LAPSE


Warning: sizeof(): Parameter must be an array or an object that implements Countable in /homepages/26/d94734260/htdocs/clickandbuilds/PSECommunity/wp-content/plugins/wpor/includes/class-wpor.php on line 4338
Keywords
Records with Keyword: Big Data
Data Science in the Chemical Engineering Curriculum
Thomas A. Duever
December 16, 2019 (v1)
Subject: Education
Keywords: Big Data, chemical engineering curriculum, data science, statistics
With the increasing availability of large amounts of data, methods that fall under the term data science are becoming important assets for chemical engineers to use. Methods, broadly speaking, are needed to carry out three tasks, namely data management, statistical and machine learning and data visualization. While claims have been made that data science is essentially statistics, consideration of the three tasks previously mentioned make it clear that it is really broader than just statistics alone and furthermore, statistical methods from a data-poor era are likely insufficient. While there have been many successful applications of data science methodologies, there are still many challenges that must be addressed. For example, just because a dataset is large, does not necessarily mean it is meaningful or information rich. From an organizational point of view, a lack of domain knowledge and a lack of a trained workforce among other issues are cited as barriers for the successful imple... [more]
Statistical Process Monitoring of the Tennessee Eastman Process Using Parallel Autoassociative Neural Networks and a Large Dataset
Seongmin Heo, Jay H. Lee
September 13, 2019 (v1)
Keywords: autoassociative neural network, Big Data, nonlinear principal component analysis, parallel neural networks, process monitoring
In this article, the statistical process monitoring problem of the Tennessee Eastman process is considered using deep learning techniques. This work is motivated by three limitations of the existing works for such problem. First, although deep learning has been used for process monitoring extensively, in the majority of the existing works, the neural networks were trained in a supervised manner assuming that the normal/fault labels were available. However, this is not always the case in real applications. Thus, in this work, autoassociative neural networks are used, which are trained in an unsupervised fashion. Another limitation is that the typical dataset used for the monitoring of the Tennessee Eastman process is comprised of just a small number of data samples, which can be highly limiting for deep learning. The dataset used in this work is 500-times larger than the typically-used dataset and is large enough for deep learning. Lastly, an alternative neural network architecture, whi... [more]
How to Generate Economic and Sustainability Reports from Big Data? Qualifications of Process Industry
Esa Hämäläinen, Tommi Inkinen
July 31, 2018 (v1)
Keywords: Big Data, economic efficiency, economic geography, process industry, sustainability
Big Data may introduce new opportunities, and for this reason it has become a mantra among most industries. This paper focuses on examining how to develop cost and sustainable reporting by utilizing Big Data that covers economic values, production volumes, and emission information. We assume strongly that this use supports cleaner production, while at the same time offers more information for revenue and profitability development. We argue that Big Data brings company-wide business benefits if data queries and interfaces are built to be interactive, intuitive, and user-friendly. The amount of information related to operations, costs, emissions, and the supply chain would increase enormously if Big Data was used in various manufacturing industries. It is essential to expose the relevant correlations between different attributes and data fields. Proper algorithm design and programming are key to making the most of Big Data. This paper introduces ideas on how to refine raw data into valua... [more]
Big Data Analytics for Smart Manufacturing: Case Studies in Semiconductor Manufacturing
James Moyne, Jimmy Iskandar
July 31, 2018 (v1)
Keywords: anomaly detection, Big Data, predictive analytics, predictive maintenance, process control, semiconductor manufacturing, smart manufacturing
Smart manufacturing (SM) is a term generally applied to the improvement in manufacturing operations through integration of systems, linking of physical and cyber capabilities, and taking advantage of information including leveraging the big data evolution. SM adoption has been occurring unevenly across industries, thus there is an opportunity to look to other industries to determine solution and roadmap paths for industries such as biochemistry or biology. The big data evolution affords an opportunity for managing significantly larger amounts of information and acting on it with analytics for improved diagnostics and prognostics. The analytics approaches can be defined in terms of dimensions to understand their requirements and capabilities, and to determine technology gaps. The semiconductor manufacturing industry has been taking advantage of the big data and analytics evolution by improving existing capabilities such as fault detection, and supporting new capabilities such as predict... [more]
Deterministic Global Optimization with Artificial Neural Networks Embedded
Global deterministische Optimierung von Optimierungsproblemen mit künstlichen neuronalen Netzwerken
Artur M Schweidtmann, Alexander Mitsos
October 15, 2018 (v2)
Subject: Optimization
Artificial neural networks (ANNs) are used in various applications for data-driven black-box modeling and subsequent optimization. Herein, we present an efficient method for deterministic global optimization of ANN embedded optimization problems. The proposed method is based on relaxations of algorithms using McCormick relaxations in a reduced-space [\textit{SIOPT}, 20 (2009), pp. 573-601] including the convex and concave envelopes of the nonlinear activation function of ANNs. The optimization problem is solved using our in-house global deterministic solver MAiNGO. The performance of the proposed method is shown in four optimization examples: an illustrative function, a fermentation process, a compressor plant and a chemical process optimization. The results show that computational solution time is favorable compared to the global general-purpose optimization solver BARON.
[Show All Keywords]