Published Article
A new approach to the identification of high-potential materials for cost-efficient membrane-based post-combustion CO2 capture
June 22, 2018
Developing “good” membrane modules and materials is a key step towards reducing the cost of membrane-based CO2 capture. While this is traditionally being done through incremental development of existing and new materials, this paper presents a new approach to identify membrane materials with a disruptive potential to reduce the cost of CO2 capture for six potential industrial and power generation cases. For each case, this approach first identifies the membrane properties targets required to reach cost-competitiveness and several cost-reduction levels compared to MEA-based CO2 capture, through the evaluation of a wide range of possible membrane properties. These properties targets are then compared to membrane module properties which can be theoretically achieved using 401 polymeric membrane materials, in order to highlight 73 high-potential materials which could be used by membrane development experts to select materials worth pushing towards further development once practical considerations have been taken into account. Beyond the identification of individual materials, the ranges of membrane properties targets also show the strong potential of membrane-based capture for industrial cases in which the CO2 content in the flue gas is greater than 11%, and that considering CO2 capture ratios lower than 90% would significantly improve the competitiveness of membrane-based capture and lead to potentially significant cost reduction. Finally, it is important to note that the approach discussed here is applicable to other separation technologies and applications beyond CO2 capture, and could help reduce both the cost and time required to develop cost-effective technologies.
Attainable Region, Carbon Dioxide Capture, gas separation membranes, post-combustion, property maps
Suggested Citation
Roussanaly S, Anantharaman R, Lindqvist K, Hagen B. A new approach to the identification of high-potential materials for cost-efficient membrane-based post-combustion CO2 capture. (2018). LAPSE:2018.0142
Author Affiliations
Roussanaly S: SINTEF Energy Research [ORCID] [Google Scholar]
Anantharaman R: SINTEF Energy Research [ORCID] [Google Scholar]
Lindqvist K: SINTEF Energy Research [ORCID]
Hagen B: SINTEF Energy Research
[Login] to see author email addresses.
Journal Name
Sustainable Energy & Fuels
First Page
Last Page
Publication Date
Published Version
Version Comments
Original Submission
Record Map
External Link

Predecessor work
External Link

Predecessor work
Published Article

This Record
[Download 1v1.pdf] (2.2 MB)
Jun 22, 2018
CC BY 4.0
Record Statistics
Record Views
Version History
[v1] (Original Submission)
Jun 22, 2018
Verified by curator on
Jun 22, 2018
This Version Number
Most Recent
This Version
URL Here
Original Submitter
Rahul Anantharaman
Links to Related Works
Predecessor Works
Predecessor work
Predecessor work