LAPSE:2025.0466
Published Article

LAPSE:2025.0466
CO2 recycling plant for decarbonizing hard-to-abate industries: Empirical modelling and Process design of a CCU plant- A case study
June 27, 2025
Abstract
Climate change, driven by increasing CO2 emissions, necessitates innovative mitigation strategies, particularly for hard-to-abate industries. Carbon Capture and Utilization technologies offer promising solutions by capturing CO2 from industrial flue gases and converting it into value-added products. Among capture methods, membrane separation stands out for its compact design, energy efficiency, and scalability. Following capture, CO2 can be converted into chemicals like formic acid using electrocatalytic processes, enabling energy storage from renewable sources. This study proposes the design of an industrial demonstrator for a CO2 recycling plant targeting hard-to-abate sectors such as textile and cement industries. The system integrates polymeric membranes for CO2 capture and a 100 cm² electrochemical reactor for CO2 electroreduction into formic acid. Experimental data from both stages are used to develop predictive models based on artificial neural networks (ANN), optimizing system performance. Case studies reveal that CO2 concentration at the capture inlet significantly impacts plant design. For a textile plant with 3.5% CO2 emissions, a four-stage membrane system is required, resulting in higher CAPEX and OPEX. Conversely, a cement plant with 12% CO2 emissions requires only two stages to achieve the target CO2 concentration of >75 %, reducing costs by over 60%. Sensitivity analysis highlights the critical role of inlet CO2 concentration on the membrane area and system stages. The findings underscore the feasibility of modular membrane systems tailored to emission characteristics, paving the way for sustainable CO2 recycling processes adaptable to various industries. This integrated approach offers a pathway to mitigate emissions while generating valuable chemical products.
Climate change, driven by increasing CO2 emissions, necessitates innovative mitigation strategies, particularly for hard-to-abate industries. Carbon Capture and Utilization technologies offer promising solutions by capturing CO2 from industrial flue gases and converting it into value-added products. Among capture methods, membrane separation stands out for its compact design, energy efficiency, and scalability. Following capture, CO2 can be converted into chemicals like formic acid using electrocatalytic processes, enabling energy storage from renewable sources. This study proposes the design of an industrial demonstrator for a CO2 recycling plant targeting hard-to-abate sectors such as textile and cement industries. The system integrates polymeric membranes for CO2 capture and a 100 cm² electrochemical reactor for CO2 electroreduction into formic acid. Experimental data from both stages are used to develop predictive models based on artificial neural networks (ANN), optimizing system performance. Case studies reveal that CO2 concentration at the capture inlet significantly impacts plant design. For a textile plant with 3.5% CO2 emissions, a four-stage membrane system is required, resulting in higher CAPEX and OPEX. Conversely, a cement plant with 12% CO2 emissions requires only two stages to achieve the target CO2 concentration of >75 %, reducing costs by over 60%. Sensitivity analysis highlights the critical role of inlet CO2 concentration on the membrane area and system stages. The findings underscore the feasibility of modular membrane systems tailored to emission characteristics, paving the way for sustainable CO2 recycling processes adaptable to various industries. This integrated approach offers a pathway to mitigate emissions while generating valuable chemical products.
Record ID
Keywords
Subject
Suggested Citation
Abarca JA, Arias-Lugo S, Gomez-Coma L, Diaz-Sainz G, Irabien A. CO2 recycling plant for decarbonizing hard-to-abate industries: Empirical modelling and Process design of a CCU plant- A case study. Systems and Control Transactions 4:1951-1956 (2025) https://doi.org/10.69997/sct.146332
Author Affiliations
Abarca JA: Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, ETSIIT, Avenida de los Castros s/n, 39005, Santander, Spain
Arias-Lugo S: Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, ETSIIT, Avenida de los Castros s/n, 39005, Santander, Spain
Gomez-Coma L: Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, ETSIIT, Avenida de los Castros s/n, 39005, Santander, Spain
Diaz-Sainz G: Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, ETSIIT, Avenida de los Castros s/n, 39005, Santander, Spain
Irabien A: Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, ETSIIT, Avenida de los Castros s/n, 39005, Santander, Spain
Arias-Lugo S: Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, ETSIIT, Avenida de los Castros s/n, 39005, Santander, Spain
Gomez-Coma L: Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, ETSIIT, Avenida de los Castros s/n, 39005, Santander, Spain
Diaz-Sainz G: Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, ETSIIT, Avenida de los Castros s/n, 39005, Santander, Spain
Irabien A: Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, ETSIIT, Avenida de los Castros s/n, 39005, Santander, Spain
Journal Name
Systems and Control Transactions
Volume
4
First Page
1951
Last Page
1956
Year
2025
Publication Date
2025-07-01
Version Comments
Original Submission
Other Meta
PII: 1951-1956-1199-SCT-4-2025, Publication Type: Journal Article
Record Map
Published Article

LAPSE:2025.0466
This Record
External Link

https://doi.org/10.69997/sct.146332
Article DOI
Download
Meta
Record Statistics
Record Views
442
Version History
[v1] (Original Submission)
Jun 27, 2025
Verified by curator on
Jun 27, 2025
This Version Number
v1
Citations
Most Recent
This Version
URL Here
http://psecommunity.org/LAPSE:2025.0466
Record Owner
PSE Press
Links to Related Works
References Cited
- Rafiee A., Rajab Khalilpour K., Milani D., Panahi M., Trends in CO2 conversion and utilization: A review from process systems perspective, J Environ Chem Eng 6:5771-5794 (2018). https://doi.org/10.1016/j.jece.2018.08.065
- Mikulcic H., Skov I.R., Dominkovic D.F., Wan Alwi S.R., Manan Z.A., Tan R., Duic N., Hidayah Mohamad S.N., Wang X., Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2, Renewable Sustainable Energy Rev. 114:109338 (2019). https://doi.org/10.1016/j.rser.2019.109338
- Wilberforce T., Baroutaji A., Soudan B., Al-Alami A.H., Olabi A.G., Outlook of carbon capture technology and challenges, Sci Total Environ 657:56-72 (2019). https://doi.org/10.1016/j.scitotenv.2018.11.424
- He X., Fu C., Hägg M.B., Membrane system design and process feasibility analysis for CO2 capture from flue gas with a fixed-site-carrier membrane, Chem Eng J 268:1-9 (2015). https://doi.org/10.1016/j.cej.2014.12.105
- Han Y., Ho W.S.W, Polymeric membranes for CO2 separation and capture, J Memb Sci 628: 119244 (2021). https://doi.org/10.1016/j.memsci.2021.119244
- Rumayor M., Dominguez-Ramos A., Perez P., Irabien A., A techno-economic evaluation approach to the electrochemical reduction of CO2 for formic acid manufacture, J CO2 Util 34: 490-499 (2019). https://doi.org/10.1016/j.jcou.2019.07.024
- Abarca J.A., Díaz-Sainz G., Merino-Garcia I., Irabien A., Albo J., Photoelectrochemical CO2 electrolyzers: From photoelectrode fabrication to reactor configuration, J Energy Chem 85:455-480 (2023). https://doi.org/10.1016/j.jechem.2023.06.032
- Abarca J.A., Coz-Cruz M., Díaz-Sainz G., Irabien A., Modelling and stochastic optimization of a three-compartment electrochemical reactor for CO2 electroreduction to formic acid using neural networks, in: COMPUTER AIDED CHEMICAL ENGINEERING, Elsevier B.V., pp. 2827-2832 (2024). https://doi.org/10.1016/B978-0-443-28824-1.50472-5
- Yang H., Kaczur J.J, Sajjad S.D., Masel R.I., Performance and long-term stability of CO2 conversion to formic acid using a three-compartment electrolyzer design, J CO2 Util 42: 101349 (2020). https://doi.org/10.1016/j.jcou.2020.101349
- Abarca J.A., Díaz-Sainz G., Merino-Garcia I., Albo J., Irabien A., Statistical modeling of electrodes manufacture for CO2 electroreduction to value-added products., in: COMPUTER AIDED CHEMICAL ENGINEERING, Elsevier B.V.: pp. 3061-3066 (2023). https://doi.org/10.1016/B978-0-443-15274-0.50488-1
- Díaz-Sainz G., Abarca J.A., Alvarez-Guerra M., Irabien A., Exploring the impact of partial pressure and typical compounds on the continuous electroconversion of CO2 into formate, J CO2 Util 81:102735 (2024). https://doi.org/10.1016/j.jcou.2024.102735

