Analysis and Modeling for Short- to Medium-Term Load Forecasting Using a Hybrid Manifold Learning Principal Component Model and Comparison with Classical Statistical Models (SARIMAX, Exponential Smoothing) and Artificial Intelligence Models (ANN, SVM): Th
George P. Papaioannou, Christos Dikaiakos, Anargyros Dramountanis, Panagiotis G. Papaioannou
January 30, 2019 (v1)
Keywords: electricity load, exponential smoothing, forecasting, principal components analysis, seasonal autoregressive integrated moving average with exogenous (SARIMAX)
In this work we propose a new hybrid model, a combination of the manifold learning Principal Components (PC) technique and the traditional multiple regression (PC-regression), for short and medium-term forecasting of daily, aggregated, day-ahead, electricity system-wide load in the Greek Electricity Market for the period 2004⁻2014. PC-regression is shown to effectively capture the intraday, intraweek and annual patterns of load. We compare our model with a number of classical statistical approaches (Holt-Winters exponential smoothing of its generalizations Error-Trend-Seasonal, ETS models, the Seasonal Autoregressive Moving Average with exogenous variables, Seasonal Autoregressive Integrated Moving Average with eXogenous (SARIMAX) model as well as with the more sophisticated artificial intelligence models, Artificial Neural Networks (ANN) and Support Vector Machines (SVM). Using a number of criteria for measuring the quality of the generated in-and out-of-sample forecasts, we have conc... [more]
Comparative Study of Hybrid Models Based on a Series of Optimization Algorithms and Their Application in Energy System Forecasting
Xuejiao Ma, Dandan Liu
January 30, 2019 (v1)
Keywords: comparative study, energy system, forecasting validity degree, optimization algorithms, time series forecasting
Big data mining, analysis, and forecasting play vital roles in modern economic and industrial fields, especially in the energy system. Inaccurate forecasting may cause wastes of scarce energy or electricity shortages. However, forecasting in the energy system has proven to be a challenging task due to various unstable factors, such as high fluctuations, autocorrelation and stochastic volatility. To forecast time series data by using hybrid models is a feasible alternative of conventional single forecasting modelling approaches. This paper develops a group of hybrid models to solve the problems above by eliminating the noise in the original data sequence and optimizing the parameters in a back propagation neural network. One of contributions of this paper is to integrate the existing algorithms and models, which jointly show advances over the present state of the art. The results of comparative studies demonstrate that the hybrid models proposed not only satisfactorily approximate the a... [more]
Automated Variable Selection and Shrinkage for Day-Ahead Electricity Price Forecasting
Bartosz Uniejewski, Jakub Nowotarski, Rafał Weron
January 7, 2019 (v1)
Keywords: autoregression, day-ahead market, elastic net, electricity price forecasting, lasso, ridge regression, stepwise regression, variable selection
In day-ahead electricity price forecasting (EPF) variable selection is a crucial issue. Conducting an empirical study involving state-of-the-art parsimonious expert models as benchmarks, datasets from three major power markets and five classes of automated selection and shrinkage procedures (single-step elimination, stepwise regression, ridge regression, lasso and elastic nets), we show that using the latter two classes can bring significant accuracy gains compared to commonly-used EPF models. In particular, one of the elastic nets, a class that has not been considered in EPF before, stands out as the best performing model overall.
A Hybrid Multi-Step Model for Forecasting Day-Ahead Electricity Price Based on Optimization, Fuzzy Logic and Model Selection
Ping Jiang, Feng Liu, Yiliao Song
January 7, 2019 (v1)
Keywords: forecasting, fuzzy logic, particle swarm optimization (PSO), reducing volatility, selection rule (SR), self-organizing-map
The day-ahead electricity market is closely related to other commodity markets such as the fuel and emission markets and is increasingly playing a significant role in human life. Thus, in the electricity markets, accurate electricity price forecasting plays significant role for power producers and consumers. Although many studies developing and proposing highly accurate forecasting models exist in the literature, there have been few investigations on improving the forecasting effectiveness of electricity price from the perspective of reducing the volatility of data with satisfactory accuracy. Based on reducing the volatility of the electricity price and the forecasting nature of the radial basis function network (RBFN), this paper successfully develops a two-stage model to forecast the day-ahead electricity price, of which the first stage is particle swarm optimization (PSO)-core mapping (CM) with self-organizing-map and fuzzy set (PCMwSF), and the second stage is selection rule (SR).... [more]
Exploring Reduction Potential of Carbon Intensity Based on Back Propagation Neural Network and Scenario Analysis: A Case of Beijing, China
Jinying Li, Jianfeng Shi, Jinchao Li
January 7, 2019 (v1)
Keywords: Beijing, carbon intensity, IPSO model, scenario analysis
Carbon emissions are the major cause of the global warming; therefore, the exploration of carbon emissions reduction potential is of great significance to reduce carbon emissions. This paper explores the potential of carbon intensity reduction in Beijing in 2020. Based on factors including economic growth, resident population growth, energy structure adjustment, industrial structure adjustment and technical progress, the paper sets 48 development scenarios during the years 2015⁻2020. Then, the back propagation (BP) neural network optimized by improved particle swarm optimization algorithm (IPSO) is used to calculate the carbon emissions and carbon intensity reduction potential under various scenarios for 2016 and 2020. Finally, the contribution of different factors to carbon intensity reduction is compared. The results indicate that Beijing could more than fulfill the 40%⁻45% reduction target for carbon intensity in 2020 in all of the scenarios. Furthermore, energy structure adjustment... [more]
A Review of Classification Problems and Algorithms in Renewable Energy Applications
María Pérez-Ortiz, Silvia Jiménez-Fernández, Pedro A. Gutiérrez, Enrique Alexandre, César Hervás-Martínez, Sancho Salcedo-Sanz
January 7, 2019 (v1)
Keywords: applications, classification algorithms, Machine Learning, Renewable and Sustainable Energy
Classification problems and their corresponding solving approaches constitute one of the fields of machine learning. The application of classification schemes in Renewable Energy (RE) has gained significant attention in the last few years, contributing to the deployment, management and optimization of RE systems. The main objective of this paper is to review the most important classification algorithms applied to RE problems, including both classical and novel algorithms. The paper also provides a comprehensive literature review and discussion on different classification techniques in specific RE problems, including wind speed/power prediction, fault diagnosis in RE systems, power quality disturbance classification and other applications in alternative RE systems. In this way, the paper describes classification techniques and metrics applied to RE problems, thus being useful both for researchers dealing with this kind of problem and for practitioners of the field.
Electricity Price Forecasting by Averaging Dynamic Factor Models
Andrés M. Alonso, Guadalupe Bastos, Carolina García-Martos
January 7, 2019 (v1)
Keywords: Bayesian model averaging, dimensionality reduction, electricity prices, forecast combination
In the context of the liberalization of electricity markets, forecasting prices is essential. With this aim, research has evolved to model the particularities of electricity prices. In particular, dynamic factor models have been quite successful in the task, both in the short and long run. However, specifying a single model for the unobserved factors is difficult, and it cannot be guaranteed that such a model exists. In this paper, model averaging is employed to overcome this difficulty, with the expectation that electricity prices would be better forecast by a combination of models for the factors than by a single model. Although our procedure is applicable in other markets, it is illustrated with an application to forecasting spot prices of the Iberian Market, MIBEL (The Iberian Electricity Market). Three combinations of forecasts are successful in providing improved results for alternative forecasting horizons.
A Least Squares Support Vector Machine Optimized by Cloud-Based Evolutionary Algorithm for Wind Power Generation Prediction
Qunli Wu, Chenyang Peng
January 7, 2019 (v1)
Keywords: cloud-based evolutionary algorithm, least squares support vector machine, paired-sample t-test, two-way comparison, wind power generation prediction
Accurate wind power generation prediction, which has positive implications for making full use of wind energy, seems still a critical issue and a huge challenge. In this paper, a novel hybrid approach has been proposed for wind power generation forecasting in the light of Cloud-Based Evolutionary Algorithm (CBEA) and Least Squares Support Vector Machine (LSSVM). In order to improve the forecasting precision, a two-way comparison approach is conducted to preprocess the original wind power generation data. The pertinent parameters of LSSVM are optimized by using CBEA to verify the learning and generalization abilities of the LSSVM model. The experimental results indicate that the forecasting performance of the proposed model is better than the single LSSVM model and all of the other models for comparison. Moreover, the paired-sample t-test is employed to cast light on the applicability of the developed model.
Artificial Neural Network Application for Partial Discharge Recognition: Survey and Future Directions
Abdullahi Abubakar Mas’ud, Ricardo Albarracín, Jorge Alfredo Ardila-Rey, Firdaus Muhammad-Sukki, Hazlee Azil Illias, Nurul Aini Bani, Abu Bakar Munir
January 7, 2019 (v1)
Keywords: Artificial Intelligence, artificial neural network (ANN), partial discharge (PD)
In order to investigate how artificial neural networks (ANNs) have been applied for partial discharge (PD) pattern recognition, this paper reviews recent progress made on ANN development for PD classification by a literature survey. Contributions from several authors have been presented and discussed. High recognition rate has been recorded for several PD faults, but there are still many factors that hinder correct recognition of PD by the ANN, such as high-amplitude noise or wide spectral content typical from industrial environments, trial and error approaches in determining an optimum ANN, multiple PD sources acting simultaneously, lack of comprehensive and up to date databank of PD faults, and the appropriate selection of the characteristics that allow a correct recognition of the type of source which are currently being addressed by researchers. Several suggestions for improvement are proposed by the authors include: (1) determining the optimum weights in training the ANN; (2) usin... [more]
A WebGIS Decision Support System for Management of Abandoned Mines
Ranka Stanković, Nikola Vulović, Nikola Lilić, Ivan Obradović, Radule Tošović, Milica Pešić-Georgiadis
January 7, 2019 (v1)
Keywords: abandoned mines, geodatabase, mine reclamation, WebGIS
This paper presents the development of a WebGIS application aimed at providing safe and reliable data needed for reclamation of abandoned mines in national parks and other protected areas in Vojvodina in compliance with existing legal regulations. The geodatabase model for this application has been developed using UML and the CASE tool Microsoft Visio featuring an interface with ArcGIS. The WebGIS application was developed using GeoServer, an open source tool in the Java programming language, with integrated PostgreSQL DB and the possibility of generating and publishing WMS, WFS and KML services. The WebGIS application is publicly available, based on an appropriate central database, which for the first time encompasses all available data on abandoned mines in Vojvodina, and as such may serve as a model for similar databases on the territory of the Republic of Serbia.
Battery Grouping with Time Series Clustering Based on Affinity Propagation
Zhiwei He, Mingyu Gao, Guojin Ma, Yuanyuan Liu, Lijun Tang
January 7, 2019 (v1)
Keywords: affinity propagation, battery grouping, time series clustering, wavelet denoising
Battery grouping is a technology widely used to improve the performance of battery packs. In this paper, we propose a time series clustering based battery grouping method. The proposed method utilizes the whole battery charge/discharge sequence for battery grouping. The time sequences are first denoised with a wavelet denoising technique. The similarity matrix is then computed with the dynamic time warping distance, and finally the time series are clustered with the affinity propagation algorithm according to the calculated similarity matrices. The silhouette index is utilized for assessing the performance of the proposed battery grouping method. Test results show that the proposed battery grouping method is effective.
Wind Turbine Driving a PM Synchronous Generator Using Novel Recurrent Chebyshev Neural Network Control with the Ideal Learning Rate
Chih-Hong Lin
November 28, 2018 (v1)
Keywords: discrete-type Lyapunov function, permanent magnet synchronous generator, recurrent Chebyshev neural network, wind turbine
A permanent magnet (PM) synchronous generator system driven by wind turbine (WT), connected with smart grid via AC-DC converter and DC-AC converter, are controlled by the novel recurrent Chebyshev neural network (NN) and amended particle swarm optimization (PSO) to regulate output power and output voltage in two power converters in this study. Because a PM synchronous generator system driven by WT is an unknown non-linear and time-varying dynamic system, the on-line training novel recurrent Chebyshev NN control system is developed to regulate DC voltage of the AC-DC converter and AC voltage of the DC-AC converter connected with smart grid. Furthermore, the variable learning rate of the novel recurrent Chebyshev NN is regulated according to discrete-type Lyapunov function for improving the control performance and enhancing convergent speed. Finally, some experimental results are shown to verify the effectiveness of the proposed control method for a WT driving a PM synchronous generator... [more]
Hybridization of Chaotic Quantum Particle Swarm Optimization with SVR in Electric Demand Forecasting
Min-Liang Huang
November 28, 2018 (v1)
Keywords: chaotic quantum particle swarm optimization (CQPSO), electric load forecasting, quantum behavior, support vector regression (SVR)
In existing forecasting research papers support vector regression with chaotic mapping function and evolutionary algorithms have shown their advantages in terms of forecasting accuracy improvement. However, for classical particle swarm optimization (PSO) algorithms, trapping in local optima results in an earlier standstill of the particles and lost activities, thus, its core drawback is that eventually it produces low forecasting accuracy. To continue exploring possible improvements of the PSO algorithm, such as expanding the search space, this paper applies quantum mechanics to empower each particle to possess quantum behavior, to enlarge its search space, then, to improve the forecasting accuracy. This investigation presents a support vector regression (SVR)-based load forecasting model which hybridizes the chaotic mapping function and quantum particle swarm optimization algorithm with a support vector regression model, namely the SVRCQPSO (support vector regression with chaotic quan... [more]
A New Predictive Model Based on the ABC Optimized Multivariate Adaptive Regression Splines Approach for Predicting the Remaining Useful Life in Aircraft Engines
Paulino José García Nieto, Esperanza García-Gonzalo, Antonio Bernardo Sánchez, Marta Menéndez Fernández
November 28, 2018 (v1)
Keywords: aircraft engine, artificial bee colony (ABC), multivariate adaptive regression splines (MARS), prognostics, reliability, remaining useful life (RUL)
Remaining useful life (RUL) estimation is considered as one of the most central points in the prognostics and health management (PHM). The present paper describes a nonlinear hybrid ABC⁻MARS-based model for the prediction of the remaining useful life of aircraft engines. Indeed, it is well-known that an accurate RUL estimation allows failure prevention in a more controllable way so that the effective maintenance can be carried out in appropriate time to correct impending faults. The proposed hybrid model combines multivariate adaptive regression splines (MARS), which have been successfully adopted for regression problems, with the artificial bee colony (ABC) technique. This optimization technique involves parameter setting in the MARS training procedure, which significantly influences the regression accuracy. However, its use in reliability applications has not yet been widely explored. Bearing this in mind, remaining useful life values have been predicted here by using the hybrid ABC⁻... [more]
Statistical Analysis of Wave Climate Data Using Mixed Distributions and Extreme Wave Prediction
Wei Li, Jan Isberg, Rafael Waters, Jens Engström, Olle Svensson, Mats Leijon
November 28, 2018 (v1)
Keywords: extreme wave, mixed-distribution model, ocean wave modelling, wave climate, wave energy converter
The investigation of various aspects of the wave climate at a wave energy test site is essential for the development of reliable and efficient wave energy conversion technology. This paper presents studies of the wave climate based on nine years of wave observations from the 2005⁻2013 period measured with a wave measurement buoy at the Lysekil wave energy test site located off the west coast of Sweden. A detailed analysis of the wave statistics is investigated to reveal the characteristics of the wave climate at this specific test site. The long-term extreme waves are estimated from applying the Peak over Threshold (POT) method on the measured wave data. The significant wave height and the maximum wave height at the test site for different return periods are also compared. In this study, a new approach using a mixed-distribution model is proposed to describe the long-term behavior of the significant wave height and it shows an impressive goodness of fit to wave data from the test site.... [more]
High Spatial Resolution Simulation of Annual Wind Energy Yield Using Near-Surface Wind Speed Time Series
Christopher Jung
November 27, 2018 (v1)
Keywords: annual wind energy yield (AEY), least squares boosting (LSBoost), predictor importance (PI), Wakeby distribution (WK5), wind speed extrapolation
In this paper a methodology is presented that can be used to model the annual wind energy yield (AEYmod) on a high spatial resolution (50 m × 50 m) grid based on long-term (1979⁻2010) near-surface wind speed (US) time series measured at 58 stations of the German Weather Service (DWD). The study area for which AEYmod is quantified is the German federal state of Baden-Wuerttemberg. Comparability of the wind speed time series was ensured by gap filling, homogenization and detrending. The US values were extrapolated to the height 100 m (U100m,emp) above ground level (AGL) by the Hellman power law. All U100m,emp time series were then converted to empirical cumulative distribution functions (CDFemp). 67 theoretical cumulative distribution functions (CDF) were fitted to all CDFemp and their goodness of fit (GoF) was evaluated. It turned out that the five-parameter Wakeby distribution (WK5) is universally applicable in the study area. Prior to the least squares boosting (LSBoost)-based modelin... [more]
A Reconfigurable Formation and Disjoint Hierarchical Routing for Rechargeable Bluetooth Networks
Chih-Min Yu, Yi-Hsiu Lee
November 27, 2018 (v1)
Keywords: bluetooth, energy harvesting, routing, scatternet formation, topology configuration
In this paper, a reconfigurable mesh-tree with a disjoint hierarchical routing protocol for the Bluetooth sensor network is proposed. First, a designated root constructs a tree-shaped subnet and propagates parameters k and c in its downstream direction to determine new roots. Each new root asks its upstream master to start a return connection to convert the first tree-shaped subnet into a mesh-shaped subnet. At the same time, each new root repeats the same procedure as the designated root to build its own tree-shaped subnet, until the whole scatternet is formed. As a result, the reconfigurable mesh-tree constructs a mesh-shaped topology in one densely covered area that is extended by tree-shaped topology to other sparsely covered areas. To locate the optimum k layer for various sizes of networks, a peak-search method is introduced in the designated root to determine the optimum mesh-tree configuration. In addition, the reconfigurable mesh-tree can dynamically compute the optimum layer... [more]
Wind Power Generation Forecasting Using Least Squares Support Vector Machine Combined with Ensemble Empirical Mode Decomposition, Principal Component Analysis and a Bat Algorithm
Qunli Wu, Chenyang Peng
November 27, 2018 (v1)
Keywords: bat algorithm (BA), ensemble empirical mode decomposition (EEMD), grey relational analysis, least squares support vector machine (LSSVM), principal component analysis (PCA)
Regarding the non-stationary and stochastic nature of wind power, wind power generation forecasting plays an essential role in improving the stability and security of the power system when large-scale wind farms are integrated into the whole power grid. Accurate wind power forecasting can make an enormous contribution to the alleviation of the negative impacts on the power system. This study proposes a hybrid wind power generation forecasting model to enhance prediction performance. Ensemble empirical mode decomposition (EEMD) was applied to decompose the original wind power generation series into different sub-series with various frequencies. Principal component analysis (PCA) was employed to reduce the number of inputs without lowering the forecasting accuracy through identifying the variables deemed as significant that maintain most of the comprehensive variability present in the data set. A least squares support vector machine (LSSVM) model with the pertinent parameters being optim... [more]
On Variable Reverse Power Flow-Part II: An Electricity Market Model Considering Wind Station Size and Location
Aouss Gabash, Pu Li
November 27, 2018 (v1)
Keywords: active-reactive energy losses, variable reverse power flow (VRPF), varying power factors (PFs), wind station size-location
This is the second part of a companion paper on variable reverse power flow (VRPF) in active distribution networks (ADNs) with wind stations (WSs). Here, we propose an electricity market model considering agreements between the operator of a medium-voltage active distribution network (MV-ADN) and the operator of a high-voltage transmission network (HV-TN) under different scenarios. The proposed model takes, simultaneously, active and reactive energy prices into consideration. The results from applying this model on a real MV-ADN reveal many interesting facts. For instance, we demonstrate that the reactive power capability of WSs will be never utilized during days with zero wind power and varying limits on power factors (PFs). In contrast, more than 10% of the costs of active energy losses, 15% of the costs of reactive energy losses, and 100% of the costs of reactive energy imported from the HV-TN, respectively, can be reduced if WSs are operated as capacitor banks with no limits on PFs... [more]
Showing records 194 to 218 of 261. [First] Page: 1 5 6 7 8 9 10 11 Last
[Show All Subjects]