LAPSE


Warning: sizeof(): Parameter must be an array or an object that implements Countable in /homepages/26/d94734260/htdocs/clickandbuilds/PSECommunity/wp-content/plugins/wpor/includes/class-wpor.php on line 4338
Keywords
Records with Keyword: Syngas
Design, Construction, and Testing of a Gasifier-Specific Solid Oxide Fuel Cell System
Alvaro Fernandes, Joerg Brabandt, Oliver Posdziech, Ali Saadabadi, Mayra Recalde, Liyuan Fan, Eva O. Promes, Ming Liu, Theo Woudstra, Purushothaman Vellayan Aravind
September 21, 2018 (v1)
Keywords: Exergy, Simulation, SOFC, Syngas, validation
This paper describes the steps involved in the design, construction, and testing of a gasifier-specific solid oxide fuel cell (SOFC) system. The design choices are based on reported thermodynamic simulation results for the entire gasifier- gas cleanup-SOFC system. The constructed SOFC system is tested and the measured parameters are compared with those given by a system simulation. Furthermore, a detailed exergy analysis is performed to determine the components responsible for poor efficiency. It is concluded that the SOFC system demonstrates reasonable agreement with the simulated results. Furthermore, based on the exergy results, the components causing major irreversible performance losses are identified.
Modeling and simulation of an integrated steam reforming and nuclear heat system
Leila Hoseinzade, Thomas A Adams II
November 20, 2018 (v3)
Keywords: Carbonless heat, Dynamic Modelling, integrated systems, Steam methane reforming, Syngas
In this study, a dynamic and two-dimensional model for a steam methane reforming process integrated with nuclear heat production is developed. The model is based on first principles and considers the conservation of mass, momentum and energy within the system. The model is multi-scale, considering both bulk gas effects as well as spatial differences within the catalyst particles. Very few model parameters need to be fit based on the design specifications reported in the literature. The resulting model fits the reported design conditions of two separate pilot-scale studies (ranging from 0.4 to 10 MW heat transfer duty). A sensitivity analysis indicated that disturbances in the helium feed conditions significantly affect the system, but the overall system performance only changes slightly even for the large changes in the value of the most uncertain parameters.
Modeling and simulation of an integrated steam reforming and nuclear heat system
Leila Hoseinzade, Thomas A. Adams II
June 12, 2018 (v1)
Keywords: Dynamic Modelling, Integrated Systems, Methane Reforming, Nuclear Heat, Simulation, Syngas
In this study, a dynamic and two-dimensional model for a steam methane reforming process integrated with nuclear heat production is developed. The model is based on first principles and considers the conservation of mass, momentum and energy within the system. The model is multi-scale, considering both bulk gas effects as well as spatial differences within the catalyst particles. Very few model parameters need to be fit based on the design specifications reported in the literature. The resulting model fits the reported design conditions of two separate pilot-scale studies (ranging from 0.4 to 10 MW heat transfer duty). A sensitivity analysis indicated that disturbances in the helium feed conditions significantly affect the system, but the overall system performance only changes slightly even for the large changes in the value of the most uncertain parameters.
Dynamic modeling of integrated mixed reforming and carbonless heat systems
Leila Hoseinzade, Thomas A. Adams II
June 12, 2018 (v1)
Keywords: Carbonless Heat, Dry Reforming, Dynamic Modelling, Integrated Systems, Steam Reforming, Syngas
In the previous study, a dynamic and two-dimensional model for a steam methane reforming process integrated with nuclear heat production was developed. It was shown that the integrated high temperature gas-cooled reactor (HTGR)/steam methane reforming (SMR) is an efficient process for applications such as hydrogen production. In this study, it is demonstrated that combining nuclear heat with the mix of steam and dry reforming process can be a promising option to achieve certain desired H2/CO ratios for Fischer-Tropsch or other downstream energy conversion processes. The model developed in the previous study is extended to the combined steam and dry reforming process. The resulting model was validated using reported experimental data at non-equilibrium and equilibrium conditions. The dynamic and steady state performance of the integrated mixed reforming of methane and nuclear heat system was studied and it was found that in addition to desired H2/CO ratios, higher methane conversion and... [more]
[Show All Keywords]