Browse
Records Added in July 2018
Records added in July 2018
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024
Change month: June | July | August | September | October | November | December
Showing records 26 to 50 of 239. [First] Page: 1 2 3 4 5 6 Last
Mechanism of Viscous Oil Fire Flooding Dehumidification Equipment and Structure Optimization
Qiji Sun, Yanfang Lv, Chunsheng Wang
July 31, 2018 (v1)
Keywords: dehumidification efficiency, gas–liquid separating process, numerical simulation, optimizing the structure of separator, tail gas treatment
Considering the issue caused by the tail gas of viscous oil fire flooding, which carries a large amount of jeopardizing liquid, the Liaohe Oilfield No. 56 desulfurization station applies the vertical processing separator as the main dehumidification equipment for moisture elimination. However, the lack of study on the separator’s gas⁻liquid separation mechanism leads to unclear recognition of the equipment’s processing capability, which easily causes the desulfurization tower to water out, and the tail gas gathering network system to get frozen and blocked. To result in a solution to the problems above, numerical simulation software is applied in this paper based on the oil field’s actual operation data to establish a mathematical model for calculation, which may assist in simulating the gas⁻liquid separating process, in analyzing the flow field distribution within the separator, and in studying the dehumidification mechanism in terms of influencing factors and laws of equipment dehumi... [more]
Modelling Condensation and Simulation for Wheat Germ Drying in Fluidized Bed Dryer
Der-Sheng Chan, Jun-Sheng Chan, Meng-I Kuo
July 31, 2018 (v1)
Keywords: condensation, fluidized bed drying, mathematical model, moisture content, Simulation, wheat germ
A low-temperature drying with fluidized bed dryer (FBD) for wheat germ (WG) stabilization could prevent the loss of nutrients during processing. However, both evaporation and condensation behaviors occurred in sequence during FBD drying of WG. The objective of this study was to develop a theoretical thin-layer model coupling with the macro-heat transfer model and the bubble model for simulating both the dehydration and condensation behaviors of WG during low-temperature drying in the FBD. The experimental data were also collected for the model modification. Changes in the moisture content of WG, the air temperature of FBD chamber, and the temperature of WG during drying with different heating approaches were significantly different. The thermal input of WG drying with short heating time approach was one-third of that of WG drying with a traditional heating approach. The mathematical model developed in this study could predict the changes of the moisture content of WG and provide a good... [more]
Effect of Moisture Content on the Grinding Process and Powder Properties in Food: A Review
Hwabin Jung, Youn Ju Lee, Won Byong Yoon
July 31, 2018 (v1)
Subject: Materials
Keywords: grinding, grinding characteristics, grinding modeling, moisture content, powder flowability
Grinding is a staple size-reduction process to produce food powders in which the powdered form is chemically and microbiologically stable and convenient to use as end products or intermediate products. The moisture content of food materials before grinding is a particularly important factor, since it determines the materials’ physical properties and the powder properties, such as flowability after grinding. Generally, the moisture content of food materials is closely related to its energy requirement for grinding, because the energy expenditure required to create new surfaces varies. Grinding models used to analyze and predict the grinding characteristics, including energy, have been developed in many studies. The moisture content also influences powder flow properties. The inter-particle liquid bridges among the particles are due to the moisture in powders; therefore, the flowability of powders is interrupted because of the increase of the cohesiveness of the powder. Understanding the... [more]
The Influence of Cation Treatments on the Pervaporation Dehydration of NaA Zeolite Membranes Prepared on Hollow Fibers
Xuechao Gao, Bing Gao, Xingchen Wang, Rui Shi, Rashid Ur Rehman, Xuehong Gu
July 31, 2018 (v1)
Subject: Materials
Keywords: cation treatments, hollow fibers, membrane separation, NaA zeolite membrane, pervaporation
NaA zeolite membrane is an ideal hydrophilic candidate for organic dehydrations; however, its instability in salt solutions limits its application in industries as the membrane intactness was greatly affected due to the replacement of cation ions. In order to explore the relationship between the structural variation and the cation types, the obtained NaA zeolite membranes were treated by various monovalent and divalent cations like Ag⁺, K⁺, Li⁺, NH₄⁺, Zn2+, Mg2+, Ba2+ and Ca2+. The obtained membranes were subsequently characterized by contact angle, scanning electron microscopy (SEM), pervaporation (PV), and vapor permeation (VP). The results showed that all of the hydrophilicities of the exchanged membrane were reduced, and the membrane performance varied with cation charges and sizes. For the monovalent cations, the membrane performance was largely determined by the cation sizes, where the membrane remained intact. On the contrary, for the divalent cation treatments, the membrane sep... [more]
Optimal Multiscale Capacity Planning in Seawater Desalination Systems
Hassan Baaqeel, Mahmoud M. El-Halwagi
July 31, 2018 (v1)
Subject: Optimization
Keywords: desalination, membrane distillation, multi-effect distillation, Optimization, process integration, Scheduling
The increasing demands for water and the dwindling resources of fresh water create a critical need for continually enhancing desalination capacities. This poses a challenge in distressed desalination network, with incessant water demand growth as the conventional approach of undertaking large expansion projects can lead to low utilization and, hence, low capital productivity. In addition to the option of retrofitting existing desalination units or installing additional grassroots units, there is an opportunity to include emerging modular desalination technologies. This paper develops the optimization framework for the capacity planning in distressed desalination networks considering the integration of conventional plants and emerging modular technologies, such as membrane distillation (MD), as a viable option for capacity expansion. The developed framework addresses the multiscale nature of the synthesis problem, as unit-specific decision variables are subject to optimization, as well... [more]
Design of a Shipboard Outside Communication Network and Its Testbed Using PLC: For Safety Management during the Ship Building Process
Jun-Ho Huh, Taehoon Koh, Kyungryong Seo
July 31, 2018 (v1)
Keywords: industrial processes, Industry 4.0, job safety, PLC, safety management, shadow area, ship building process, shipboard outside communication network, testbed
For the shipbuilding industry worldwide, work-related accidents at the construction site have been a major concern. Workers at the shipyards are consistently exposed to dangerous environments and their intensity of work is quite high. Considering the complexity of the shipbuilding process, efficient communications between workers are essential in the workplace, but current communication methods, which mostly use wireless technologies, are sometimes limited by the structural blocks, creating shadow areas where the radio bands cannot reach. As a countermeasure, SUNCOM Co., Ltd in the Republic of Korea has developed the PLC-based communication system followed by establishing a test-bed facility in cooperation with SK Telecom Co., Ltd and the Hyundai Heavy Industries Co., Ltd. This system and applied technologies are expected to reduce accidents in the field and be applied for other industries having the same problem, providing an uninterrupted communication environment and safer working c... [more]
Toward a Distinct and Quantitative Validation Method for Predictive Process Modelling—On the Example of Solid-Liquid Extraction Processes of Complex Plant Extracts
Maximilian Sixt, Lukas Uhlenbrock, Jochen Strube
July 31, 2018 (v1)
Keywords: natural extracts, partial least square regression, phytochemicals, process model validation
Physico-chemical modelling and predictive simulation are becoming key for modern process engineering. Rigorous models rely on the separation of different effects (e.g., fluid dynamics, kinetics, mass transfer) by distinct experimental parameter determination on lab-scale. The equations allow the transfer of the lab-scale data to any desired scale, if characteristic numbers like e.g., Reynolds, Péclet, Sherwood, Schmidt remain constant and fluid-dynamics of both scales are known and can be described by the model. A useful model has to be accurate and therefore match the experimental data at different scales and combinations of process and operating parameters. Besides accuracy as one quality attribute for the modelling depth, model precision also has to be evaluated. Model precision is considered as the combination of modelling depth and the influence of experimental errors in model parameter determination on the simulation results. A model is considered appropriate if the deviation of... [more]
An Optimization Scheme for Water Pump Control in Smart Fish Farm with Efficient Energy Consumption
Israr Ullah, DoHyeun Kim
July 31, 2018 (v1)
Subject: Optimization
Keywords: Energy Efficiency, fish farm, IoT, Kalman filter, Optimization
Healthy fish production requires intensive care and ensuring stable and healthy production environment inside the farm tank is a challenging task. An Internet of Things (IoT) based automated system is highly desirable that can continuously monitor the fish tanks with optimal resources utilization. Significant cost reduction can be achieved if farm equipment and water pumps are operated only when required using optimization schemes. In this paper, we present a general system design for smart fish farms. We have developed an optimization scheme for water pump control to maintain desired water level in fish tank with efficient energy consumption through appropriate selection of pumping flow rate and tank filling level. Proposed optimization scheme attempts to achieve a trade-off between pumping duration and flow rate through selection of optimized water level. Kalman filter algorithm is applied to remove error in sensor readings. We observed through simulation results that optimization sc... [more]
Effects of Water Soaked Height on the Deformation and Crushing Characteristics of Loose Gangue Backfill Material in Solid Backfill Coal Mining
Junmeng Li, Yanli Huang, Ming Qiao, Zhongwei Chen, Tianqi Song, Guoqiang Kong, Huadong Gao, Lei Guo
July 31, 2018 (v1)
Subject: Materials
Keywords: crushing ratio, deformation, goaf, loose gangue backfill material, solid backfill coal mining, water soaked height
In solid backfill coal mining (SBCM), loose gangue backfill material (LGBM) is used to backfill the goaf after coal resources are exploited from the underground mines. Under certain geological conditions, LGBM with a certain height may be soaked in the water, and then becomes saturated, significantly altering its mechanical properties. The confined compression experiments were used in this paper to analyze the deformation and the crushing characteristics of LGBM with varying water soaked heights in coal mines. The results showed that a large number of small holes that were distributed in the gangue blocks were the main reason why the material absorbed water and was softened. The crushing ratio and the maximum axial strain of LGBM samples gradually increased with the water soaked heights of the samples. In addition, there was a strong linear correlation between the crushing ratio and the maximum axial strain. When LGBM was used as a solid backfill material in SBCM, its deformation resis... [more]
Prediction of Metabolite Concentrations, Rate Constants and Post-Translational Regulation Using Maximum Entropy-Based Simulations with Application to Central Metabolism of Neurospora crassa
William R. Cannon, Jeremy D. Zucker, Douglas J. Baxter, Neeraj Kumar, Scott E. Baker, Jennifer M. Hurley, Jay C. Dunlap
July 31, 2018 (v1)
Subject: Biosystems
Keywords: mass action kinetics, maximum entropy production, metabolism, statistical thermodynamics
We report the application of a recently proposed approach for modeling biological systems using a maximum entropy production rate principle in lieu of having in vivo rate constants. The method is applied in four steps: (1) a new ordinary differential equation (ODE) based optimization approach based on Marcelin’s 1910 mass action equation is used to obtain the maximum entropy distribution; (2) the predicted metabolite concentrations are compared to those generally expected from experiments using a loss function from which post-translational regulation of enzymes is inferred; (3) the system is re-optimized with the inferred regulation from which rate constants are determined from the metabolite concentrations and reaction fluxes; and finally (4) a full ODE-based, mass action simulation with rate parameters and allosteric regulation is obtained. From the last step, the power characteristics and resistance of each reaction can be determined. The method is applied to the central metabolism... [more]
Computational Fluid Dynamics (CFD) Modelling and Application for Sterilization of Foods: A Review
Hyeon Woo Park, Won Byong Yoon
July 31, 2018 (v1)
Keywords: Computational Fluid Dynamics, Computational Fluid Dynamics, computer simulation, sterilization, thermal processing
Computational fluid dynamics (CFD) is a powerful tool to model fluid flow motions for momentum, mass and energy transfer. CFD has been widely used to simulate the flow pattern and temperature distribution during the thermal processing of foods. This paper discusses the background of the thermal processing of food, and the fundamentals in developing CFD models. The constitution of simulation models is provided to enable the design of effective and efficient CFD modeling. An overview of the current CFD modeling studies of thermal processing in solid, liquid, and liquid-solid mixtures is also provided. Some limitations and unrealistic assumptions faced by CFD modelers are also discussed.
A Blended Risk Index Modeling and Visualization Based on Hierarchical Fuzzy Logic for Water Supply Pipelines Assessment and Management
Muhammad Fayaz, Shabir Ahmad, Israr Ullah, DoHyeun Kim
July 31, 2018 (v1)
Keywords: blended model, hierarchical fuzzy logic, risk index, visualization, water supply pipelines
Critical infrastructure such as power and water delivery is growing rapidly in the developing world and there are developed assets that must be maintained in developed nations. One underground component that is difficult to inspect is water supply pipelines. Most of the water line accidents occur in buildings is due to pipeline damage. To minimize accidental loss, a risk assessment method is needed to continuously assess risk and report any abnormality for preventative maintenance. In this work, a blended hierarchical fuzzy logic model for water supply pipeline risk index assessment is proposed. Four important parameters are inputs to the proposed blended hierarchical fuzzy logic model. The blended hierarchical fuzzy logic model dramatically reduces the number of conditions in the rule base. Rule reduction is important because the transparency and interpretation are compromised by an overly large set. Further, it is challenging to accurately design a large number of rules because rule... [more]
EPO Dosage Optimization for Anemia Management: Stochastic Control under Uncertainty Using Conditional Value at Risk
Jayson McAllister, Zukui Li, Jinfeng Liu, Ulrich Simonsmeier
July 31, 2018 (v1)
Keywords: anemia management, Conditional Value at Risk, hemoglobin level control, Model Predictive Control
Due to insufficient endogenous production of erythropoietin, chronic kidney disease patients with anemia are often treated by the administration of recombinant human erythropoietin (EPO). The target of the treatment is to keep the patient’s hemoglobin level within a normal range. While conventional methods for guiding EPO dosing used by clinicians normally rely on a set of rules based on past experiences or retrospective studies, model predictive control (MPC) based dosage optimization is receiving attention recently. The objective of this paper is to incorporate the hemoglobin response model uncertainty into the dosage optimization decision making. Two methods utilizing Conditional Value at Risk (CVaR) are proposed for hemoglobin control in chronic kidney disease under model uncertainty. The first method includes a set-point tracking controller with the addition of CVaR constraints. The second method involves the use of CVaR directly in the cost function of the optimal control problem... [more]
Special Issue: Microbial Community Modeling: Prediction of Microbial Interactions and Community Dynamics
Hyun-Seob Song
July 31, 2018 (v1)
Subject: Biosystems
Keywords: Community Dynamics, Microbial Modeling
Special Issue: Microbial Community Modeling: Prediction of Microbial Interactions and Community Dynamics
Mathematical Modeling of Metastatic Cancer Migration through a Remodeling Extracellular Matrix
Yen T. Nguyen Edalgo, Ashlee N. Ford Versypt
July 31, 2018 (v1)
Keywords: computational systems biology, cross-linking, degradation, lysyl oxidase, matrix metalloproteinases, microenvironment
The spreading of cancer cells, also known as metastasis, is a lethal hallmark in cancer progression and the primary cause of cancer death. Recent cancer research has suggested that the remodeling of collagen fibers in the extracellular matrix (ECM) of the tumor microenvironment facilitates the migration of cancer cells during metastasis. ECM remodeling refers to the following two procedures: the ECM degradation caused by enzyme matrix metalloproteinases and the ECM alignment due to the cross-linking enzyme lysyl oxidase (LOX). Such modifications of ECM collagen fibers result in changes of ECM physical and biomechanical properties that affect cancer cell migration through the ECM. However, the mechanism of such cancer migration through a remodeling ECM remains not well understood. A mathematical model is proposed in this work to better describe and understand cancer migration by means of ECM remodeling. Effects of LOX are considered to enable transport of enzymes and migration of cells... [more]
Impact of Metaheuristic Iteration on Artificial Neural Network Structure in Medical Data
Ihsan Salman, Osman N. Ucan, Oguz Bayat, Khalid Shaker
July 31, 2018 (v1)
Keywords: ANN, classification, data mining, FWA, GA, metaheuristic algorithms, PSO
Medical data classification is an important factor in improving diagnosis and treatment and can assist physicians in making decisions about serious diseases by collecting symptoms and medical analyses. In this work, hybrid classification optimization methods such as Genetic Algorithm (GA), Particle Swam Optimization (PSO), and Fireworks Algorithm (FWA), are proposed for enhancing the classification accuracy of the Artificial Neural Network (ANN). The enhancement process is tested through two experiments. First, the proposed algorithms are applied on five benchmark medical data sets from the repository of the University of California in Irvine (UCI). The model with the best results is then used in the second experiment, which focuses on tuning the parameters of the selected algorithm by choosing a different number of iterations in ANNs with different numbers of hidden layers. Enhanced ANN with the three optimization algorithms are tested on biological gene sequence big dataset obtained... [more]
The Spectrum of Mechanism-Oriented Models and Methods for Explanations of Biological Phenomena
C. Anthony Hunt, Ahmet Erdemir, William W. Lytton, Feilim Mac Gabhann, Edward A. Sander, Mark K. Transtrum, Lealem Mulugeta
July 31, 2018 (v1)
Keywords: computational model, explanatory model, hybrid model, mechanism, mechanistic model, modeling methods, provenance, Simulation, systems modeling, workflow
Developing and improving mechanism-oriented computational models to better explain biological phenomena is a dynamic and expanding frontier. As the complexity of targeted phenomena has increased, so too has the diversity in methods and terminologies, often at the expense of clarity, which can make reproduction challenging, even problematic. To encourage improved semantic and methodological clarity, we describe the spectrum of Mechanism-oriented Models being used to develop explanations of biological phenomena. We cluster explanations of phenomena into three broad groups. We then expand them into seven workflow-related model types having distinguishable features. We name each type and illustrate with examples drawn from the literature. These model types may contribute to the foundation of an ontology of mechanism-based biomedical simulation research. We show that the different model types manifest and exert their scientific usefulness by enhancing and extending different forms and degre... [more]
A Review on the Separation of Lithium Ion from Leach Liquors of Primary and Secondary Resources by Solvent Extraction with Commercial Extractants
Thi Hong Nguyen, Man Seung Lee
July 31, 2018 (v1)
Keywords: commercial extractants, lithium, lithium resources, separation, solvent extraction
The growing demand for lithium necessitates the development of an efficient process to recover it from three kinds of solutions, namely brines as well as acid and alkaline leach liquors of primary and secondary resources. Therefore, the separation of lithium(I) from these solutions by solvent extraction was reviewed in this paper. Lithium ions in brines are concentrated by removing other metal salts by crystallization with solar evaporation. In the case of ores and secondary resources, roasting followed by acid/alkaline leaching is generally employed to dissolve the lithium. Since the compositions of brines, alkaline and acid solutions are different, different commercial extractants are employed to separate and recover lithium. The selective extraction of Li(I) over other metals from brines or alkaline solutions is accomplished using acidic extractants, their mixture with neutral extractants, and neutral extractants mixed with chelating extractants in the presence of ferric chloride (F... [more]
Synthesis and Characterization of Ampholytic Flocculant CPCTS-g-P (CTA-DMDAAC) and Its Flocculation Properties for Microcystis Aeruginosa Removal
Lei Chen, Cuiyun Liu, Yongjun Sun, Wenquan Sun, Yanhua Xu, Huaili Zheng
July 31, 2018 (v1)
Subject: Materials
Keywords: alga removal, chitosan-based flocculant, flocculation properties, graft copolymerization, photopolymerization
The ampholytic chitosan based flocculant carboxylated chitosan graft-(3-chloro-2-hydroxypropyl) trimethylammonium chloride-dimethyl diallyl ammonium chloride (CPCTS-g-P (CTA-DMDAAC)) was synthesized by photo polymerization using carboxylated chitosan (CPCTS), 3-chloro-2-chloropropyltrimethylammonium chloride (CTA) and dimethyldiallylammonium chloride (DMDAAC) as the cationic co-monomers. The effects of monomer concentration, the ratio of CPCTS and cationic monomers, cationic degree, initiator time, photoinitiator concentration, and pH value on the properties of CPCTS-g-P (CTA-DMDAAC) were studied. The microcystis aeruginosa that was cultured in laboratory was used for CPCTS-g-P (CTA-DMDAAC) flocculation tests. The effects of CPCTS-g-P (CTA-DMDAAC) dosage, pH value and G value on flocculation performance were investigated. The maximum removal rate of chlorophyll-a (Chl-a) and chemical oxygen demand (COD) that were obtained by CPCTS-g-P (CTA-DMDAAC) were 98.8% and 96.5% under the conditi... [more]
A Systematic Framework for Data Management and Integration in a Continuous Pharmaceutical Manufacturing Processing Line
Huiyi Cao, Srinivas Mushnoori, Barry Higgins, Chandrasekhar Kollipara, Adam Fermier, Douglas Hausner, Shantenu Jha, Ravendra Singh, Marianthi Ierapetritou, Rohit Ramachandran
July 31, 2018 (v1)
Keywords: continuous pharmaceutical manufacturing, data management, ISA-88, OSI Process Information (PI), recipe
As the pharmaceutical industry seeks more efficient methods for the production of higher value therapeutics, the associated data analysis, data visualization, and predictive modeling require dependable data origination, management, transfer, and integration. As a result, the management and integration of data in a consistent, organized, and reliable manner is a big challenge for the pharmaceutical industry. In this work, an ontological information infrastructure is developed to integrate data within manufacturing plants and analytical laboratories. The ANSI/ISA-88.01 batch control standard has been adapted in this study to deliver a well-defined data structure that will improve the data communication inside the system architecture for continuous processing. All the detailed information of the lab-based experiment and process manufacturing, including equipment, samples and parameters, are documented in the recipe. This recipe model is implemented into a process control system (PCS), dat... [more]
An Integrated Approach to Water-Energy Nexus in Shale-Gas Production
Fadhil Y. Al-Aboosi, Mahmoud M. El-Halwagi
July 31, 2018 (v1)
Keywords: cogeneration, desalination, Optimization, process integration, solar energy, thermal storage
Shale gas production is associated with significant usage of fresh water and discharge of wastewater. Consequently, there is a necessity to create proper management strategies for water resources in shale gas production and to integrate conventional energy sources (e.g., shale gas) with renewables (e.g., solar energy). The objective of this study is to develop a design framework for integrating water and energy systems including multiple energy sources, the cogeneration process and desalination technologies in treating wastewater and providing fresh water for shale gas production. Solar energy is included to provide thermal power directly to a multi-effect distillation plant (MED) exclusively (to be more feasible economically) or indirect supply through a thermal energy storage system. Thus, MED is driven by direct or indirect solar energy and excess or direct cogeneration process heat. The proposed thermal energy storage along with the fossil fuel boiler will allow for the dual-purpos... [more]
Key Parameters of Gob-Side Entry Retaining in A Gassy and Thin Coal Seam with Hard Roof
Shuai Yan, Tianxiao Liu, Jianbiao Bai, Wenda Wu
July 31, 2018 (v1)
Keywords: gas concentration, gob-side entry retaining (GER), limestone roof, roadside backfill body (RBB), roof-cutting resistance
Gob-side entry retaining (GER) employed in a thin coal seam (TCS) can increase economic benefits and coal recovery, as well as mitigate gas concentration in the gob. In accordance with the caving style of a limestone roof, the gas concentration and air pressure in the gob were analyzed, and a roof-cutting mechanical model of GER with a roadside backfill body (RBB) was proposed, to determine the key parameters of the GER-TCS, including the roof-cutting resistance and the width of the RBB. The results show that if the immediate roof height is greater than the seam height, the roof-cutting resistance and width of the RBB should meet the requirement of the immediate roof being totally cut along the gob, for which the optimal roof-cutting resistance and width of RBB were determined by analytical and numerical methods. The greater the RBB width, the greater its roof-cutting resistance. The relationship between the supporting strength of the RBB and the width of the RBB can be derived as a co... [more]
Membrane Fouling Characteristics of a Side-Stream Tubular Anaerobic Membrane Bioreactor (AnMBR) Treating Domestic Wastewater
Nsanzumukiza Martin Vincent, Juan Tong, Dawei Yu, Junya Zhang, Yuansong Wei
July 31, 2018 (v1)
Subject: Materials
Keywords: excitation-emission matrix (EEM), inorganic element, membrane fouling, organic matter, synthetic wastewater, tubular membrane
A lab-scale of a side stream anaerobic membrane bioreactor (AnMBR) equipped with a tubular membrane operated at the mesophilic temperature of 37.0 ± 1.2 °C for treating domestic wastewater was tested to investigate its performance and fouling characteristics at two organic loading rates (OLR) of 0.25 kg COD m−3d−1, and 0.70 kg COD m−3d−1, respectively. The AnMBR was operated for 600 days at sludge retention time (SRT) of 100 days. This AnMBR exhibits excellent chemical oxygen demand (COD) removal of 91% at 0.25 kg COD m−3d−1, and 94% at 0.7 kg COD m−3d−1 respectively, with effluent-soluble COD below 50 mg/L. Chemically-enhanced cleaning method using NaOH, NaOCl, and citric acid solution were introduced for fouling investigation at these two stages. The results showed that sequential chemical cleaning of alkaline and acid were most effective to recover the membrane flux. The alkaline cleaning was effective at removing organic foulants, while citric acid cleaning was effective at removin... [more]
The Effect of Joint Dip Angle on the Mechanical Behavior of Infilled Jointed Rock Masses under Uniaxial and Biaxial Compressions
Guansheng Han, Hongwen Jing, Yujing Jiang, Richeng Liu, Haijian Su, Jiangyu Wu
July 31, 2018 (v1)
Subject: Materials
Keywords: crack coalescence, failure mode, filled cracks, jointed rock mass, mechanical behavior
Due to the complex formation process of a rock mass, a large number of fissures, joints, faults, other defects exist and the defects commonly contain infilled materials. The jointed rock masses are in a complex geological environment, in which the geometric distribution and the boundary condition can greatly affect the mechanical behavior of the infilled jointed rock mass. In this study, the infilled jointed rock mass specimens with different dip angles are prepared using similar materials, and the uniaxial and biaxial compression tests on the specimens are conducted. The effect of the joint dip angle on the mechanical behavior of the infilled jointed rock mass under uniaxial and biaxial compressions is investigated. The results show that the uniaxial compressive strength shows a W-shaped variation, and the biaxial compressive strength shows a V-shaped variation with an increase in the dip angle. Most of the cracks appear in pairs around the joint and occur symmetrically in a bilateral... [more]
Optimal Control Strategy for TB-HIV/AIDS Co-Infection Model in the Presence of Behaviour Modification
Temesgen Debas Awoke, Semu Mitiku Kassa
July 31, 2018 (v1)
Keywords: behaviour change, dynamical systems, equilibrium, Human Immunodeficiency Virus (HIV), optimal control, stability, TB-HIV co-infection, treatment, tuberculosis (TB)
A mathematical model for a transmission of TB-HIV/AIDS co-infection that incorporates prevalence dependent behaviour change in the population and treatment for the infected (and infectious) class is formulated and analyzed. The two sub-models, when each of the two diseases are considered separately are mathematically analyzed. The theory of optimal control analysis is applied to the full model with the objective of minimizing the aggregate cost of the infections and the control efforts. In the numerical simulation section, various combinations of the controls are also presented and it has been shown in this part that the optimal combination of both prevention and treatment controls will suppress the prevalence of both HIV and TB to below 3% within 10 years. Moreover, it is found that the treatment control is more effective than the preventive controls.
Showing records 26 to 50 of 239. [First] Page: 1 2 3 4 5 6 Last
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024
Change month: June | July | August | September | October | November | December