LAPSE

Records Added in January 2019
Records added in January 2019
Change year: 2018 | 2019
Change month: January | February | March | April | May | June | July
Showing records 101 to 125 of 220. [First] Page: 1 2 3 4 5 6 7 8 9 Last
Numerical Study of the Aerodynamic Loads on Offshore Wind Turbines under Typhoon with Full Wind Direction
Jijian Lian, Yaya Jia, Haijun Wang, Fang Liu
January 7, 2019 (v1)
Keywords: aerodynamic load, boundary layer separation, computational fluid dynamics (CFD), full wind direction, parking position, typhoon, wind turbine
Super typhoon activity is likely to make the electric power network fail, or blow the wind-measuring device off, which all lead to the yaw control system of wind turbine being inactive. Under this condition, blades can be blown by the violent side wind from unfavorable directions, and the aerodynamic loads on the wind turbine will be increased by a large amount, which can lead to low-cycle fatigue damage and other catastrophic collapses. So far, not enough consideration has been given to the above problems in wind turbine design. Using the transient computational fluid dynamics (CFD), this study investigates the wind load characteristics of offshore wind turbines under typhoon condition with 360-degree full wind directions. Two primary influence factors of the aerodynamic characteristics of wind turbines are clarified: variation of the wind direction and different parking positions of the wind rotor. Using 3D-numerical simulation results, this study provides detailed references for the... [more]
Real Time Hybrid Model Predictive Control for the Current Profile of the Tokamak à Configuration Variable (TCV)
Izaskun Garrido, Aitor J. Garrido, Stefano Coda, Hoang B. Le, Jean Marc Moret
January 7, 2019 (v1)
Keywords: fusion reactors, Model Predictive Control, multiloop control, plasma control
Plasma stability is one of the obstacles in the path to the successful operation of fusion devices. Numerical control-oriented codes as it is the case of the widely accepted RZIp may be used within Tokamak simulations. The novelty of this article relies in the hierarchical development of a dynamic control loop. It is based on a current profile Model Predictive Control (MPC) algorithm within a multiloop structure, where a MPC is developed at each step so as to improve the Proportional Integral Derivative (PID) global scheme. The inner control loop is composed of a PID-based controller that acts over the Multiple Input Multiple Output (MIMO) system resulting from the RZIp plasma model of the Tokamak à Configuration Variable (TCV). The coefficients of this PID controller are initially tuned using an eigenmode reduction over the passive structure model. The control action corresponding to the state of interest is then optimized in the outer MPC loop. For the sake of comparison, both the tr... [more]
Environment-Friendly Heterogeneous Alkaline-Based Mixed Metal Oxide Catalysts for Biodiesel Production
Hwei Voon Lee, Joon Ching Juan, Taufiq-Yap Yun Hin, Hwai Chyuan Ong
January 7, 2019 (v1)
Subject: Materials
Keywords: biodiesel, mixed metal oxides, non-edible oil, solid catalyst, transesterification
The critical problem arising from the depletion of fossil fuels has stimulated recent interests in alternative sources for petroleum-based fuel. An alternative fuel should be technically feasible, readily available, sustainable, and techno-economically competitive. Biodiesel is considered as a potential replacement of conventional diesel fuel, which is prepared from non-edible and high-acid feedstock via transesterification technology. The focus of this study is to investigate the catalytic activity of mixed metal oxides (MMOs) as catalysts for biodiesel production by using non-edible jatropha oil as feedstock. Various types of MMOs (CaO-MgO, CaO-ZnO, CaO-La₂O₃, and MgO-ZnO) were synthesized via a co-precipitation method. In this study, transesterification activities are closely related to the physicochemical properties of catalysts. The presence of different active metals in the binary system greatly influenced the surface area, basicity, and the stability of catalysts. The catalytic... [more]
A Study of an Effective Heat-Dissipating Piezoelectric Fan for High Heat Density Devices
Chien-Nan Lin, Jiin-Yuh Jang, Jin-Sheng Leu
January 7, 2019 (v1)
Keywords: computational fluid dynamics (CFD), energy saving, piezoelectric fan, transient numerical simulation, vibrating cantilever
Heat dissipation per unit volume has grown rapidly, as the size of modern electronic devices has continued to decrease. The air flow induced by an oscillating cantilever blade enhances the heat transfer performance of high heat density devices. The heat transfer improvement mainly depends on the velocity magnitude and distribution of air streams induced by the vibrating blade. Accordingly, this study numerically and experimentally examines the time-varying flow characteristics of a vibrating cantilever for five blade types. The blades are rectangular or trapezoidal with various widths and actuated at various frequencies. The fluid domain is numerically discretized using a dynamic meshing scheme to model the three-dimensional time-varying vibrating blade. The experiment utilizes nine hot-wire velocity meters to measure the average velocities. The flow structure with streamlines and velocity contours of the induced air flow are determined at various section planes. The results show that... [more]
A Review of Classification Problems and Algorithms in Renewable Energy Applications
María Pérez-Ortiz, Silvia Jiménez-Fernández, Pedro A. Gutiérrez, Enrique Alexandre, César Hervás-Martínez, Sancho Salcedo-Sanz
January 7, 2019 (v1)
Keywords: applications, classification algorithms, Machine Learning, Renewable and Sustainable Energy
Classification problems and their corresponding solving approaches constitute one of the fields of machine learning. The application of classification schemes in Renewable Energy (RE) has gained significant attention in the last few years, contributing to the deployment, management and optimization of RE systems. The main objective of this paper is to review the most important classification algorithms applied to RE problems, including both classical and novel algorithms. The paper also provides a comprehensive literature review and discussion on different classification techniques in specific RE problems, including wind speed/power prediction, fault diagnosis in RE systems, power quality disturbance classification and other applications in alternative RE systems. In this way, the paper describes classification techniques and metrics applied to RE problems, thus being useful both for researchers dealing with this kind of problem and for practitioners of the field.
Unshrouded Plate Fin Heat Sinks for Electronics Cooling: Validation of a Comprehensive Thermal Model and Cost Optimization in Semi-Active Configuration
Luigi Ventola, Gabriele Curcuruto, Matteo Fasano, Saverio Fotia, Vincenzo Pugliese, Eliodoro Chiavazzo, Pietro Asinari
January 7, 2019 (v1)
Keywords: cost optimization, electronics cooling, genetic algorithms, heat transfer enhancement, plate fin heat sinks
Plate Fin Heat Sinks (PFHS) are among the simplest and most widespread devices for electronics cooling. Because of the many design parameters to be considered, developing both cost and thermal effective PFHS is a critical issue. Here, a novel thermal model of PFHS is presented. The model has a broad field of applicability, being comprehensive of the effects of flow bypass, developing boundary layers, fin efficiency and spreading resistance. Experiments are then carried out to validate the proposed thermal model, and its good accuracy is demonstrated. Finally, an optimization methodology based on genetic algorithms is proposed for a cost-effective selection of the design parameters of PFHS, which is particularly effective with semi-active configurations. Such an optimization methodology is then tested on a commercial heat sink, resulting in a possible 53% volume reduction at fixed thermal performances.
Experimental and Numerical Analyses on the Rotary Vane Expander Operating Conditions in a Micro Organic Rankine Cycle System
Piotr Kolasiński, Przemysław Błasiak, Józef Rak
January 7, 2019 (v1)
Keywords: domestic energy conversion system, numerical modelling, organic Rankine cycle (ORC), rotary vane expander
Micro (0.5⁻10 kW) organic Rankine cycle (ORC) power systems are nowadays considered for domestic power generation. Selection of a suitable expander is one of the most important problems connected with the domestic ORC system design. Volumetric machines or micro-turbines can be adopted as an expander in domestic ORC systems. Scroll and screw expanders are a common choice and were successfully applied in different small- and micro-power applications. However, micro-turbines as well as scroll and screw expanders are mechanically complicated and expensive. An alternative are rotary-vane machines, which are simple and cheap compared to micro-turbines. This paper documents a study providing the experimental and numerical analyses on the rotary vane expander operating conditions in a micro-ORC system. A test-stand was designed and set up and a series of experiments was performed using the test-stand. Results of these experiments were further used as an input to numerical simulations of an exp... [more]
Effectiveness of Using Phase Change Materials on Reducing Summer Overheating Issues in UK Residential Buildings with Identification of Influential Factors
Marine Auzeby, Shen Wei, Chris Underwood, Jess Tindall, Chao Chen, Haoshu Ling, Richard Buswell
January 7, 2019 (v1)
Keywords: overheating, phase change material (PCM), residential buildings, thermal storage
The UK is currently suffering great overheating issues in summer, especially in residential buildings where no air-conditioning has been installed. This overheating will seriously affect people’s comfort and even health, especially for elderly people. Phase change materials (PCMs) have been considered as a useful passive method, which absorb excessive heat when the room is hot and release the stored heat when the room is cool. This research has adopted a simulation method in DesignBuilder to evaluate the effectiveness of using PCMs to reduce the overheating issues in UK residential applications and has analyzed potential factors that will influence the effectiveness of overheating. The factors include environment-related (location of the building, global warming/climate change) and construction-related (location of the PCM, insulation, heavyweight/lightweight construction). This research provides useful evidence about using PCMs in UK residential applications and the results are helpfu... [more]
A Photovoltaic-Based SEPIC Converter with Dual-Fuzzy Maximum Power Point Tracking for Optimal Buck and Boost Operations
Tanaselan Ramalu, Mohd Amran Mohd Radzi, Muhammad Ammirrul Atiqi Mohd Zainuri, Noor Izzri Abdul Wahab, Ribhan Zafira Abdul Rahman
January 7, 2019 (v1)
Keywords: fuzzy logic controller (FLC), maximum power point tracking (MPPT), photovoltaic (PV), single ended primary-inductor converter (SEPIC)
In this paper, a photovoltaic (PV)-based single ended primary-inductor converter (SEPIC) is developed with introduction of dual-fuzzy logic controller (FLC) maximum power point tracking (MPPT) algorithm. Separate FLC parts, for the first time used for MPPT, are configured for optimal operations of both buck and boost operations. During buck operation, a high overshoot voltage exists, and during boost operation, an undershoot voltage occurs, both during the initial rising period. Definitely, a single-FLC MPPT could not be able to minimize both problems, which on the other hand can be handled by the proposed MPPT algorithm. For evaluation purposes, buck operation has been conducted during high irradiance, while during low irradiance, boost operation has been conducted. The dual-FLC MPPT with SEPIC was simulated in MATLAB-Simulink, and further a laboratory prototype was implemented with a TMS320F28335 eZdsp board. Both simulation and experimental results and comparison analysis (with the... [more]
Efficient Use of Energy Resources on French Farms: An Analysis through Technical Efficiency
Mohamed Ghali, Laure Latruffe, Karine Daniel
January 7, 2019 (v1)
Keywords: Data Envelopment Analysis, energy resources, farms, France, technical efficiency
Integrating natural resources and ecological services in the production process is crucial to implement sustainable agriculture. However, the measurement of natural resource efficiency remains difficult. This paper aims at contributing to this issue, by investigating French farms’ use and excess (slack) of energy resources through Data Envelopment Analyses (DEA). Results show that disentangling energy resources from the rest of intermediate consumption highlights energy use excess which is masked when considering intermediate consumption as a whole. The analysis of the determinants of energy use excess and of intermediate consumption shows a discrepancy in results, which policy-makers should take into account when designing energy policies. In addition, results show that large and highly capital intensive farms perform better in terms of energy use excess, while the dependence on public subsidies is a constraint.
Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications
Cheng Wang, Shubo Wang, Linfa Peng, Junliang Zhang, Zhigang Shao, Jun Huang, Chunwen Sun, Minggao Ouyang, Xiangming He
January 7, 2019 (v1)
Subject: Materials
Keywords: bipolar plate, catalyst, fuel cell automobile, gas diffusion layer, hydrogen energy, proton exchange membrane
Fuel cells are the most clean and efficient power source for vehicles. In particular, proton exchange membrane fuel cells (PEMFCs) are the most promising candidate for automobile applications due to their rapid start-up and low-temperature operation. Through extensive global research efforts in the latest decade, the performance of PEMFCs, including energy efficiency, volumetric and mass power density, and low temperature startup ability, have achieved significant breakthroughs. In 2014, fuel cell powered vehicles were introduced into the market by several prominent vehicle companies. However, the low durability and high cost of PEMFC systems are still the main obstacles for large-scale industrialization of this technology. The key materials and components used in PEMFCs greatly affect their durability and cost. In this review, the technical progress of key materials and components for PEMFCs has been summarized and critically discussed, including topics such as the membrane, catalyst... [more]
City Carbon Footprint Networks
Guangwu Chen, Thomas Wiedmann, Michalis Hadjikakou, Hazel Rowley
January 7, 2019 (v1)
Subject: Energy Policy
Keywords: carbon accounting, carbon footprint (CF), cities, city carbon map, multi-region input-output modelling, urban greenhouse gas (GHG) emissions
Progressive cities worldwide have demonstrated political leadership by initiating meaningful strategies and actions to tackle climate change. However, the lack of knowledge concerning embodied greenhouse gas (GHG) emissions of cities has hampered effective mitigation. We analyse trans-boundary GHG emission transfers between five Australian cities and their trading partners, with embodied emission flows broken down into major economic sectors. We examine intercity carbon footprint (CF) networks and disclose a hierarchy of responsibility for emissions between cities and regions. Allocations of emissions to households, businesses and government and the carbon efficiency of expenditure have been analysed to inform mitigation policies. Our findings indicate that final demand in the five largest cities in Australia accounts for more than half of the nation’s CF. City households are responsible for about two thirds of the cities’ CFs; the rest can be attributed to government and business cons... [more]
Gas-Path Health Estimation for an Aircraft Engine Based on a Sliding Mode Observer
Xiaodong Chang, Jinquan Huang, Feng Lu, Haobo Sun
January 7, 2019 (v1)
Keywords: aircraft engines, health estimation, linear matrix inequalities (LMIs), modeling uncertainties, sliding mode observer (SMO)
Aircraft engine gas-path health monitoring (GPHM) plays a critical role in engine health management (EHM). Among model-based approaches, the Kalman filter (KF) has been widely employed in GPHM. The main shortcoming of KF-based scheme lies in the lack of robustness against uncertainties. To enhance robustness, this paper describes a new GPHM architecture using a sliding mode observer (SMO). The convergence of the error system in uncertainty-existing circumstances is demonstrated, and the proposed method is developed to estimate components’ performance degradations regardless of modeling uncertainties. Simulations using a nonlinear model of a turbofan engine are presented, in which health monitoring problems are handled by the KF and the SMO, respectively. Results indicate the proposed approach possesses better diagnostic performance compared to the KF-based scheme, and the SMO shows its strong robustness and great potential to be applied to GPHM.
On-Site Measurements of CO₂ Emissions during the Construction Phase of a Building Complex
Min-Seop Seo, Taeyeon Kim, Goopyo Hong, Hyungkeun Kim
January 7, 2019 (v1)
Subject: Energy Policy
Keywords: building construction, CO2 emission, energy consumption
This study describes the environmental impact of the material production, transportation, and construction phases from the construction site perspective. CO₂ emissions for each process were determined using the Korea Life Cycle Inventory Database (LCI DB) in the material production phase, and the actual amounts of oil consumption for transportation equipment were identified in the material transportation phase. Generally, the oil and electric energy consumed during the construction was evaluated by direct monitoring. Through the construction period and cost according to work type, a correlation with CO₂ emissions was also investigated. In addition, CO₂ emissions were examined through the system capacity and gross floor area for each work type. The calculations have shown that CO₂ emissions from the material production phase constitute 93.4% of the total CO₂ emissions. In addition, CO₂ emissions from the material transportation and on-site construction account for 2.4% and 4.2% of the t... [more]
Comparative Analysis of Voltage Control in Battery Power Converters for Inverter-Based AC Microgrids
Woo-Kyu Chae, Jong-Nam Won, Hak-Ju Lee, Jae-Eon Kim, Jaehong Kim
January 7, 2019 (v1)
Keywords: battery, distributed generators (DGs), inverters, load sharing, microgrid, uninterruptable power supply (UPS)
A microgrid is a micro-power system composed of local distributed generators, energy storage systems, loads, and other components in a local power network. Because renewable energy sources show relatively large output power variation, the integration of distributed generators in a microgrid often requires the installation of a large-scale energy storage system. The energy storage system is connected to a local AC bus via the DC/AC converter with an output inductor-capacitor (LC) filter. The energy storage system power converters generally form the local AC bus voltage. This grid-forming operation requires fast and robust voltage control to properly maintain a stable energy flow and high power quality in the local AC bus. In this paper, two major voltage control schemes—double-loop control and direct voltage control—are analytically compared, and their effects on the power quality of the microgrid are illustrated. The dynamic performance is compared through simulations and experimental... [more]
A Selection Method for Power Generation Plants Used for Enhanced Geothermal Systems (EGS)
Kaiyong Hu, Jialing Zhu, Wei Zhang, Xinli Lu
January 7, 2019 (v1)
Subject: Optimization
Keywords: enhanced geothermal systems, geothermal energy, optimization method, power cycle’s selection method
As a promising and advanced technology, enhanced geothermal systems (EGS) can be used to generate electricity using deep geothermal energy. In order to better utilize the EGS to produce electricity, power cycles’ selection maps are generated for people to choose the best system based on the geofluids’ temperature and dryness conditions. Optimizations on double-flash system (DF), flash-organic Rankine cycle system (FORC), and double-flash-organic Rankine cycle system (DFORC) are carried out, and the single-flash (SF) system is set as a reference system. The results indicate that each upgraded system (DF, FORC, and DFORC) can produce more net power output compared with the SF system and can reach a maximum net power output under a given geofluid condition. For an organic Rankine cycle (ORC) using R245fa as working fluid, the generated selection maps indicate that using the FORC system can produce more power than using other power cycles when the heat source temperature is below 170 °C. E... [more]
Electricity Price Forecasting by Averaging Dynamic Factor Models
Andrés M. Alonso, Guadalupe Bastos, Carolina García-Martos
January 7, 2019 (v1)
Keywords: Bayesian model averaging, dimensionality reduction, electricity prices, forecast combination
In the context of the liberalization of electricity markets, forecasting prices is essential. With this aim, research has evolved to model the particularities of electricity prices. In particular, dynamic factor models have been quite successful in the task, both in the short and long run. However, specifying a single model for the unobserved factors is difficult, and it cannot be guaranteed that such a model exists. In this paper, model averaging is employed to overcome this difficulty, with the expectation that electricity prices would be better forecast by a combination of models for the factors than by a single model. Although our procedure is applicable in other markets, it is illustrated with an application to forecasting spot prices of the Iberian Market, MIBEL (The Iberian Electricity Market). Three combinations of forecasts are successful in providing improved results for alternative forecasting horizons.
An Event-Based Resource Management Framework for Distributed Decision-Making in Decentralized Virtual Power Plants
Jianchao Zhang, Boon-Chong Seet, Tek Tjing Lie
January 7, 2019 (v1)
Keywords: distributed decision-making, resource management framework, smart grid, virtual power plant
The Smart Grid incorporates advanced information and communication technologies (ICTs) in power systems, and is characterized by high penetration of distributed energy resources (DERs). Whether it is the nation-wide power grid or a single residential building, the energy management involves different types of resources that often depend on and influence each other. The concept of virtual power plant (VPP) has been proposed to represent the aggregation of energy resources in the electricity market, and distributed decision-making (DDM) plays a vital role in VPP due to its complex nature. This paper proposes a framework for managing different resource types of relevance to energy management for decentralized VPP. The framework views VPP as a hierarchical structure and abstracts energy consumption/generation as contractual resources, i.e., contractual offerings to curtail load/supply energy, from third party VPP participants for DDM. The proposed resource models, event-based approach to d... [more]
An Integer Linear Programming Model for an Ecovat Buffer
Gijs J. H. de Goeijen, Gerard J. M. Smit, Johann L. Hurink
January 7, 2019 (v1)
Subject: Optimization
Keywords: integer linear programming, Modelling, seasonal thermal storage, smart grids
An increase in the number of volatile renewables in the electricity grid enhances the imbalance of supply and demand. One promising candidate to solve this problem is to improve the energy storage. The Ecovat system is a new seasonal thermal energy storage system currently under development. In this paper, an integer linear programming model is developed to describe the behaviour and potential of this system. Furthermore, it is compared with a previously developed model, which is simplifying the behaviour of the Ecovat system much more, but is much less computationally expensive. It is shown that the new approach performs significantly better for several cases. For controlling a real Ecovat system in the future we may incorporate a number of improvements identified by our comparison analysis into the previously developed approach, which may help increase the quality of the obtained results without increasing the computational effort too much.
Investigation of Fracturing Network Propagation in Random Naturally Fractured and Laminated Block Experiments
Yu Wang, Xiao Li, Jianming He, Zhiheng Zhao, Bo Zheng
January 7, 2019 (v1)
Subject: Other
Keywords: fracture network propagation, hydraulic fracturing, laboratory test, random natural fractures, silty laminae
Researchers have recently realized thatsilty laminas are very developed in naturally fractured continentalsedimentary formations in the Ordos Basin(China). Studies have shown that silty laminas are significant to improve the physical properties and gas storage capacity, and the natural fractures interact with the hydraulic fractures to maximize the fracture network during hydraulic fracturing. However, the influence of silty laminas withrandom fractures on the created hydraulic fracture networkis not well understood. Laboratory experiments are proposed to investigate the evolution of fracture networks in naturally fractured formations with model blocks that contain laminas and random fractures. The influence of dominating factors was studied and analyzed, with an emphasis on stress ratio, injection rate, and laminae strength. Macroscopic failure morphology descriptions combined with meso 3-D laser scanning techniques are both used to reveal the evolution of fracture networks. It is sug... [more]
Robust Peak-Shaving for a Neighborhood with Electric Vehicles
Marco E. T. Gerards, Johann L. Hurink
January 7, 2019 (v1)
Keywords: adaptive scheduling, demand side management, electric vehicles, optimal scheduling, smart grids
Demand Side Management (DSM) is a popular approach for grid-aware peak-shaving. The most commonly used DSM methods either have no look ahead feature and risk deploying flexibility too early, or they plan ahead using predictions, which are in general not very reliable. To counter this, a DSM approach is presented that does not rely on detailed power predictions, but only uses a few easy to predict characteristics. By using these characteristics alone, near optimal results can be achieved for electric vehicle (EV) charging, and a bound on the maximal relative deviation is given. This result is extended to an algorithm that controls a group of EVs such that a transformer peak is avoided, while simultaneously keeping the individual house profiles as flat as possible to avoid cable overloading and for improved power quality. This approach is evaluated using different data sets to compare the results with the state-of-the-art research. The evaluation shows that the presented approach is capa... [more]
A Least Squares Support Vector Machine Optimized by Cloud-Based Evolutionary Algorithm for Wind Power Generation Prediction
Qunli Wu, Chenyang Peng
January 7, 2019 (v1)
Keywords: cloud-based evolutionary algorithm, least squares support vector machine, paired-sample t-test, two-way comparison, wind power generation prediction
Accurate wind power generation prediction, which has positive implications for making full use of wind energy, seems still a critical issue and a huge challenge. In this paper, a novel hybrid approach has been proposed for wind power generation forecasting in the light of Cloud-Based Evolutionary Algorithm (CBEA) and Least Squares Support Vector Machine (LSSVM). In order to improve the forecasting precision, a two-way comparison approach is conducted to preprocess the original wind power generation data. The pertinent parameters of LSSVM are optimized by using CBEA to verify the learning and generalization abilities of the LSSVM model. The experimental results indicate that the forecasting performance of the proposed model is better than the single LSSVM model and all of the other models for comparison. Moreover, the paired-sample t-test is employed to cast light on the applicability of the developed model.
Monitoring and Analysing Changes in Temperature and Energy in the Ground with Installed Horizontal Ground Heat Exchangers
Pavel Pauli, Pavel Neuberger, Radomír Adamovský
January 7, 2019 (v1)
Keywords: ground, ground source heat pumps systems, heat pump, horizontal ground heat exchangers, specific energies, specific heat flows, temperatures
The objective of this work was to monitor and analyse temperature changes in the ground with installed linear and Slinky-type horizontal ground heat exchangers (HGHEs), used as low-potential heat pump energy sources. Specific heat flows and specific energies extracted from the ground during the heating season were also measured and compared. The verification results showed that the average daily ground temperatures with the two HGHEs are primarily affected by the temperature of the ambient environment. The ground temperatures were higher than ambient temperature during most of the heating season, were only seldom below zero, and were higher by an average 1.97 ± 0.77 K in the ground with the linear HGHE than in the ground with the Slinky-type HGHE. Additionally, the specific thermal output extracted from the ground by the HGHE was higher by 8.45 ± 16.57 W/m² with the linear system than with the Slinky system. The specific energies extracted from the ground over the whole heating season... [more]
Multi-Objective Optimal Sizing for Battery Storage of PV-Based Microgrid with Demand Response
Nan Zhou, Nian Liu, Jianhua Zhang, Jinyong Lei
January 7, 2019 (v1)
Keywords: battery energy storage system (BESS), investment and benefit model, multi-objective optimization, multi-period demand response (DR), non-dominated sorting genetic algorithm II (NSGA-II) algorithm, photovoltaic consumptive rate, time-of-use (TOU) price
In order to solve the influence of uncertain photovoltaic power (PV) on the stable operation of microgrid (MG), demand response (DR) and battery energy storage system (BESS) need to be introduced simultaneously into the operation optimal scheduling of PV-based microgrid (PV-MG). Therefore, it is of great significance for commercial investment decisions of PV-MG to consider the influence of DR on BESS optimal sizing. Under the peak-valley time-of-use (TOU) price, this paper builds cross-time DR models based on price elasticity matrix. Furthermore, through the introduction of DR and BESS into PV-MG scheduling optimization, the MG investment and benefit model is proposed. Considering the constraint condition such as co-ordination of supply and demand, electricity price elasticity and energy loss of storage system, the improved non-dominated sorting genetic algorithm II (NSGA-II) is utilized to solve the multi-objective optimal allocation model of the BESS with the target of maximum PV con... [more]
Realizing the Intended Nationally Determined Contribution: The Role of Renewable Energies in Vietnam
Thanh Tu Tran, Shinichiro Fujimori, Toshihiko Masui
January 7, 2019 (v1)
Subject: Energy Policy
Keywords: AIM/CGE model, emissions gap, energy outlook of Vietnam, intended nationally determined contribution, power development plan, renewable energies
This study contributes to the realization of intended nationally determined contributions (INDCs) by analyzing their implications for the energy production system and the economy, and determines the role of renewable energies (RE) in reducing the challenge of committing to the INDCs. The Asia-Pacific Integrated Model/Computable General Equilibrium (AIM/CGE) model was used to assess seven scenarios having the same socioeconomic development but different shares of RE in power generation. By comparing different relative reductions caused by the emission constraints vis-a-vis the business-as-usual (BaU) scenario, the mitigation costs can be estimated. Results show that the economic impact could be reduced by around 55% in terms of welfare loss (from 6.0% to 2.7%) and by around 36% in terms of gross domestic product (GDP) loss (from 3.4% to 2.1%) through the incorporation of high levels of renewable energy. Furthermore, the additional double deployment of wind and SPV to 5.4% and 12.0%, res... [more]
Showing records 101 to 125 of 220. [First] Page: 1 2 3 4 5 6 7 8 9 Last
Change year: 2018 | 2019
Change month: January | February | March | April | May | June | July