Browse
Keywords
Records with Keyword: Computational Fluid Dynamics
Showing records 18 to 42 of 641. [First] Page: 1 2 3 4 5 6 Last
Numerical Simulation of Nonlinear Processes in the “Thruster—Downhole Motor—Bit” System While Extended Reach Well Drilling
Andrey A. Kunshin, George V. Buslaev, Matthias Reich, Dmitriy S. Ulyanov, Dmitriy I. Sidorkin
May 23, 2023 (v1)
Keywords: Computational Fluid Dynamics, downhole hydraulic thrusting device, drilling efficiency, ERD wells, PDC bits, vibration reduction, weight on the bit
The relevance of the application of hydraulic thruster technology is determined by the technological limitations of drilling both vertical and horizontal wells. The existing experimental studies confirm the effectiveness of the technology, but its widespread implementation is hindered by the lack of scientific foundations for its operation in combination with a downhole motor and bit. Our research methodology includes methods for analyzing scientific and technical information as well as methods of numerical modeling using programming languages and ready-made software packages for CFD calculations. Verification of the simulation results was carried out on the basis of the experimental field studies previously conducted with the participation of the authors of the article. This article presents the results of the analysis of the current state of the problem and computer physical and mathematical modeling of the work of the thruster together with the bit and downhole motor when drilling a... [more]
Power Output Optimisation via Arranging Gas Flow Channels for Low-Temperature Polymer Electrolyte Membrane Fuel Cell (PEMFC) for Hydrogen-Powered Vehicles
James Chilver-Stainer, Anas F. A. Elbarghthi, Chuang Wen, Mi Tian
May 23, 2023 (v1)
Keywords: Computational Fluid Dynamics, fuel cell, gas flow channel, Hydrogen, hydrogen-powered vehicle, micro porous layer, optimal configuration, polymer electrolyte membrane, power output
As we move away from internal combustion engines to tackle climate change, the importance of hydrogen-powered vehicles and polymer electrolyte membrane fuel cell (PEMFC) technology has dramatically increased. In the present study, we aimed to determine the optimal configuration for the power output of a PEMFC system using computational fluid dynamics (CFD) modelling to analyse variations of the primary serpentine design of gas flow channels. This helps improve efficiency and save on valuable materials used, reducing potential carbon emissions from the production of hydrogen vehicles. Different numbers of serpentine gas channels were represented with various spacing between them, within the defined CFD model, to optimise the gas channel geometry. The results show that the optimum configuration was found to have 11 serpentine channels with a spacing of 3.25 mm. In this optimum configuration, the ratio between the channel width, channel spacing, and serpentine channel length was found to... [more]
Heat Transfer Coefficient Distribution—A Review of Calculation Methods
Piotr Duda
May 23, 2023 (v1)
Keywords: Computational Fluid Dynamics, heat and mass transfer analogy, inverse heat conduction, local HTC, temperature measurement
Determination of the heat transfer coefficient (HTC) distribution is important during the design and operation of many devices in microelectronics, construction, the car industry, drilling, the power industry and research on nuclear fusion. The first part of the manuscript shows works describing how a change in the coefficient affects the operation of devices. Next, various methods of determining the coefficient are presented. The most common method to determine the HTC is the use of Newton’s law of cooling. If this method cannot be applied directly, there are other methods that can be found in the open literature. They use analytical formulations, the lumped thermal capacity assumption, the 1D unsteady heat conduction equation for a semi-infinite wall, the fin model, energy conservation and the analogy between heat and mass transfer. The HTC distribution can also be calculated by means of computational fluid dynamics (CFD) modelling if all boundary conditions with fluid and solid prop... [more]
3D Transient CFD Simulation of an In-Vessel Loss-of-Coolant Accident in the EU DEMO WCLL Breeding Blanket
Mauro Sprò, Antonio Froio, Andrea Zappatore
May 23, 2023 (v1)
Keywords: Computational Fluid Dynamics, EU DEMO, LOCA, nuclear fusion, two-phase flow, WCLL
The in-vessel Loss-of-Coolant Accident (LOCA) is one of the design basis accidents in the design of the EU DEMO tokamak fusion reactor. System-level codes are typically employed to analyse the evolution of these transients. However, being based on a lumped approach, they are unable to quantify localised quantities of interest, such as local pressure peaks on the vacuum vessel walls, to which the failure criteria are linked. To calculate local quantities, the 3D nature of the phenomenon needs to be considered. In this work, a 3D transient model of the in-vessel LOCA from a water-cooled blanket is developed. The model is implemented in the commercial CFD software STAR-CCM+. It simulates the propagation of the water jet in the vessel from the beginning of the accident, thus accounting for the phase change of the water, i.e., from the pressurised liquid phase to the vapour phase inside the vessel, being the latter at a much lower pressure than in the blanket coolant pipes. Due to the large... [more]
CFD Evaluation of Thermal Conditioning in a House of Social Interest with a Solar Chimney Arrangement in Guanajuato, Mexico
Sergio Rodriguez Miranda, G. O. Gamboa, Marco Antonio Zamora-Antuñano, Neín Farrera-Vázquez, Raúl García-García
April 28, 2023 (v1)
Keywords: Computational Fluid Dynamics, Simulation, solar chimney, thermal comfort
The aim of using electromechanical air conditioning in buildings is to maintain thermal comfort for its occupants; however, this type of air conditioning represents 40% of the total energy consumption of a building, generating economic and environmental impacts, because fossil fuels are the main source of energy. To reduce the use of electromechanical conditioning, it is possible to take advantage of the climatic conditions of the region to improve its performance. Due to the small number of works that quantitatively support measures aimed at improving the thermal behavior of houses in an integral way and the growth of mass construction in Mexico, in the present work, a solar chimney is incorporated in a typical type of social interest housing in Guanajuato. The incorporation of the solar chimney was simulated by using computational fluid dynamics (CFD) using ANSYS and evaluated by ASHRAE Standard 55-2017. The selected arrangement induces air flow inside without the need for external f... [more]
Influence of Impeller and Mixing Tank Shapes on the Solid−Liquid Mixing Characteristics of Vanadium-Bearing Shale Based on the DEM-VOF Method
Yue Hu, Yimin Zhang, Nannan Xue, Qiushi Zheng
April 28, 2023 (v1)
Keywords: Computational Fluid Dynamics, DEM-VOF coupling method, mixing tank, vanadium shale
The mixing tank is important equipment for industrial applications in the wet vanadium extraction process, but in practice, there are problems, such as uneven mixing of minerals. In this study, the effect of different types of impellers and different mixing tank structures on the suspended mass of particles was simulated using the discrete element method and volume of fluid method (DEM-VOF). The simulation results show that the round-bottomed tank performed mixing better than the flat-bottomed tank at different particle densities, and the flat-bottomed tank was prone to particle stratification and other phenomena. The round-bottomed mixing tank could better improve the solid−liquid suspension effect. In this study, the coefficient of variation σ was introduced to characterize the suspended mass of particles. By monitoring the σ value, it was found that the blade pitch angle 45 (BPA45) had the best mixing uniformity in the inclined pitched blade turbine (PBT). As the PBT impeller pitch... [more]
Wind Turbine Blade-Tip Optimization: A Systemic Computational Approach
Panagiotis Zouboulis, Elias P. Koumoulos, Anna Karatza
April 28, 2023 (v1)
Keywords: 3D printing, additive manufacturing, blade tip, bladelet, Computational Fluid Dynamics, Optimization, topology, wind energy
Curved bladelets on wind turbine blades play an important role in improving the performance and efficiency of wind turbines. Implementing such features on the tip of wind turbine blades can improve their overall aerodynamic characteristics by reducing turbulence and loading without hindering lift generation and overall efficiency, thus leading to increased energy capture and reduced costs over the life of the turbine. Subjecting the integrated blade tip to optimization procedures can maximize its beneficial contribution to the assembly in general. Within this context, a systemic workflow is proposed for the optimization of a curved bladelet implemented on a wind turbine blade. The approach receives input in the form of an initial tip geometry and performs improvements in two distinct stages. Firstly, shape optimization is performed directly on the outer shape to enhance its aerodynamic properties. Subsequently, the topology of its interior structure is refined to decrease its mass whil... [more]
Study and Validation of a Novel Grouting Clamp Type Deepwater Oilfield Pipeline Repair Method Based on Computational Fluid Dynamics
Yuliang Lu, Dongtao Liu, Xinjie Wei, Qiaogang Xiao, Jiming Song, Yajun Yu
April 28, 2023 (v1)
Keywords: Computational Fluid Dynamics, deepwater field, numerical simulation, pipeline repair, plugging agent
In order to handle the corrosion of underwater production pipe sinks in deepwater oil fields, a non-solid phase silicone plugging agent, an external clamp, and an underwater injection tool are combined in this paper’s innovative pipeline repair technique proposal. The optimal main agent to curing the agent ratio for non-solid phase silicone plugging agents was found to be 100:25, which was achieved through an experimental examination of the curing process. The compressive and cementing strength changes in the curd plugging agent were disclosed by testing and evaluating the mechanical behavior of the plugging agent. In addition, the limits of the compressive and cementing strength were found to be 143 MPa and 11.6 MPa, respectively. Based on this, a computational-fluid-dynamics(CFD)-based analytical approach of the complicated flow field in a deep sea environment on the eroding impact of a plugging agent was developed. Through numerical simulation testing, the mathematical relationship... [more]
MCNP and CFD Modeling for Potential High-Power Configuration of Missouri S&T Reactor
Thaqal M. Alhuzaymi, Meshari M. ALQahtani, Thaar M. Aljuwaya, Ayodeji B. Alajo
April 28, 2023 (v1)
Keywords: Computational Fluid Dynamics, high power configuration, MCNP, neutron flux spectrum, reactor design
Utilization of nuclear research reactors is of high importance for education and training, research and development, and many other applications. However, less effective utilization encountered in research reactors is mainly due to limitations in power levels and related experimental facilities. Such limitations, however, have led different global owners of research reactors to consider upgrading the power levels of their reactors to accommodate the increase in utilization demands. To consider upgrading the power levels of research reactors without replacing major components, a pair of essential analyses must be performed, namely the neutronic evaluation of nuclear fission and thermal-hydraulic evaluation for heat removal from the reactor core. In this work, a conceptual upgrade to the core design and configuration of MSTR, or Missouri University of Science and Technology Reactor (200 kilowatts (kW)), is demonstrated. The conceptual design of the MSTR high-power configuration (MSTR-HPC... [more]
Modeling Strategies for Crude Oil-Induced Fouling in Heat Exchangers: A Review
Obaid ur Rehman, Marappa Gounder Ramasamy, Nor Erniza Mohammad Rozali, Shuhaimi Mahadzir, Ali Shaan Manzoor Ghumman, Abdul Hannan Qureshi
April 28, 2023 (v1)
Keywords: Computational Fluid Dynamics, crude oil, fouling, heat exchanger, Modelling, thermal-hydraulic
Semi-empirical fouling models have proven more effective in predicting the fouling behavior of crude oils in heat exchangers. These models have aided refineries in optimizing operating conditions to minimize or eliminate fouling in preheat exchangers. Despite their complexity, the models continue to improve in approximating real behavior by taking into account previously neglected aspects. This paper summarizes these findings from various studies along with highlighting different factors which were considered to enhance the predictability of the models. A critical analysis is presented to emphasize that activation energy in the deposition term varies depending on the physical processes involved and may not conform to the precise definition of activation energy. Two primary modeling approaches for crude oil fouling have emerged, i.e., deterministic and threshold models. Threshold models have gained more attention due to their fewer adjustable parameters. The stability or compatibility o... [more]
Numerical Investigation of Air Flow in Goaf While Mapping Its Flow Parameters
Jakub Janus
April 28, 2023 (v1)
Keywords: air flow velocity, Computational Fluid Dynamics, numerical model, permeability, porosity
Recent work has presented a numerical model of a longwall ventilated by a U-system, considering the real shape of an adjacent goaf in addition to parameters characterizing the distribution of porosity and permeability. Analogous distributions are used in the two-dimensional model implemented in VentZroby software. A comparison of the results of the three-dimensional flow calculations with the two-dimensional calculations can be used to verify the simpler description and evaluate the impact of simplifications on the simulation results. Air flow calculations were carried out using the selected turbulence model. The obtained results present the possibility of conducting extensive numerical calculations for flow problems in underground mines, considering more precise descriptions and the interpretation of the calculation results carried out using a simpler description.
Simulation Study of Hydrodynamic Conditions in Reaction Cell for Cement Biomineralization Using Factorial Design and Computational Fluid Dynamics: Prospects for Increased Useful Life of Concrete Structures and Energetic/Environmental Benefits
Bruno Augusto Cabral Roque, Pedro Pinto Ferreira Brasileiro, Yana Batista Brandão, Hilario Jorge Bezerra de Lima Filho, Attilio Converti, Bahar Aliakbarian, Mohand Benachour, Leonie Asfora Sarubbo
April 28, 2023 (v1)
Keywords: aeration, biomineralization, Computational Fluid Dynamics, concrete, energetic benefits, planning of experiments
Studies have reported the incorporation of microorganisms into cement to promote the formation of calcium carbonate in cracks of concrete, a process known as biomineralization. The paper aims to improve the process of the cascade system for biomineralization in cement by identifying the best hydrodynamic conditions in a reaction cell in order to increase the useful life of concrete structures and, therefore, bring energy and environmental benefits. Two central composite rotatable designs were used to establish the positioning of the air inlet and outlet in the lateral or upper region of the geometry of the reaction cell. The geometries of the reaction cell were constructed in SOLIDWORKS®, and computational fluid dynamics was performed using the Flow Simulation tool of the same software. The results were submitted to statistical analysis. The best combination of meshes for the simulation was global mesh 4 and local mesh 5. The statistical analysis applied to gas velocity and pressure re... [more]
Improving the Efficiency of the Blow-Jet WEC
Erik Villagómez-Reyes, Edgar Mendoza, Rodolfo Silva
April 28, 2023 (v1)
Keywords: Blow-Jet, Computational Fluid Dynamics, Renewable and Sustainable Energy, wave energy converter
Establishing a renewable marine energy industry demands the development of high-efficiency devices that capture as much energy as possible. The Blow-Jet is a wave energy converter mainly composed of a sloping conical channel in the shape of a brass tube, which concentrates the waves at its widest part and expels a jet of water at its narrow upper end through an orifice that can be turbined. The device has no moving parts and great flexibility in its placement. This research presents an improvement of its geometry, increasing efficiency by minimizing undesired hydrodynamic interactions. The performance of the Blow-Jet was characterized using 3D numerical modeling and laboratory tests in a wave flume. Sixteen geometric configurations of the Blow-Jet were numerically tested, and that showing the best performance was 3D printed and assessed experimentally. The twofold objective was to evaluate the performance of the new Blow-Jet geometry and to validate a numerical tool for further geometr... [more]
Uncertainty Quantification Analysis of Exhaust Gas Plume in a Crosswind
Carlo Cravero, Davide De Domenico, Davide Marsano
April 28, 2023 (v1)
Keywords: Computational Fluid Dynamics, exhaust plume in crosswind, uncertainty quantification
The design of naval exhaust funnels has to take into account the interaction between the hot gases and topside structures, which usually includes critical electronic devices. Being able to predict the propagation trajectory, shape and temperature distribution of an exhaust gas plume is highly strategic in different industrial sectors. The propagation of a stack plume can be affected by different uncertainty factors, such as those related to the wind flow and gas flow conditions at the funnel exit. The constant growth of computational resources has allowed simulations to gain a key role in the early design phase. However, it is still difficult to model all the aspects of real physical problems in actual applications and, therefore, to completely rely upon the quantitative results of numerical simulations. One of the most important aspects is related to input variable uncertainty, which can significantly affect the simulation result. With this aim, the discipline of Uncertainty Quantific... [more]
Optimisation of a Multi-Element Airfoil for a Fixed-Wing Airborne Wind Energy System
Agustí Porta Ko, Sture Smidt, Roland Schmehl, Manoj Mandru
April 28, 2023 (v1)
Keywords: aerodynamic design, airborne wind energy, Computational Fluid Dynamics, Genetic Algorithm, MSES, multi-element airfoil, OpenFOAM, optimisation
Airborne wind energy systems benefit from high-lift airfoils to increase power output. This paper proposes an optimisation approach for a multi-element airfoil of a fixed-wing system operated in pumping cycles to drive a drum-generator module on the ground. The approach accounts for the different design objectives of the tethered kite’s alternating production and return phases. The airfoil shape is first optimised for the production phase and then adapted for the requirements of the return phase by modifying the flap setting. The optimisation uses the multi-objective genetic algorithm NSGA-II in combination with the fast aerodynamic solver MSES. Once the optimal shape is determined, the aerodynamic performance is verified through CFD RANS simulations with OpenFOAM. The resulting airfoil achieves satisfactory performance for the production and return phases of the pumping cycles, and the CFD verification shows a fairly good agreement in terms of the lift coefficient. However, MSES signi... [more]
Transient Thermal Analysis of a Li-Ion Battery Module for Electric Cars Based on Various Cooling Fan Arrangements
Van-Thanh Ho, Kyoungsik Chang, Sang Wook Lee, Sung Han Kim
April 25, 2023 (v1)
Keywords: Computational Fluid Dynamics, electric vehicle, lithium-ion battery, thermal-electrochemical coupled
This paper presents a three-dimensional modeling approach to simulate the thermal performance of a Li-ion battery module for a new urban car. A single-battery cell and a 52.3 Ah Li-ion battery module were considered, and a Newman, Tiedemann, Gu, and Kim (NTGK) model was adopted for the electrochemical modeling based on input parameters from the discharge experiment. A thermal−electrochemical coupled method was established to provide insight into the temperature variations over time under various discharge conditions. The distribution temperature of a single-battery cell was predicted accurately. Additionally, in a 5C discharge condition without a cooling system, the temperature of the battery module reached 114 °C, and the temperature difference increased to 25 °C under a 5C discharging condition. This condition led to the activation of thermal runaway and the possibility of an explosion. However, the application of a reasonable fan circulation and position reduced the maximum temperat... [more]
A Design of the Compression Chamber and Optimization of the Sealing of a Novel Rotary Internal Combustion Engine Using CFD
Savvas Savvakis, Dimitrios Mertzis, Elias Nassiopoulos, Zissis Samaras
April 25, 2023 (v1)
Keywords: combustion chamber, compression chamber, Computational Fluid Dynamics, rotary engine, SARM, sealing
The current paper investigates two particular features of a novel rotary split engine. This internal combustion engine incorporates a number of positive advantages in comparison to conventional reciprocating piston engines. As a split engine, it is characterized by a significant difference between the expansion and compression ratios, the former being higher. The processes are decoupled and take place simultaneously, in different chambers and on the different sides of the rotating pistons. Initially, a brief description of the engine’s structure and operating principle is provided. Next, the configuration of the compression chamber and the sealing system are examined. The numerical study is conducted using CFD simulation models, with the relevant assumptions and boundary conditions. Two parameters of the compression chamber were studied, the intake port design (initial and optimized) and the sealing system size (short and long). The best option was found to be the combination of the op... [more]
Comparative Numerical Analysis on Vertical Wind Turbine Rotor Pattern of Bach and Benesh Type
Fanel Dorel Scheaua
April 25, 2023 (v1)
Keywords: 3D modeling, air flow, Bach type, Benesh type, Computational Fluid Dynamics, rotor, wind action, wind turbine
In this work, 3D models in classic configuration of Bach and Benesh rotor type, as well as models with modified blade pattern geometry were analyzed from the air circulation point of view inside the rotor enclosure in order to identify the operating parameters differences according to rotor geometric modified configuration. Constructive design aspects are presented, as well as results obtained from the virtual model analysis in terms of circulation velocity and pressure values which enhance rotor operation related to torque and power coefficients. The rotors design pattern is made according to previous results obtained by different researchers who have performed numerical analysis on virtual models and tests on the experimental rotor models using the wind tunnel. The constructive solutions are describing two-bladed rotor models, in four new designed constructive variants and analyzed using ANSYS CFX. The air velocity specific values, static and total pressure recorded at the rotor blad... [more]
Optimized Design of a Swirler for a Combustion Chamber of Non-Premixed Flame Using Genetic Algorithms
Daniel Alejandro Zavaleta-Luna, Marco Osvaldo Vigueras-Zúñiga, Agustín L. Herrera-May, Sergio Aurelio Zamora-Castro, María Elena Tejeda-del-Cueto
April 25, 2023 (v1)
Keywords: combustion, Computational Fluid Dynamics, experimental validation, genetic algorithms, optimized, recirculation, swirler
Recirculation in a combustion chamber is required for stabilizing the flame and reducing pollutants. The swirlers can generate recirculation in a combustion chamber, inducing a swirling flow that breaks vorticity and improves the mixing of air and fuel. The swirl number (Sn) is related to the formation of recirculation in conditions of high-intensity flows with Sn > 0.6. Thus, the optimized design of a swirler is necessary to generate enough turbulence that keeps the flame stable. We present the optimized design of a swirler considering the main parameters for a non-premixed combustion chamber. This optimization is made with genetic algorithms to ensure the generation of a recirculation zone in the combustion chamber. This recirculation phenomenon is simulated using computational fluid dynamics (CFD) models and applying the renormalization group (RNG) k-ε turbulence method. The chemistry is parameterized as a function of the mixture fraction and dissipation rate. A CFD comparison of a... [more]
Review of Wind Turbine Icing Modelling Approaches
Fahed Martini, Leidy Tatiana Contreras Montoya, Adrian Ilinca
April 25, 2023 (v1)
Keywords: Computational Fluid Dynamics, icing simulation, modelling of ice accretion, wind turbine icing
When operating in cold climates, wind turbines are vulnerable to ice accretion. The main impact of icing on wind turbines is the power losses due to geometric deformation of the iced airfoils of the blades. Significant energy losses during the wind farm lifetime must be estimated and mitigated. Finding solutions for icing calls on several areas of knowledge. Modelling and simulation as an alternative to experimental tests are primary techniques used to account for ice accretion because of their low cost and effectiveness. Several studies have been conducted to replicate ice growth on wind turbine blades using Computational Fluid Dynamics (CFD) during the last decade. While inflight icing research is well developed and well documented, wind turbine icing is still in development and has its peculiarities. This paper surveys and discusses the models, approaches and methods used in ice accretion modelling in view of their application in wind energy while summarizing the recent research fin... [more]
Numerical Investigation of the Performance of a Submersible Pump: Prediction of Recirculation, Vortex Formation, and Swirl Resulting from Off-Design Operating Conditions
Virgel M. Arocena, Binoe E. Abuan, Joseph Gerard T. Reyes, Paul L. Rodgers, Louis Angelo M. Danao
April 24, 2023 (v1)
Keywords: Computational Fluid Dynamics, intake structure, mixed-flow pumps, performance, Q-H, sumps
Like any other turbomachinery, it is essential that the hydraulic behavior and performance of mixed-flow pumps are evaluated way in advance prior to manufacturing. Pump performance relies heavily on the proper design of the intake structure. Intake structures should be accurately designed in order to minimize and avoid unnecessary swirl and vortex formations. Ensuring the optimum performance condition as well as predicting how a particular intake structure affects the efficiency of the pump often requires either physical model studies or theoretical evaluations. Unfortunately, physical models are costly, time-consuming, and site-specific. Conversely, design and performance predictions using a theoretical approach merely gives performance values or parameters, which are usually unable to determine the root cause of poor pump performance. This study evaluates the viability of using Computational Fluid Dynamics (CFD) as an alternative tool for pump designers and engineers in evaluating pu... [more]
Numerical Study and Experimental Validation of Skim Milk Drying in a Process Intensified Counter Flow Spray Dryer
Umair Jamil Ur Rahman, Artur K. Pozarlik
April 24, 2023 (v1)
Keywords: Computational Fluid Dynamics, counter-current mechanism, experimental validation, Process Intensification, REA, skim milk, spray drying
This research presents 3D steady-state simulations of a skim milk spray drying process in a counter-current configuration dryer. A two-phase flow involving gas and discrete phase is modeled using the Eulerian−Lagrangian model with two-way coupling between phases. The drying kinetics of skim milk is incorporated using the Reaction Engineering Approach. The model predictions are found to be in accordance with the experimental temperature measurements with a maximum average error of 5%. The validated computational model is employed further to study the effects of nozzle position, initial spray Sauter Mean Diameter (SMD), air inlet temperature, and feed rate on the temperature and moisture profiles, particle impact positions, drying histories, and product recovery at the outlet. The location of the nozzle upwards (≈23 cm) resulted in maximum product recovery and increased the mean particle residence time at the outlet. A similar trend was observed for the highest feed rate of 26 kg/h owing... [more]
Measurement and Simulation of Flow in a Section of a Mine Gallery
Jakub Janus, Jerzy Krawczyk
April 24, 2023 (v1)
Keywords: Computational Fluid Dynamics, laser scanning, numerical model geometry
Research work on the air flow in mine workings frequently utilises computer techniques in the form of numeric simulations. However, it is very often necessary to apply simplifications when building a geometrical model. The assumption of constant model geometry on its entire length is one of the most frequent simplifications. This results in a substantial shortening of the geometrical model building process, and a concomitant shortening of the time of numerical computations; however, it is not known to what extent such simplifications worsen the accuracy of simulation results. The paper presents a new methodology that enables precise reproduction of the studied mine gallery and the obtaining of a satisfactory match between simulation results and in-situ measurements. It utilises the processing of data from laser scanning of a mine gallery, simultaneous multi-point measurements of the velocity field at selected gallery cross-sections, unique for mine conditions, and the SAS turbulence mo... [more]
Hydrodynamic Efficiency Analysis of a Flexible Hydrofoil Oscillating in a Moderate Reynolds Number Fluid Flow
Paul Brousseau, Mustapha Benaouicha, Sylvain Guillou
April 24, 2023 (v1)
Keywords: Computational Fluid Dynamics, deformable hydrofoil, fluid-structure interactions, NACA0015, oscillating hydrofoil, renewable marine energy
The paper focuses on the study of a semi-activated system, based on a combination of two movements of forced pitching and free-heaving motion. Therefore, quantifying with accuracy the hydrodynamic forces applied on the hydrofoil seems to be crucial. This is investigated throughout a numerical analysis of the hydrofoil dynamics. The deformable structure is oscillating in a low-Reynolds number flow. In this study, a hydrofoil animated by a combined forced pitching and heaving movements is considered. Various materials of the hydrofoil structure are studied, from the rigid material to a more flexible one. A partitioned implicit coupling approach is applied in order to consider the Fluid-Structure Interaction (FSI) effects, while the Navier−Stokes equations are solved using the Arbitrary Lagrangian−Eulerian (ALE) method. Both the viscous incompressible Navier−Stokes equations and the elasticity equation are solved using finite volume method. The study is based on the analysis of the hydrod... [more]
Multiparameter Optimization of Thrust Vector Control with Transverse Injection of a Supersonic Underexpanded Gas Jet into a Convergent Divergent Nozzle
Vladislav Emelyanov, Mikhail Yakovchuk, Konstantin Volkov
April 24, 2023 (v1)
Keywords: Computational Fluid Dynamics, engine, jet, nozzle, Optimization, thrust vector control
The optimal design of the thrust vector control system of solid rocket motors (SRMs) is discussed. The injection of a supersonic underexpanded gas jet into the diverging part of the rocket engine nozzle is considered, and multiparameter optimization of the geometric shape of the injection nozzle and the parameters of jet injection into a supersonic flow is developed. The turbulent flow of viscous compressible gas in the main nozzle and injection system is simulated with the Reynolds-averaged Navier−Stokes (RANS) equations and shear stress transport (SST) turbulence model. An optimization procedure with the automatic generation of a block-structured mesh and conjugate gradient method is applied to find the optimal parameters of the problem of interest. Optimization parameters include the pressure ratio of the injected jet, the angle of inclination of the injection nozzle to the axis of the main nozzle, the distance of the injection nozzle from the throat of the main nozzle and the shape... [more]
Showing records 18 to 42 of 641. [First] Page: 1 2 3 4 5 6 Last
[Show All Keywords]