Proceedings of ESCAPE 35ISSN: 2818-4734
Volume: 4 (2025)
Table of Contents
LAPSE:2025.0225v1
Published Article
LAPSE:2025.0225v1
Intensified Alternative for Sustainable Gamma-Valerolactone Production from Levulinic Acid
Brenda Huerta-Rosas, Melanie Coronel-Muñoz, Juan José Quiroz-Ramírez, Carlos Rodrigo Caceres-Barrera, Gabriel Contreras-Zarazua, Juan Gabriel Segovia-Hernández, Eduardo Sánchez-Ramírez
June 27, 2025
Abstract
An intensified approach to ?-valerolactone (GVL) production is achieved using a reactive distillation column. Conventional methods require multiple units, leading to high energy consumption, costs, and limited scalability. The proposed technology integrates reaction and separation into a single unit, enhancing process efficiency for biomass-derived chemicals. A multiobjective optimization framework balances economic, environmental, and operational goals, reducing total annual cost (TAC) by 43% and environmental impact (EI99) by 45% compared to conventional processes. Additionally, energy consumption drops by 63%, while GVL production increases by 25%, highlighting the potential of reactive distillation for improved efficiency and sustainability.
Suggested Citation
Huerta-Rosas B, Coronel-Muñoz M, Quiroz-Ramírez JJ, Caceres-Barrera CR, Contreras-Zarazua G, Segovia-Hernández JG, Sánchez-Ramírez E. Intensified Alternative for Sustainable Gamma-Valerolactone Production from Levulinic Acid. Systems and Control Transactions 4:462-467 (2025) https://doi.org/10.69997/sct.167219
Author Affiliations
Huerta-Rosas B: Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico,
Coronel-Muñoz M: Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico,
Quiroz-Ramírez JJ:
Caceres-Barrera CR: Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico,
Contreras-Zarazua G: Área de Ingeniería Química, IPH, Universidad Autónoma Metropolitana-Iztapalapa, Av. FFCC R. Atlixco 186, 09340 Iztapalapa, Ciudad de México, México
Segovia-Hernández JG: Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico,
Sánchez-Ramírez E: Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico,
[Login] to see author email addresses.
Journal Name
Systems and Control Transactions
Volume
4
First Page
462
Last Page
467
Year
2025
Publication Date
2025-07-01
Version Comments
Original Submission
Other Meta
PII: 0462-0467-1159-SCT-4-2025, Publication Type: Journal Article
Record Map
Published Article

LAPSE:2025.0225v1
This Record
External Link

https://doi.org/10.69997/sct.167219
Article DOI
Download
Files
Jun 27, 2025
Main Article
License
CC BY-SA 4.0
Meta
Record Statistics
Record Views
368
Version History
[v1] (Original Submission)
Jun 27, 2025
 
Verified by curator on
Jun 27, 2025
This Version Number
v1
Citations
Most Recent
This Version
URL Here
http://psecommunity.org/LAPSE:2025.0225v1
 
Record Owner
PSE Press
Links to Related Works
Directly Related to This Work
Article DOI
References Cited
  1. Lasi H, Fettke P, Kemper HG, Feld T, Hoffmann M. Industry 4.0. Bus Inf Syst Eng 6:239-242 (2014) https://doi.org/10.1007/s12599-014-0334-4
  2. Pereira AA, Vera FPS, Coelho HCP, Tessaro I, Chandel AK. Renewable carbon in Industry 4.0: Toward the sustainable bioeconomy. Green Energy and Technology Part F2511:1-27 (2024) https://doi.org/10.1007/978-3-031-51601-6_1
  3. Horváth IT, Mehdi H, Fábos V, Boda L, Mika LT. ?-Valerolactone-a sustainable liquid for energy and carbon-based chemicals. Green Chem 10:238-242 (2008) https://doi.org/10.1039/B712863K
  4. Tang Y, Fu J, Wang Y, Guo H, Qi X. Bimetallic Ni-Zn@OMC catalyst for selective hydrogenation of levulinic acid to ?-valerolactone in water. Fuel Process Technol 240:107559 (2023) https://doi.org/10.1016/j.fuproc.2022.107559
  5. López-Guajardo EA, Delgado-Licona F, Álvarez AJ, Nigam KDP, Montesinos-Castellanos A, Morales-Menendez R. Process intensification 4.0: A new approach for attaining new, sustainable, and circular processes enabled by machine learning. Chem Eng Process Process Intensif 180:108671 (2022) https://doi.org/10.1016/j.cep.2021.108671
  6. Kiss AA, Omota F, Dimian AC, Rothenberg G. The heterogeneous advantage: Biodiesel by catalytic reactive distillation. Top Catal 40:141-150 (2006) https://doi.org/10.1007/s11244-006-0116-4
  7. Caceres CR, Sánchez-Ramirez E, Segovia-Hernández JG. Design and optimization of a sustainable process for the transformation of glucose into high added value products. Comput Aided Chem Eng 53:73-78 (2024) https://doi.org/10.1016/B978-0-443-28824-1.50013-2
  8. Hengne AM, Rode CV. Cu-ZrO2 nanocomposite catalyst for selective hydrogenation of levulinic acid and its ester to ?-valerolactone. Green Chem 14:1064-1072 (2012) doi.org/10.1039/C2GC16558A https://doi.org/10.1039/c2gc16558a
  9. Goedkoop M, Spriensma R. Eco-indicator 99 Manual for Designers. PRe' Consultants, Amersfoort, The Netherlands (2000)
  10. Sánchez-Ramírez E, Huerta-Rosas B, Quiroz-Ramírez JJ, Suárez-Toriello VA, Contreras-Zarazua G, Segovia-Hernández JG. Optimization-based framework for modeling and kinetic parameter estimation. Chem Eng Res Des 186:647-660 (2022) https://doi.org/10.1016/j.cherd.2022.08.040
  11. Shah M, Kiss AA, Zondervan E, De Haan AB. A systematic framework for the feasibility and technical evaluation of reactive distillation processes. Chem Eng Process 60:55-64 (2012) https://doi.org/10.1016/j.cep.2012.05.007
  12. Srinivas M, Rangaiah GP. Differential evolution with tabu list for global optimization: Evaluation of two versions on benchmark and phase stability problems. Adv Process Syst Eng 6:91-127 (2017) https://doi.org/10.1142/9789813207523_0004