LAPSE:2025.0225v1
Published Article

LAPSE:2025.0225v1
Intensified Alternative for Sustainable Gamma-Valerolactone Production from Levulinic Acid
June 27, 2025
Abstract
An intensified approach to ?-valerolactone (GVL) production is achieved using a reactive distillation column. Conventional methods require multiple units, leading to high energy consumption, costs, and limited scalability. The proposed technology integrates reaction and separation into a single unit, enhancing process efficiency for biomass-derived chemicals. A multiobjective optimization framework balances economic, environmental, and operational goals, reducing total annual cost (TAC) by 43% and environmental impact (EI99) by 45% compared to conventional processes. Additionally, energy consumption drops by 63%, while GVL production increases by 25%, highlighting the potential of reactive distillation for improved efficiency and sustainability.
An intensified approach to ?-valerolactone (GVL) production is achieved using a reactive distillation column. Conventional methods require multiple units, leading to high energy consumption, costs, and limited scalability. The proposed technology integrates reaction and separation into a single unit, enhancing process efficiency for biomass-derived chemicals. A multiobjective optimization framework balances economic, environmental, and operational goals, reducing total annual cost (TAC) by 43% and environmental impact (EI99) by 45% compared to conventional processes. Additionally, energy consumption drops by 63%, while GVL production increases by 25%, highlighting the potential of reactive distillation for improved efficiency and sustainability.
Record ID
Subject
Suggested Citation
Huerta-Rosas B, Coronel-Muñoz M, Quiroz-Ramírez JJ, Caceres-Barrera CR, Contreras-Zarazua G, Segovia-Hernández JG, Sánchez-Ramírez E. Intensified Alternative for Sustainable Gamma-Valerolactone Production from Levulinic Acid. Systems and Control Transactions 4:462-467 (2025) https://doi.org/10.69997/sct.167219
Author Affiliations
Huerta-Rosas B: Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico,
Coronel-Muñoz M: Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico,
Quiroz-Ramírez JJ:
Caceres-Barrera CR: Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico,
Contreras-Zarazua G: Área de Ingeniería Química, IPH, Universidad Autónoma Metropolitana-Iztapalapa, Av. FFCC R. Atlixco 186, 09340 Iztapalapa, Ciudad de México, México
Segovia-Hernández JG: Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico,
Sánchez-Ramírez E: Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico,
[Login] to see author email addresses.
Coronel-Muñoz M: Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico,
Quiroz-Ramírez JJ:
Caceres-Barrera CR: Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico,
Contreras-Zarazua G: Área de Ingeniería Química, IPH, Universidad Autónoma Metropolitana-Iztapalapa, Av. FFCC R. Atlixco 186, 09340 Iztapalapa, Ciudad de México, México
Segovia-Hernández JG: Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico,
Sánchez-Ramírez E: Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico,
[Login] to see author email addresses.
Journal Name
Systems and Control Transactions
Volume
4
First Page
462
Last Page
467
Year
2025
Publication Date
2025-07-01
Version Comments
Original Submission
Other Meta
PII: 0462-0467-1159-SCT-4-2025, Publication Type: Journal Article
Record Map
Published Article

LAPSE:2025.0225v1
This Record
External Link

https://doi.org/10.69997/sct.167219
Article DOI
Download
Meta
Record Statistics
Record Views
308
Version History
[v1] (Original Submission)
Jun 27, 2025
Verified by curator on
Jun 27, 2025
This Version Number
v1
Citations
Most Recent
This Version
URL Here
http://psecommunity.org/LAPSE:2025.0225v1
Record Owner
PSE Press
Links to Related Works
References Cited
- Lasi H, Fettke P, Kemper HG, Feld T, Hoffmann M. Industry 4.0. Bus Inf Syst Eng 6:239-242 (2014) https://doi.org/10.1007/s12599-014-0334-4
- Pereira AA, Vera FPS, Coelho HCP, Tessaro I, Chandel AK. Renewable carbon in Industry 4.0: Toward the sustainable bioeconomy. Green Energy and Technology Part F2511:1-27 (2024) https://doi.org/10.1007/978-3-031-51601-6_1
- Horváth IT, Mehdi H, Fábos V, Boda L, Mika LT. ?-Valerolactone-a sustainable liquid for energy and carbon-based chemicals. Green Chem 10:238-242 (2008) https://doi.org/10.1039/B712863K
- Tang Y, Fu J, Wang Y, Guo H, Qi X. Bimetallic Ni-Zn@OMC catalyst for selective hydrogenation of levulinic acid to ?-valerolactone in water. Fuel Process Technol 240:107559 (2023) https://doi.org/10.1016/j.fuproc.2022.107559
- López-Guajardo EA, Delgado-Licona F, Álvarez AJ, Nigam KDP, Montesinos-Castellanos A, Morales-Menendez R. Process intensification 4.0: A new approach for attaining new, sustainable, and circular processes enabled by machine learning. Chem Eng Process Process Intensif 180:108671 (2022) https://doi.org/10.1016/j.cep.2021.108671
- Kiss AA, Omota F, Dimian AC, Rothenberg G. The heterogeneous advantage: Biodiesel by catalytic reactive distillation. Top Catal 40:141-150 (2006) https://doi.org/10.1007/s11244-006-0116-4
- Caceres CR, Sánchez-Ramirez E, Segovia-Hernández JG. Design and optimization of a sustainable process for the transformation of glucose into high added value products. Comput Aided Chem Eng 53:73-78 (2024) https://doi.org/10.1016/B978-0-443-28824-1.50013-2
- Hengne AM, Rode CV. Cu-ZrO2 nanocomposite catalyst for selective hydrogenation of levulinic acid and its ester to ?-valerolactone. Green Chem 14:1064-1072 (2012) doi.org/10.1039/C2GC16558A https://doi.org/10.1039/c2gc16558a
- Goedkoop M, Spriensma R. Eco-indicator 99 Manual for Designers. PRe' Consultants, Amersfoort, The Netherlands (2000)
- Sánchez-Ramírez E, Huerta-Rosas B, Quiroz-Ramírez JJ, Suárez-Toriello VA, Contreras-Zarazua G, Segovia-Hernández JG. Optimization-based framework for modeling and kinetic parameter estimation. Chem Eng Res Des 186:647-660 (2022) https://doi.org/10.1016/j.cherd.2022.08.040
- Shah M, Kiss AA, Zondervan E, De Haan AB. A systematic framework for the feasibility and technical evaluation of reactive distillation processes. Chem Eng Process 60:55-64 (2012) https://doi.org/10.1016/j.cep.2012.05.007
- Srinivas M, Rangaiah GP. Differential evolution with tabu list for global optimization: Evaluation of two versions on benchmark and phase stability problems. Adv Process Syst Eng 6:91-127 (2017) https://doi.org/10.1142/9789813207523_0004

